diff options
| author | Juan Marin Noguera <juan@mnpi.eu> | 2022-12-04 22:49:17 +0100 | 
|---|---|---|
| committer | Juan Marin Noguera <juan@mnpi.eu> | 2022-12-04 22:49:17 +0100 | 
| commit | c34b47089a133e58032fe4ea52f61efacaf5f548 (patch) | |
| tree | 4242772e26a9e7b6f7e02b1d1e00dfbe68981345 /anm/n3.lyx | |
| parent | 214b20d1614b09cd5c18e111df0f0d392af2e721 (diff) | |
Oops
Diffstat (limited to 'anm/n3.lyx')
| -rw-r--r-- | anm/n3.lyx | 68 | 
1 files changed, 34 insertions, 34 deletions
| @@ -113,7 +113,7 @@ método iterativo de resolución  \end_inset   tal que la solución del sistema es el único punto fijo de  -\begin_inset Formula $\Phi(x):=Tx+c$ +\begin_inset Formula $\Phi(x)\coloneqq Tx+c$  \end_inset  . @@ -126,11 +126,11 @@ método iterativo de resolución  \end_inset   dada por  -\begin_inset Formula $x_{0}:=x$ +\begin_inset Formula $x_{0}\coloneqq x$  \end_inset   y  -\begin_inset Formula $x_{k+1}:=\Phi(x_{k})$ +\begin_inset Formula $x_{k+1}\coloneqq\Phi(x_{k})$  \end_inset   converge hacia el punto fijo,  @@ -158,11 +158,11 @@ Sea  \end_inset  , la sucesión  -\begin_inset Formula $x_{0}:=y$ +\begin_inset Formula $x_{0}\coloneqq y$  \end_inset  ,  -\begin_inset Formula $x_{k+1}:=Tx_{k}+c$ +\begin_inset Formula $x_{k+1}\coloneqq Tx_{k}+c$  \end_inset  , converge. @@ -186,7 +186,7 @@ Entonces existe una norma matricial tal que  \end_inset  , y si  -\begin_inset Formula $\Phi(x):=Tx+c$ +\begin_inset Formula $\Phi(x)\coloneqq Tx+c$  \end_inset  ,  @@ -227,7 +227,7 @@ Sean  \end_inset  ,  -\begin_inset Formula $y:=x-v$ +\begin_inset Formula $y\coloneqq x-v$  \end_inset   y  @@ -293,7 +293,7 @@ Dado un sistema lineal  método iterativo de Richardson  \series default   para una matriz  -\begin_inset Formula $A:=(a_{ij})$ +\begin_inset Formula $A\coloneqq(a_{ij})$  \end_inset   sin ceros en la diagonal consiste en tomar como matriz fácil de invertir @@ -351,15 +351,15 @@ En adelante,  \begin_layout Standard  Para el método de Jacobi tomamos  -\begin_inset Formula $M:=D$ +\begin_inset Formula $M\coloneqq D$  \end_inset   y  -\begin_inset Formula $N:=-(L+U)$ +\begin_inset Formula $N\coloneqq-(L+U)$  \end_inset  , y nos queda el método iterativo  -\begin_inset Formula $(T_{J}:=-D^{-1}(L+U),D^{-1}b)$ +\begin_inset Formula $(T_{J}\coloneqq-D^{-1}(L+U),D^{-1}b)$  \end_inset  . @@ -368,7 +368,7 @@ Para el método de Jacobi tomamos  \begin_layout Standard  Para calcular de forma eficiente, en cada iteración calculamos  -\begin_inset Formula $r_{k}:=Ax_{k}-b$ +\begin_inset Formula $r_{k}\coloneqq Ax_{k}-b$  \end_inset   y  @@ -426,15 +426,15 @@ x_{(k+1)i}:=x_{ki}-\frac{\tilde{r}_{ki}}{a_{ii}}=\frac{1}{a_{ii}}\left(b_{i}-\su  \end_inset  Esto es el método  -\begin_inset Formula $(T_{G}:=-(L+D)^{-1}U,(L+D)^{-1}b)$ +\begin_inset Formula $(T_{G}\coloneqq-(L+D)^{-1}U,(L+D)^{-1}b)$  \end_inset  , equivalente a tomar  -\begin_inset Formula $M:=L+D$ +\begin_inset Formula $M\coloneqq L+D$  \end_inset   y  -\begin_inset Formula $N:=-U$ +\begin_inset Formula $N\coloneqq-U$  \end_inset  . @@ -576,7 +576,7 @@ Demostración:  \end_inset   y  -\begin_inset Formula $z:=T_{G}y$ +\begin_inset Formula $z\coloneqq T_{G}y$  \end_inset  , con lo que  @@ -630,7 +630,7 @@ Por tanto  \end_inset   y, tomando  -\begin_inset Formula $y:=(1,\dots,1)_{\infty}$ +\begin_inset Formula $y\coloneqq(1,\dots,1)_{\infty}$  \end_inset  ,  @@ -683,7 +683,7 @@ entonces  .   