diff options
| author | Juan Marín Noguera <juan.marinn@um.es> | 2020-02-20 13:15:34 +0100 |
|---|---|---|
| committer | Juan Marín Noguera <juan.marinn@um.es> | 2020-02-20 13:15:34 +0100 |
| commit | 29eb708670963c0ca5bd315c83a3cec8dafef1a7 (patch) | |
| tree | 1a53fce36c4ef876bd73b98fff88e79cc4377803 /algl/n2.lyx | |
Commit inicial, primer cuatrimestre.
Diffstat (limited to 'algl/n2.lyx')
| -rw-r--r-- | algl/n2.lyx | 2102 |
1 files changed, 2102 insertions, 0 deletions
diff --git a/algl/n2.lyx b/algl/n2.lyx new file mode 100644 index 0000000..bd834d3 --- /dev/null +++ b/algl/n2.lyx @@ -0,0 +1,2102 @@ +#LyX 2.3 created this file. For more info see http://www.lyx.org/ +\lyxformat 544 +\begin_document +\begin_header +\save_transient_properties true +\origin unavailable +\textclass book +\use_default_options true +\maintain_unincluded_children false +\language spanish +\language_package default +\inputencoding auto +\fontencoding global +\font_roman "default" "default" +\font_sans "default" "default" +\font_typewriter "default" "default" +\font_math "auto" "auto" +\font_default_family default +\use_non_tex_fonts false +\font_sc false +\font_osf false +\font_sf_scale 100 100 +\font_tt_scale 100 100 +\use_microtype false +\use_dash_ligatures true +\graphics default +\default_output_format default +\output_sync 0 +\bibtex_command default +\index_command default +\paperfontsize default +\spacing single +\use_hyperref false +\papersize default +\use_geometry false +\use_package amsmath 1 +\use_package amssymb 1 +\use_package cancel 1 +\use_package esint 1 +\use_package mathdots 1 +\use_package mathtools 1 +\use_package mhchem 1 +\use_package stackrel 1 +\use_package stmaryrd 1 +\use_package undertilde 1 +\cite_engine basic +\cite_engine_type default +\biblio_style plain +\use_bibtopic false +\use_indices false +\paperorientation portrait +\suppress_date false +\justification true +\use_refstyle 1 +\use_minted 0 +\index Index +\shortcut idx +\color #008000 +\end_index +\secnumdepth 3 +\tocdepth 3 +\paragraph_separation indent +\paragraph_indentation default +\is_math_indent 0 +\math_numbering_side default +\quotes_style swiss +\dynamic_quotes 0 +\papercolumns 1 +\papersides 1 +\paperpagestyle default +\tracking_changes false +\output_changes false +\html_math_output 0 +\html_css_as_file 0 +\html_be_strict false +\end_header + +\begin_body + +\begin_layout Standard +\begin_inset Formula $f:U\rightarrow V$ +\end_inset + + es una +\series bold +aplicación lineal +\series default + u +\series bold +homomorfismo de espacios vectoriales +\series default + si +\begin_inset Formula $f(u+u')=f(u)+f(u')\forall u,u'\in U$ +\end_inset + + y +\begin_inset Formula $f(\alpha u)=\alpha f(u)\forall\alpha\in K,u\in U$ +\end_inset + +, es decir, si +\begin_inset Formula $f(\sum\alpha_{i}u_{i})=\sum\alpha_{i}f(u_{i})$ +\end_inset + +. + Ejemplos: +\end_layout + +\begin_layout Itemize +La +\series bold +aplicación identidad: +\series default + +\begin_inset Formula $Id_{V}:V\rightarrow V$ +\end_inset + + con +\begin_inset Formula $Id_{V}(v)=v$ +\end_inset + +. +\end_layout + +\begin_layout Itemize +La +\series bold +aplicación inclusión: +\series default + +\begin_inset Formula $i:U\subseteq V\rightarrow V$ +\end_inset + + con +\begin_inset Formula $i(u)=u$ +\end_inset + +. +\end_layout + +\begin_layout Itemize +La +\series bold +aplicación lineal nula: +\series default + +\begin_inset Formula $0:U\rightarrow V$ +\end_inset + + con +\begin_inset Formula $0(u)=0$ +\end_inset + +. +\end_layout + +\begin_layout Itemize +La +\series bold +homotecia de razón +\begin_inset Formula $\alpha$ +\end_inset + +: +\series default + +\begin_inset Formula $h_{\alpha}:V\rightarrow V$ +\end_inset + + con +\begin_inset Formula $h_{\alpha}(v)=\alpha v$ +\end_inset + +. +\end_layout + +\begin_layout Itemize +Las +\series bold +proyecciones de +\begin_inset Formula $V$ +\end_inset + + sobre +\begin_inset Formula $U$ +\end_inset + + y +\begin_inset Formula $W$ +\end_inset + +, +\series default + con +\begin_inset Formula $V=U\oplus W$ +\end_inset + +: +\begin_inset Formula $p_{U}:V\rightarrow U$ +\end_inset + + y +\begin_inset Formula $p_{W}:V\rightarrow W$ +\end_inset + +, tales que si +\begin_inset Formula $v=u+w$ +\end_inset + + con +\begin_inset Formula $v\in V$ +\end_inset + +, +\begin_inset Formula $u\in U$ +\end_inset + + y +\begin_inset Formula $w\in W$ +\end_inset + +, entonces +\begin_inset Formula $p_{U}(v)=u$ +\end_inset + + y +\begin_inset Formula $p_{W}(v)=w$ +\end_inset + +. +\end_layout + +\begin_layout Itemize +La aplicación +\begin_inset Formula $f_{A}:K^{n}\rightarrow K^{m}$ +\end_inset + + con +\begin_inset Formula $A\in M_{m,n}(K)$ +\end_inset + +, dada por +\begin_inset Formula +\[ +f_{A}(v)=A\left(\begin{array}{c} +|\\ +v\\ +| +\end{array}\right) +\] + +\end_inset + + +\end_layout + +\begin_layout Standard +Tenemos que +\begin_inset Formula $f(0_{U})=0_{V}$ +\end_inset + +, y que +\begin_inset Formula $f(-u)=-f(u)$ +\end_inset + +. + Además, si +\begin_inset Formula $f:U\rightarrow V$ +\end_inset + + y +\begin_inset Formula $g:V\rightarrow W$ +\end_inset + + son aplicaciones lineales, +\begin_inset Formula $g\circ f:U\rightarrow W$ +\end_inset + + también lo es. +\end_layout + +\begin_layout Section +Aplicaciones lineales y subespacios. + Núcleo e Imagen +\end_layout + +\begin_layout Standard +El +\series bold +núcleo +\series default + de +\begin_inset Formula $f$ +\end_inset + + se define como +\begin_inset Formula $\text{Nuc}(f)=\ker(f)=f^{-1}(\{0\})$ +\end_inset + +, y la +\series bold +imagen +\series default + de +\begin_inset Formula $f$ +\end_inset + + como +\begin_inset Formula $\text{Im}(f)=\{f(u)\}_{u\in U}$ +\end_inset + +. + Si +\begin_inset Formula $U'\leq U$ +\end_inset + + entonces +\begin_inset Formula $f(U')\leq V$ +\end_inset + +, y si +\begin_inset Formula $V'\leq V$ +\end_inset + +, entonces +\begin_inset Formula $\text{Nuc}(f)\leq f^{-1}(V')\leq U$ +\end_inset + +. + En particular, +\begin_inset Formula $\text{Nuc}(f)$ +\end_inset + + e +\begin_inset Formula $\text{Im}(f)$ +\end_inset + + son espacios vectoriales, y si +\begin_inset Formula $U'=<u_{1},\dots,u_{r}>\leq U$ +\end_inset + +, entonces +\begin_inset Formula $f(U')=<f(u_{1}),\dots,f(u_{r})>$ +\end_inset + +. + +\series bold +Demostración: +\series default + Sean +\begin_inset Formula $u_{1},u_{2}\in U,\alpha_{1},\alpha_{2}\in K$ +\end_inset + +, y sean +\begin_inset Formula $v_{1}=f(u_{1}),v_{2}=f(u_{2})\in f(U')$ +\end_inset + +. + Entonces +\begin_inset Formula $\alpha_{1}v_{1}+\alpha_{2}v_{2}=\alpha_{1}f(u_{1})+\alpha_{2}f(u_{2})=f(\alpha_{1}u_{1}+\alpha_{2}u_{2})\in f(U')$ +\end_inset + +, por lo que +\begin_inset Formula $f(U')$ +\end_inset + + es un espacio vectorial. + Ahora bien, si +\begin_inset Formula $V'$ +\end_inset + + es un subespacio de +\begin_inset Formula $V$ +\end_inset + + entonces +\begin_inset Formula $\{0\}\subseteq V'$ +\end_inset + +, por lo que +\begin_inset Formula $f^{-1}(\{0\})=\text{Nuc}(f)\subseteq f^{-1}(V')$ +\end_inset + +. + Entonces si +\begin_inset Formula $u_{1},u_{2}\in f^{-1}(V')$ +\end_inset + + y +\begin_inset Formula $\alpha_{1},\alpha_{2}\in K$ +\end_inset + +, entonces +\begin_inset Formula $f(\alpha_{1}u_{1}+\alpha_{2}u_{2})=\alpha_{1}f(u_{1})+\alpha_{2}f(u_{2})\in V'$ +\end_inset + +, y por lo tanto +\begin_inset Formula $\alpha_{1}u_{1}+\alpha_{2}u_{2}\in f^{-1}(V')$ +\end_inset + + y +\begin_inset Formula $f^{-1}(V')$ +\end_inset + + es un espacio vectorial. +\end_layout + +\begin_layout Standard + +\series bold +Teorema: +\series default + Para +\begin_inset Formula $f:U\rightarrow V$ +\end_inset + + con +\begin_inset Formula $\dim(U)$ +\end_inset + + finita, entonces +\begin_inset Formula $\dim(U)=\dim(\text{Nuc}(f))+\dim(\text{Im}(f))$ +\end_inset + +. + +\series bold +Demostración: +\series default + Sea +\begin_inset Formula $\{v_{1},\dots,v_{n}\}$ +\end_inset + + base de +\begin_inset Formula $U$ +\end_inset + +. + Entonces +\begin_inset Formula $\text{Im}(f)=<f(v_{1}),\dots f(v_{n})>$ +\end_inset + + es de dimensión finita. + Ahora sea +\begin_inset Formula $\{v_{1},\dots,v_{k}\}$ +\end_inset + + base de +\begin_inset Formula $\text{Nuc}(f)\leq U$ +\end_inset + +, con +\begin_inset Formula $k\leq n$ +\end_inset + +. + Entonces +\begin_inset Formula $f(v_{1})=\dots=f(v_{k})=0$ +\end_inset + +, por lo que +\begin_inset Formula $\text{Im}(f)=<f(v_{1}),\dots,f(v_{k}),f(v_{k+1}),\dots,f(v_{n})>=<f(v_{k+1}),\dots,f(v_{n})>$ +\end_inset + +, por lo que +\begin_inset Formula $\{f(v_{k+1}),\dots,f(v_{n})\}$ +\end_inset + + es sistema de generadores de +\begin_inset Formula $\text{Im}(f)$ +\end_inset + +. + A continuación mostramos que es linealmente independiente. + Sea +\begin_inset Formula $0=\alpha_{k+1}f(v_{k+1})+\dots+\alpha_{n}f(v_{n})=f(\alpha_{k+1}v_{k+1}+\dots+\alpha_{n}v_{n})$ +\end_inset + +. + Entonces +\begin_inset Formula $\alpha_{k+1}v_{k+1}+\dots+\alpha_{n}v_{n}\in\text{Nuc}(f)$ +\end_inset + +, por lo que existen +\begin_inset Formula $\beta_{1},\dots,\beta_{k}$ +\end_inset + + tales que +\begin_inset Formula $\alpha_{k+1}v_{k+1}+\dots+\alpha_{n}v_{n}=\beta_{1}v_{1}+\dots+\beta_{k}v_{k}$ +\end_inset + +. + Pero entonces +\begin_inset Formula $\beta_{1}v_{1}+\dots+\beta_{k}v_{k}-\alpha_{k+1}v_{k+1}-\dots-\alpha_{n}v_{n}=0$ +\end_inset + +, y como +\begin_inset Formula $\{v_{1},\dots,v_{n}\}$ +\end_inset + + es base de +\begin_inset Formula $U$ +\end_inset + +, se tiene que +\begin_inset Formula $\beta_{1}=\dots=\beta_{k}=\alpha_{k+1}=\dots=\alpha_{n}=0$ +\end_inset + +, de modo que +\begin_inset Formula $\{v_{k+1},\dots,v_{n}\}$ +\end_inset + + es linealmente independiente y por ello +\begin_inset Formula $\{f(v_{k+1}),\dots,f(v_{n})\}$ +\end_inset + + también, por lo que es base de +\begin_inset Formula $\text{Im}(f)$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Llamamos +\series bold +rango +\series default + de +\begin_inset Formula $f$ +\end_inset + + a la dimensión de la imagen: +\begin_inset Formula $\text{rang}(f)=\dim(\text{Im}(f))$ +\end_inset + +. + Así, dada +\begin_inset Formula $f:U\rightarrow V$ +\end_inset + + y +\begin_inset Formula $\{u_{1},\dots,u_{n}\}$ +\end_inset + + base de +\begin_inset Formula $U$ +\end_inset + +, entonces +\begin_inset Formula $f(U)=<f(u_{1}),\dots,f(u_{n})>$ +\end_inset + + y por tanto +\begin_inset Formula +\[ +\text{rang}(f)=\dim(\text{Im}(f))=\dim(<f(u_{1}),\dots,f(u_{n})>)=\text{rang}(\{f(u_{1}),\dots,f(u_{n})\}) +\] + +\end_inset + + +\end_layout + +\begin_layout Standard +Si +\begin_inset Formula $f:U\rightarrow V$ +\end_inset + + es una aplicación lineal y +\begin_inset Formula $\dim(U)=\dim(V)<\infty$ +\end_inset + +, entonces +\begin_inset Formula +\[ +f\text{ inyectiva}\iff f\text{ suprayectiva}\iff f\text{ biyectiva}\iff\text{rang}(f)=\dim(U)\iff\text{Nuc}(f)=\{0\} +\] + +\end_inset + + +\end_layout + +\begin_layout Itemize +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $1\iff2\iff3]$ +\end_inset + + +\end_layout + +\end_inset + +Equivalen al hecho de que, para +\begin_inset Formula $f:A\rightarrow B$ +\end_inset + + con +\begin_inset Formula $A$ +\end_inset + + y +\begin_inset Formula $B$ +\end_inset + + conjuntos finitos, es lo mismo decir que +\begin_inset Formula $f$ +\end_inset + + sea inyectiva, suprayectiva o biyectiva. +\end_layout + +\begin_layout Itemize +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $3\iff4]$ +\end_inset + + +\end_layout + +\end_inset + + +\begin_inset Formula $\text{rang}(f)=\dim(\text{Im}(U))\overset{\text{(supray.)}}{=}\text{dim}(V)$ +\end_inset + +. + Si +\begin_inset Formula $f$ +\end_inset + + no fuera suprayectiva, entonces +\begin_inset Formula $\dim(\text{Im}(U))<\dim(V)$ +\end_inset + +. +\end_layout + +\begin_layout Itemize +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $1\implies5]$ +\end_inset + + +\end_layout + +\end_inset + + +\begin_inset Formula $u\in\text{Nuc}(f)\implies f(u)=0_{V}=f(0_{U})\implies u=0_{U}$ +\end_inset + + +\end_layout + +\begin_layout Itemize +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $5\implies1]$ +\end_inset + + +\end_layout + +\end_inset + + +\begin_inset Formula $\text{Nuc}(f)=\{0\}\implies\left(f(u)=f(u')\implies0=f(u-u')\implies u-u'\in\text{Nuc}(f)\implies u=u'\right)$ +\end_inset + + +\end_layout + +\begin_layout Standard +El homomorfismo +\begin_inset Formula $f:U\rightarrow V$ +\end_inset + + es un +\series bold +isomorfismo de espacios vectoriales +\series default + si es biyectivo, un +\series bold +endomorfismo +\series default + de +\begin_inset Formula $U$ +\end_inset + + si +\begin_inset Formula $U=V$ +\end_inset + + y un +\series bold +automorfismo +\series default + es un endomorfismo biyectivo. + Ahora, dado el isomorfismo +\begin_inset Formula $f:U\rightarrow V$ +\end_inset + +, +\begin_inset Formula $f^{-1}:V\rightarrow U$ +\end_inset + + es una aplicación lineal y por tanto un isomorfismo. + +\series bold +Demostración: +\series default + Consideramos +\begin_inset Formula $u=f^{-1}(v)$ +\end_inset + + y +\begin_inset Formula $u'=f^{-1}(v')$ +\end_inset + +. + Entonces +\begin_inset Formula $f(u+u')=f(u)+f(u')=v+v'$ +\end_inset + + y por tanto +\begin_inset Formula $f^{-1}(v+v')=u+u'=f^{-1}(v)+f^{-1}(v')$ +\end_inset + +. + Del mismo modo, +\begin_inset Formula $f(\alpha u)=\alpha f(u)=\alpha v$ +\end_inset + +, por lo que +\begin_inset Formula $f^{-1}(\alpha v)=\alpha u=\alpha f^{-1}(v)$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset Formula $U$ +\end_inset + + y +\begin_inset Formula $V$ +\end_inset + + son +\series bold +isomorfos +\series default + ( +\begin_inset Formula $U\cong V$ +\end_inset + +) si existe un isomorfismo +\begin_inset Formula $f:U\rightarrow V$ +\end_inset + +. + Podemos comprobar que la relación es de equivalencia, y si +\begin_inset Formula $U$ +\end_inset + + y +\begin_inset Formula $V$ +\end_inset + + son +\begin_inset Formula $K$ +\end_inset + +-espacios vectoriales, entonces +\begin_inset Formula $U\cong V\iff\dim(U)=\dim(V)$ +\end_inset + +. +\end_layout + +\begin_layout Itemize +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\implies]$ +\end_inset + + +\end_layout + +\end_inset + + +\begin_inset Formula $U\cong V\implies\dim(U)=\dim(\text{Nuc}(f))+\dim(\text{Im}(f))=0+\dim(V)$ +\end_inset + + +\end_layout + +\begin_layout Itemize +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\impliedby]$ +\end_inset + + +\end_layout + +\end_inset + +Sean +\begin_inset Formula $f:U\rightarrow K^{n}$ +\end_inset + + y +\begin_inset Formula $g:V\rightarrow K^{n}$ +\end_inset + + isomorfismos con +\begin_inset Formula $f(u)=[u]_{{\cal B}}$ +\end_inset + + y +\begin_inset Formula $g(v)=[v]_{\beta'}$ +\end_inset + + ; entonces +\begin_inset Formula $g^{-1}\circ f:U\rightarrow V$ +\end_inset + + también es un isomorfismo. +\end_layout + +\begin_layout Section +Determinación de una aplicación lineal +\end_layout + +\begin_layout Standard +Si +\begin_inset Formula $U$ +\end_inset + + y +\begin_inset Formula $V$ +\end_inset + + son +\begin_inset Formula $K$ +\end_inset + +-espacios vectoriales con +\begin_inset Formula ${\cal B}=\{u_{1},\dots,u_{n}\}$ +\end_inset + + base de +\begin_inset Formula $U$ +\end_inset + + y +\begin_inset Formula $v_{1},\dots,v_{n}$ +\end_inset + + vectores cualesquiera de +\begin_inset Formula $V$ +\end_inset + +, existe una única +\begin_inset Formula $f:U\rightarrow V$ +\end_inset + + con +\begin_inset Formula $f(u_{i})=v_{i}\forall i$ +\end_inset + +, pues es aquella dada por +\begin_inset Formula $f(\alpha_{1}u_{1}+\dots+\alpha_{n}u_{n})=\alpha_{1}v_{1}+\dots+\alpha_{n}v_{n}$ +\end_inset + +. + Esto también se cumple para espacios de dimensión infinita. +\end_layout + +\begin_layout Standard +También, si +\begin_inset Formula ${\cal B}=\{u_{i}\}_{i\in I}$ +\end_inset + + es base de +\begin_inset Formula $U$ +\end_inset + + (la cual puede ser infinita) y +\begin_inset Formula $f:U\rightarrow V$ +\end_inset + + lineal entonces: +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $f$ +\end_inset + + es inyectiva si y sólo si +\begin_inset Formula $\{f(u_{i})\}_{i\in I}$ +\end_inset + + es linealmente independiente. +\end_layout + +\begin_deeper +\begin_layout Enumerate +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\implies]$ +\end_inset + + +\end_layout + +\end_inset + + +\begin_inset Formula $0=\alpha_{1}f(u_{1})+\dots+\alpha_{k}f(u_{k})=f(\alpha_{1}u_{1}+\dots+\alpha_{k}u_{k})\implies\alpha_{1}u_{1}+\dots+\alpha_{k}u_{k}\in\text{Nuc}(f)=\{0\}\implies\alpha_{1}u_{1}+\dots+\alpha_{k}u_{k}=0\implies\alpha_{1},\dots,\alpha_{k}=0$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\impliedby]$ +\end_inset + + +\end_layout + +\end_inset + +Partimos de que +\begin_inset Formula $\{f(u_{i})\}_{i\in I}$ +\end_inset + + es linealmente independiente. + Sea +\begin_inset Formula $u\in\text{Nuc}(f)$ +\end_inset + +, si +\begin_inset Formula $u=\alpha_{1}u_{1}+\dots+\alpha_{k}u_{k}$ +\end_inset + + entonces +\begin_inset Formula $0=f(u)=\alpha_{1}f(u_{1})+\dots+\alpha_{k}f(u_{k})\implies\alpha_{i}=0\forall i\implies u=0$ +\end_inset + +, por lo que entonces +\begin_inset Formula $\text{Nuc}(f)=\{0\}$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Enumerate +\begin_inset Formula $f$ +\end_inset + + es suprayectiva si y sólo si +\begin_inset Formula $\{f(u_{i})\}_{i\in I}$ +\end_inset + + es una familia de generadores de +\begin_inset Formula $V$ +\end_inset + +. +\begin_inset Formula +\[ +f\text{ suprayectiva}\iff f(U)=V\iff<\{f(u_{i})\}_{i\in I}>=V +\] + +\end_inset + + +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $f$ +\end_inset + + es biyectiva, y por tanto isomorfismo, si y sólo si +\begin_inset Formula $\{f(u_{i})\}_{i\in I}$ +\end_inset + + es +\begin_inset space \space{} +\end_inset + + base de +\begin_inset Formula $V$ +\end_inset + +. +\end_layout + +\begin_layout Section +Representación matricial de una aplicación lineal. + Rango de una matriz. + Matrices equivalentes +\end_layout + +\begin_layout Standard +Si +\begin_inset Formula $U$ +\end_inset + + y +\begin_inset Formula $V$ +\end_inset + + son +\begin_inset Formula $K$ +\end_inset + +-espacios vectoriales de dimensión finita, +\begin_inset Formula ${\cal B}=\{u_{1},\dots,u_{n}\}$ +\end_inset + + es base de +\begin_inset Formula $U$ +\end_inset + + y +\begin_inset Formula ${\cal B}'=\{v_{1},\dots,v_{m}\}$ +\end_inset + + base de +\begin_inset Formula $V$ +\end_inset + +, y +\begin_inset Formula $f:U\rightarrow V$ +\end_inset + + es un homomorfismo, entonces para cada +\begin_inset Formula $j$ +\end_inset + + existirán +\begin_inset Formula $a_{ij}$ +\end_inset + + tales que +\begin_inset Formula +\[ +f(u_{j})=\sum_{i=1}^{m}a_{ij}v_{i} +\] + +\end_inset + +Así, si +\begin_inset Formula $[u]_{{\cal B}}=(x_{1},\dots,x_{n})$ +\end_inset + +, entonces +\begin_inset Formula $u=\sum_{j=1}^{n}x_{j}u_{j}\in U$ +\end_inset + + y +\begin_inset Formula +\[ +f(u)=f\left(\sum_{j=1}^{n}x_{j}u_{j}\right)=\sum_{j=1}^{n}x_{j}f(u_{j})=\sum_{j=1}^{n}x_{j}\left(\sum_{i=1}^{m}a_{ij}v_{i}\right)=\sum_{j=1}^{n}\sum_{i=1}^{m}(x_{j}a_{ij})v_{i}=\sum_{i=1}^{m}\left(\sum_{j=1}^{n}a_{ij}x_{j}\right)v_{i} +\] + +\end_inset + +por lo que +\begin_inset Formula $[f(u)]_{{\cal B}'}=(\sum_{j=1}^{n}a_{1j}x_{j},\dots,\sum_{j=1}^{n}a_{mj}x_{j})$ +\end_inset + +, de modo que, si +\begin_inset Formula $[f(u)]_{{\cal B}'}=(y_{1},\dots,y_{m})$ +\end_inset + +, entonces +\begin_inset Formula +\[ +\left(\begin{array}{c} +y_{1}\\ +\vdots\\ +y_{m} +\end{array}\right)=\left(\begin{array}{ccc} +a_{11} & \cdots & a_{1n}\\ +\vdots & \ddots & \vdots\\ +a_{m1} & \cdots & a_{mn} +\end{array}\right)\left(\begin{array}{c} +x_{1}\\ +\vdots\\ +x_{n} +\end{array}\right) +\] + +\end_inset + + +\end_layout + +\begin_layout Standard +Siendo las columnas de +\begin_inset Formula $(a_{ij})$ +\end_inset + + los +\begin_inset Formula $[f(u_{j})]_{{\cal B}'}$ +\end_inset + +, es decir, las imágenes de los elementos de +\begin_inset Formula ${\cal B}$ +\end_inset + + respecto de +\begin_inset Formula ${\cal B}'$ +\end_inset + +. + Entonces +\begin_inset Formula $[f(u)]_{{\cal B}'}=A[u]_{{\cal B}}$ +\end_inset + +, lo que se conoce como +\series bold +representación matricial de +\begin_inset Formula $f$ +\end_inset + + respecto a las bases +\begin_inset Formula ${\cal B}$ +\end_inset + + y +\begin_inset Formula ${\cal B}'$ +\end_inset + + +\series default +. + A la matriz +\begin_inset Formula $(a_{ij})$ +\end_inset + + se le llama +\series bold +matriz de +\begin_inset Formula $f$ +\end_inset + + +\series default + o +\series bold +matriz asociada a +\begin_inset Formula $f$ +\end_inset + + respecto a las bases +\begin_inset Formula ${\cal B}$ +\end_inset + + y +\begin_inset Formula ${\cal B}'$ +\end_inset + + +\series default +, y se denomina +\begin_inset Formula $M_{{\cal B}',{\cal B}}(f)$ +\end_inset + +. + Así, +\begin_inset Formula +\[ +[f(u)]_{{\cal B}'}=M_{{\cal B}',{\cal B}}(f)[u]_{{\cal B}} +\] + +\end_inset + + +\end_layout + +\begin_layout Standard +Tenemos que +\begin_inset Formula $M_{{\cal B}',{\cal B}}(f)$ +\end_inset + + está completamente determinada por +\begin_inset Formula $f$ +\end_inset + +, y de igual modo, +\begin_inset Formula $f$ +\end_inset + + está univocamente determinada por +\begin_inset Formula $M_{{\cal B}',{\cal B}}(f)$ +\end_inset + +. + Además, si +\begin_inset Formula $f:U\rightarrow V$ +\end_inset + + y +\begin_inset Formula $g:V\rightarrow W$ +\end_inset + + son aplicaciones lineales y +\begin_inset Formula ${\cal B}_{1}$ +\end_inset + +, +\begin_inset Formula ${\cal B}_{2}$ +\end_inset + + y +\begin_inset Formula ${\cal B}_{3}$ +\end_inset + + son bases respectivas de +\begin_inset Formula $U$ +\end_inset + +, +\begin_inset Formula $V$ +\end_inset + + y +\begin_inset Formula $W$ +\end_inset + +, entonces +\begin_inset Formula $M_{{\cal B}_{3},{\cal B}_{1}}(g\circ f)=M_{{\cal B}_{3},{\cal B}_{2}}(g)M_{{\cal B}_{2},{\cal B}_{1}}(f)$ +\end_inset + +. + +\series bold +Demostración: +\series default + Para cada +\begin_inset Formula $u\in U,v\in V$ +\end_inset + +, tenemos que +\begin_inset Formula $M_{{\cal B}_{2},{\cal B}_{1}}(f)[u]_{{\cal B}_{1}}=[f(u)]_{{\cal B}_{2}}$ +\end_inset + + y +\begin_inset Formula $M_{{\cal B}_{3},{\cal B}_{2}}(g)[v]_{{\cal B}_{2}}=[g(v)]_{{\cal B}_{3}}$ +\end_inset + +, por lo que +\begin_inset Formula +\[ +M_{{\cal B}_{3},{\cal B}_{2}}(g)M_{{\cal B}_{2},{\cal B}_{1}}(f)[u]_{{\cal B}_{1}}=M_{{\cal B}_{3},{\cal B}_{2}}(g)[f(u)]_{{\cal B}_{2}}=[g(f(u))]_{{\cal B}_{3}}=[(g\circ f)(u)]_{{\cal B}_{3}} +\] + +\end_inset + +y por la unicidad de la matriz de una aplicación lineal respecto a dos bases, + se tiene que +\begin_inset Formula $M_{{\cal B}_{3},{\cal B}_{1}}(g\circ f)=M_{{\cal B}_{3},{\cal B}_{2}}(g)M_{{\cal B}_{2},{\cal B}_{1}}(f)$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Sean +\begin_inset Formula $U$ +\end_inset + + y +\begin_inset Formula $V$ +\end_inset + + +\begin_inset Formula $K$ +\end_inset + +-espacios vectoriales con bases respectivas +\begin_inset Formula ${\cal B}$ +\end_inset + + y +\begin_inset Formula ${\cal B}'$ +\end_inset + +, +\begin_inset Formula $f:U\rightarrow V$ +\end_inset + + una aplicación lineal y +\begin_inset Formula $A=M_{{\cal B}',{\cal B}}(f)$ +\end_inset + +. + Entonces +\begin_inset Formula $f$ +\end_inset + + es un isomorfismo si y sólo si +\begin_inset Formula $A$ +\end_inset + + es invertible, y entonces +\begin_inset Formula $A^{-1}=M_{{\cal B},{\cal B}'}(f^{-1})$ +\end_inset + +. +\end_layout + +\begin_layout Itemize +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\implies]$ +\end_inset + + +\end_layout + +\end_inset + +Sea +\begin_inset Formula $B=M_{{\cal B},{\cal B}'}(f^{-1})$ +\end_inset + +: +\begin_inset Formula +\[ +AB=M_{{\cal B}',{\cal B}}(f)M_{{\cal B},{\cal B}'}(f^{-1})=M_{{\cal B}',{\cal B}'}(f\circ f^{-1})=M_{{\cal B}',{\cal B}'}(Id_{V})=I_{n} +\] + +\end_inset + + +\begin_inset Formula +\[ +BA=M_{{\cal B},{\cal B}'}(f^{-1})M_{{\cal B}',{\cal B}}(f)=M_{{\cal B},{\cal B}}(f^{-1}\circ f)=M_{{\cal B},{\cal B}}(Id_{U})=I_{n} +\] + +\end_inset + + +\end_layout + +\begin_layout Itemize +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\impliedby]$ +\end_inset + + +\end_layout + +\end_inset + +Al ser invertible es cuadrada, por lo que +\begin_inset Formula $\dim(U)=\dim(V)=n$ +\end_inset + +, y si consideramos +\begin_inset Formula $g:V\rightarrow U$ +\end_inset + + tal que +\begin_inset Formula $M_{{\cal B},{\cal B}'}(g)=A^{-1}$ +\end_inset + +, se tiene que +\begin_inset Formula +\[ +M_{{\cal B},{\cal B}}(g\circ f)=M_{{\cal B},{\cal B}'}(g)M_{{\cal B}',{\cal B}}(f)=A^{-1}A=I_{n}=M_{{\cal B},{\cal B}}(Id_{U})\implies g\circ f=Id_{U} +\] + +\end_inset + + +\begin_inset Formula +\[ +M_{{\cal B}',{\cal B}'}(f\circ g)=M_{{\cal B}',{\cal B}}(f)M_{{\cal B},{\cal B}'}(g)=AA^{-1}=I_{n}=M_{{\cal B}',{\cal B}'}(Id_{V})\implies f\circ g=Id_{V} +\] + +\end_inset + + +\end_layout + +\begin_layout Standard +Así, si +\begin_inset Formula ${\cal B}$ +\end_inset + + y +\begin_inset Formula ${\cal B}'$ +\end_inset + + son bases de +\begin_inset Formula $V$ +\end_inset + +, como +\begin_inset Formula $M_{{\cal B},{\cal B}'}=M_{{\cal B},{\cal B}'}(Id_{V})$ +\end_inset + +, se tiene que +\begin_inset Formula +\[ +M_{{\cal B}',{\cal B}}^{-1}=(M_{{\cal B}',{\cal B}}(Id_{V}))^{-1}=M_{{\cal B},{\cal B}'}(Id_{V}^{-1})=M_{{\cal B},{\cal B}'}(Id_{V})=M_{{\cal B},{\cal B}'} +\] + +\end_inset + + +\end_layout + +\begin_layout Standard +También se tiene que si +\begin_inset Formula ${\cal B}_{1}$ +\end_inset + + y +\begin_inset Formula ${\cal B}_{2}$ +\end_inset + + son bases de +\begin_inset Formula $U$ +\end_inset + + y +\begin_inset Formula ${\cal B}'_{1}$ +\end_inset + + y +\begin_inset Formula ${\cal B}'_{2}$ +\end_inset + + son bases de +\begin_inset Formula $V$ +\end_inset + +, entonces +\begin_inset Formula +\[ +M_{{\cal B}'_{2},{\cal B}_{2}}(f)=M_{{\cal B}'_{2},{\cal B}_{2}}(Id_{V}\circ f\circ Id_{U})=M_{{\cal B}'_{2},{\cal B}'_{1}}\cdot M_{{\cal B}'_{1}{\cal B}_{1}}(f)\cdot M_{{\cal B}_{1},{\cal B}_{2}} +\] + +\end_inset + +Para +\begin_inset Formula $A,B\in M_{m,n}(K)$ +\end_inset + +, +\begin_inset Formula $A$ +\end_inset + + y +\begin_inset Formula $B$ +\end_inset + + son +\series bold +equivalentes +\series default + si existen matrices invertibles +\begin_inset Formula $P\in M_{m}(K)$ +\end_inset + + y +\begin_inset Formula $Q\in M_{n}(K)$ +\end_inset + + tales que +\begin_inset Formula $B=PAQ$ +\end_inset + +. + Esta es una relación de equivalencia. +\end_layout + +\begin_layout Standard +Se llama +\series bold +rango +\series default + de +\begin_inset Formula $A\in M_{m,n}(K)$ +\end_inset + + al máximo de columnas linealmente independientres consideradas como vectores + de +\begin_inset Formula $K^{m}$ +\end_inset + +, es decir, +\begin_inset Formula $\text{rang}(A)=\dim(<C_{1},\dots,C_{n}>)$ +\end_inset + +, y por tanto +\begin_inset Formula $\text{rang}(A)\leq m,n$ +\end_inset + +. + Dado que las columnas de +\begin_inset Formula $M_{{\cal B}',{\cal B}}(f)$ +\end_inset + + son las imágenes en +\begin_inset Formula $f$ +\end_inset + + de los elementos de +\begin_inset Formula ${\cal B}$ +\end_inset + + sobre +\begin_inset Formula ${\cal B}'$ +\end_inset + +, se tiene que +\begin_inset Formula $\text{rang}(M_{{\cal B}',{\cal B}}(f))=\text{rang}(f)$ +\end_inset + +, y como las matrices invertibles corresponden a isomorfismos, se tiene + que +\begin_inset Formula $A\in M_{n}(K)$ +\end_inset + + es invertible si y sólo si +\begin_inset Formula $\text{rang}(A)=n$ +\end_inset + +, para lo que basta con considerar el homomorfismo +\begin_inset Formula $f:K^{n}\rightarrow K^{n}$ +\end_inset + + con +\begin_inset Formula $M_{{\cal C},{\cal C}}(f)=A$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Dados +\begin_inset Formula $K$ +\end_inset + +-espacios vectoriales +\begin_inset Formula $U$ +\end_inset + + y +\begin_inset Formula $V$ +\end_inset + + con dimensiones respectivas +\begin_inset Formula $n$ +\end_inset + + y +\begin_inset Formula $m$ +\end_inset + +, y el homomorfismo +\begin_inset Formula $f:U\rightarrow V$ +\end_inset + +, existen bases +\begin_inset Formula ${\cal B}$ +\end_inset + + de +\begin_inset Formula $U$ +\end_inset + + y +\begin_inset Formula ${\cal B}'$ +\end_inset + + de +\begin_inset Formula $V$ +\end_inset + + tales que +\begin_inset Formula +\[ +M_{{\cal B}',{\cal B}}(f)=\left(\begin{array}{c|c} +I_{r} & 0\\ +\hline 0 & 0 +\end{array}\right)\in M_{m,n}(K) +\] + +\end_inset + +con +\begin_inset Formula $r=\text{rang}(f)$ +\end_inset + +. + +\series bold +Demostración: +\series default + Si +\begin_inset Formula $r=\text{rang}(f)$ +\end_inset + + entonces +\begin_inset Formula $\dim(\text{Nuc}(f))=n-r$ +\end_inset + +. + Además, si +\begin_inset Formula $\{u_{r+1},\dots,u_{n}\}$ +\end_inset + + es base de +\begin_inset Formula $\text{Nuc}(f)$ +\end_inset + + que se extiende a la base +\begin_inset Formula ${\cal B}=\{u_{1},\dots,u_{r},u_{r+1},\dots,u_{n}\}$ +\end_inset + + de +\begin_inset Formula $U$ +\end_inset + +, entonces +\begin_inset Formula $f(u_{r+1})=\dots=f(u_{n})=0$ +\end_inset + +, y +\begin_inset Formula $f(u_{1}),\dots,f(u_{r})$ +\end_inset + + son linealmente dependientes, dado que si +\begin_inset Formula $\alpha_{1}f(u_{1})+\dots+\alpha_{r}f(u_{r})=0$ +\end_inset + + entonces +\begin_inset Formula $\alpha_{1}u_{1}+\dots+\alpha_{r}u_{r}\in\text{Nuc}(f)=<u_{r+1},\dots,u_{n}>$ +\end_inset + + y como +\begin_inset Formula $<u_{1},\dots,u_{r}>\cap<u_{r+1},\dots,u_{n}>=\{0\}$ +\end_inset + +, entonces +\begin_inset Formula $\alpha_{1}u_{1}+\dots+\alpha_{r}u_{r}=0$ +\end_inset + + y por tanto +\begin_inset Formula $\alpha_{1}=\dots=\alpha_{r}=0$ +\end_inset + +. + Si extendemos este conjunto a la base +\begin_inset Formula ${\cal B}'=\{f(u_{1}),\dots,f(u_{r}),v_{r+1},\dots,v_{m}\}$ +\end_inset + +, se tiene la +\begin_inset Formula $M_{{\cal B}',{\cal B}}(f)$ +\end_inset + + buscada. +\end_layout + +\begin_layout Standard +Toda +\begin_inset Formula $A\in M_{m,n}(K)$ +\end_inset + + es equivalente a una de esta forma, con +\begin_inset Formula $r=\text{rang}(A)$ +\end_inset + +. + +\series bold +Demostración: +\series default + Sea +\begin_inset Formula $f:K^{n}\rightarrow K^{m}$ +\end_inset + + tal que +\begin_inset Formula $M_{{\cal C}',{\cal C}}(f)=A$ +\end_inset + +. + Entonces +\begin_inset Formula $M_{{\cal B}',{\cal B}}(f)=M_{{\cal B}',{\cal {\cal C}}'}\cdot A\cdot M_{{\cal C},{\cal B}}$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Llamamos +\series bold +matriz traspuesta +\series default + de +\begin_inset Formula $A=(a_{ij})\in M_{m,n}(K)$ +\end_inset + + a la matriz +\begin_inset Formula $A^{t}=(b_{ij})\in M_{n,m}(K)$ +\end_inset + + con +\begin_inset Formula $b_{ij}=a_{ji}$ +\end_inset + +. + Se verifica que +\begin_inset Formula $(A^{t})^{t}=A$ +\end_inset + +, +\begin_inset Formula $(\alpha A)^{t}=\alpha A^{t}$ +\end_inset + +, +\begin_inset Formula $(A+B)^{t}=A^{t}+B^{t}$ +\end_inset + +, +\begin_inset Formula $(AC)^{t}=C^{t}A^{t}$ +\end_inset + +, y si +\begin_inset Formula $A$ +\end_inset + + es invertible entonces +\begin_inset Formula $A^{t}$ +\end_inset + + también lo es y +\begin_inset Formula $(A^{t})^{-1}=(A^{-1})^{t}$ +\end_inset + +. + Así, si +\begin_inset Formula +\[ +B=\left(\begin{array}{c|c} +I_{r} & 0\\ +\hline 0 & 0 +\end{array}\right)\in M_{m,n}(K) +\] + +\end_inset + +con +\begin_inset Formula $r=\text{rang}(A)$ +\end_inset + + y +\begin_inset Formula $A=M_{m,n}(K)$ +\end_inset + +, existirán +\begin_inset Formula $P\in M_{m}(K)$ +\end_inset + + y +\begin_inset Formula $Q\in M_{n}(K)$ +\end_inset + + tales que +\begin_inset Formula $B=PAQ$ +\end_inset + +, por lo que +\begin_inset Formula $Q^{t}A^{t}P^{t}=(PAQ)^{t}=B^{t}$ +\end_inset + + con +\begin_inset Formula $\text{rang}(B^{t})=\text{rang}(B)$ +\end_inset + +, y por tanto +\begin_inset Formula $\text{rang}(A)=\text{rang}(A^{t})$ +\end_inset + +. +\end_layout + +\begin_layout Section +Matrices elementales. + Aplicaciones +\end_layout + +\begin_layout Standard +Llamamos +\series bold +matriz elemental +\series default + de tamaño +\begin_inset Formula $n$ +\end_inset + + a toda matriz obtenida al efectuar una operación elemental (por filas o + columnas) en +\begin_inset Formula $I_{n}$ +\end_inset + +. +\end_layout + +\begin_layout Itemize +\begin_inset Formula $E_{n}(i,j)$ +\end_inset + + es la resultante de intercambiar las filas +\begin_inset Formula $i$ +\end_inset + + y +\begin_inset Formula $j$ +\end_inset + +, o las columnas +\begin_inset Formula $i$ +\end_inset + + y +\begin_inset Formula $j$ +\end_inset + +, en +\begin_inset Formula $I_{n}$ +\end_inset + +. + +\begin_inset Formula $E_{n}(i,j)^{-1}=E_{n}(i,j)$ +\end_inset + +. +\end_layout + +\begin_layout Itemize +\begin_inset Formula $E_{n}(r[i])$ +\end_inset + + es la resultante de multiplicar por +\begin_inset Formula $r$ +\end_inset + + la fila +\begin_inset Formula $i$ +\end_inset + +, o la columna +\begin_inset Formula $i$ +\end_inset + +, en +\begin_inset Formula $I_{n}$ +\end_inset + +. + +\begin_inset Formula $E_{n}(r[i])^{-1}=E_{n}(r^{-1}[i])$ +\end_inset + +. +\end_layout + +\begin_layout Itemize +\begin_inset Formula $E_{n}([i]+r[j])$ +\end_inset + + es la resultante de añadir a la fila +\begin_inset Formula $i$ +\end_inset + + la fila +\begin_inset Formula $j$ +\end_inset + + multiplicada por +\begin_inset Formula $r$ +\end_inset + +, o a la columna +\begin_inset Formula $j$ +\end_inset + + la columna +\begin_inset Formula $i$ +\end_inset + + multiplicada por +\begin_inset Formula $r$ +\end_inset + +, en +\begin_inset Formula $I_{n}$ +\end_inset + +. + +\begin_inset Formula $E_{n}([i]+r[j])^{-1}=E_{n}([i]-r[j])$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Si +\begin_inset Formula $B$ +\end_inset + + se obtiene al realizar una operación elemental por filas en +\begin_inset Formula $A$ +\end_inset + + y +\begin_inset Formula $E$ +\end_inset + + al realizar la misma en +\begin_inset Formula $I_{m}$ +\end_inset + +, entonces +\begin_inset Formula $B=EA$ +\end_inset + +. + Del mismo modo, si +\begin_inset Formula $B$ +\end_inset + + se obtiene de aplicar una operación elemental por columnas en +\begin_inset Formula $A$ +\end_inset + + y +\begin_inset Formula $E$ +\end_inset + + al aplicarla a +\begin_inset Formula $I_{n}$ +\end_inset + +, entonces +\begin_inset Formula $B=AE$ +\end_inset + +. + Así, realizar una serie de estas operaciones en una matriz equivale a multiplic +arla por uno o ambos lados por un producto de matrices elementales, el cual + es invertible. + Dada una matriz +\begin_inset Formula $A$ +\end_inset + +, para obtener las matrices +\begin_inset Formula $P$ +\end_inset + + y +\begin_inset Formula $Q$ +\end_inset + + tales que +\begin_inset Formula +\[ +PAQ=\left(\begin{array}{c|c} +I_{r} & 0\\ +\hline 0 & 0 +\end{array}\right) +\] + +\end_inset + +podemos partir de +\begin_inset Formula +\[ +\left(\begin{array}{c|c} +A & I_{m}\\ +\hline I_{n} +\end{array}\right) +\] + +\end_inset + +y realizar operaciones elementales hasta llegar a una matriz de la forma +\begin_inset Formula +\[ +\left(\begin{array}{c|c} +\begin{array}{c|c} +I_{r} & 0\\ +\hline 0 & 0 +\end{array} & P\\ +\hline Q +\end{array}\right) +\] + +\end_inset + + +\begin_inset Formula $A\in M_{n}(K)$ +\end_inset + + es invertible cuando tiene rango precisamente +\begin_inset Formula $n$ +\end_inset + +, por lo que al hacer operaciones elementales por filas para obtener una + matriz escalonada reducida, esta será precisamente +\begin_inset Formula $I_{n}$ +\end_inset + +, de forma que +\begin_inset Formula $(E_{k}\cdots E_{1})A=I_{n}$ +\end_inset + + y por tanto +\begin_inset Formula $A^{-1}=E_{k}\cdots E_{1}$ +\end_inset + +, de forma que +\begin_inset Formula $A^{-1}$ +\end_inset + + es la matriz resultante de efectuar en +\begin_inset Formula $I_{n}$ +\end_inset + + las mismas operaciones elementales fila que se hacen en +\begin_inset Formula $A$ +\end_inset + +. + A efectos prácticos, formamos la matriz +\begin_inset Formula $\left(\begin{array}{c|c} +A & I_{n}\end{array}\right)$ +\end_inset + + y hacemos operaciones elementales por filas hasta llegar a +\begin_inset Formula $\left(\begin{array}{c|c} +I_{n} & A^{-1}\end{array}\right)$ +\end_inset + +. + Por otro lado, si +\begin_inset Formula $A^{-1}=E_{k}\cdots E_{1}$ +\end_inset + +, entonces +\begin_inset Formula $A=(A^{-1})^{-1}=(E_{k}\cdots E_{1})^{-1}=E_{1}^{-1}\cdots E_{k}^{-1}$ +\end_inset + +, de forma que toda matriz invertible es producto de matrices elementales. +\end_layout + +\end_body +\end_document |