En efecto, sea  -\begin_inset Formula $Q(\lambda):=\text{diag}(\lambda,\lambda^{2},\dots,\lambda^{n})$ +\begin_inset Formula $Q(\lambda)\coloneqq\text{diag}(\lambda,\lambda^{2},\dots,\lambda^{n})$  \end_inset  , es fácil ver que  @@ -696,11 +696,11 @@ entonces  \end_inset   son los ceros de  -\begin_inset Formula $p_{J}(\lambda):=\det(-D^{-1}(L+U)-\lambda I_{n})$ +\begin_inset Formula $p_{J}(\lambda)\coloneqq\det(-D^{-1}(L+U)-\lambda I_{n})$  \end_inset  , que son los mismos que los de  -\begin_inset Formula $q_{J}(\lambda):=\det(L+U+\lambda D)$ +\begin_inset Formula $q_{J}(\lambda)\coloneqq\det(L+U+\lambda D)$  \end_inset  . @@ -709,11 +709,11 @@ entonces  \end_inset   son los ceros de  -\begin_inset Formula $p_{G}(\lambda):=\det(-(L+D)^{-1}U-\lambda I_{n})$ +\begin_inset Formula $p_{G}(\lambda)\coloneqq\det(-(L+D)^{-1}U-\lambda I_{n})$  \end_inset  , que son los de  -\begin_inset Formula $q_{G}(\lambda):=\det(U+\lambda L+\lambda D)$ +\begin_inset Formula $q_{G}(\lambda)\coloneqq\det(U+\lambda L+\lambda D)$  \end_inset  . @@ -772,15 +772,15 @@ x_{(k+1)i}:=x_{ki}-\frac{\omega}{a_{ii}}\tilde{r}_{ki}  en el método de Gauss-Seidel.   Entonces el método es  -\begin_inset Formula $(T_{R}(\omega):=(D+\omega L)^{-1}((1-\omega)D-\omega U),(D+\omega L)^{-1}\omega)$ +\begin_inset Formula $(T_{R}(\omega)\coloneqq(D+\omega L)^{-1}((1-\omega)D-\omega U),(D+\omega L)^{-1}\omega)$  \end_inset  , que equivale a tomar  -\begin_inset Formula $M:=\frac{1}{\omega}D+L$ +\begin_inset Formula $M\coloneqq\frac{1}{\omega}D+L$  \end_inset   y  -\begin_inset Formula $N:=\frac{1-\omega}{\omega}D-U$ +\begin_inset Formula $N\coloneqq\frac{1-\omega}{\omega}D-U$  \end_inset  . @@ -877,11 +877,11 @@ Si  Demostración:  \series default   Si  -\begin_inset Formula $M:=\frac{1}{\omega}D+L$ +\begin_inset Formula $M\coloneqq\frac{1}{\omega}D+L$  \end_inset   y  -\begin_inset Formula $N:=\frac{1-\omega}{\omega}D-U$ +\begin_inset Formula $N\coloneqq\frac{1-\omega}{\omega}D-U$  \end_inset  ,  @@ -907,7 +907,7 @@ Demostración:  .   En dimensión finita,  -\begin_inset Formula $\Vert M^{-1}N\Vert_{A}=\max\{\Vert M^{-1}Nv\Vert_{A}\mid \Vert v\Vert_{A}=1\}$ +\begin_inset Formula $\Vert M^{-1}N\Vert_{A}=\max\{\Vert M^{-1}Nv\Vert_{A}\mid\Vert v\Vert_{A}=1\}$  \end_inset  . @@ -924,7 +924,7 @@ Demostración:  \end_inset   y  -\begin_inset Formula $w:=M^{-1}Av$ +\begin_inset Formula $w\coloneqq M^{-1}Av$  \end_inset  , entonces  @@ -1007,7 +1007,7 @@ Si  \end_inset   si y sólo si minimiza  -\begin_inset Formula $g(x):=x^{t}Ax-2x^{t}b$ +\begin_inset Formula $g(x)\coloneqq x^{t}Ax-2x^{t}b$  \end_inset  , y para  @@ -1015,7 +1015,7 @@ Si  \end_inset  , el mínimo de  -\begin_inset Formula $h(t):=g(x+tv)$ +\begin_inset Formula $h(t)\coloneqq g(x+tv)$  \end_inset   es  @@ -1171,7 +1171,7 @@ método del descenso rápido  \end_inset   y hacer  -\begin_inset Formula $x_{k+1}:=x_{k}-\alpha\nabla g(x_{k})$ +\begin_inset Formula $x_{k+1}\coloneqq x_{k}-\alpha\nabla g(x_{k})$  \end_inset  , donde  @@ -1585,7 +1585,7 @@ precondicionamiento  \end_inset   fácil de invertir tal que  -\begin_inset Formula $\tilde{A}:=C^{-1}A(C^{-1})^{t}$ +\begin_inset Formula $\tilde{A}\coloneqq C^{-1}A(C^{-1})^{t}$  \end_inset   es SPD y  @@ -1594,7 +1594,7 @@ precondicionamiento  .   Llamando  -\begin_inset Formula $\tilde{x}:=C^{t}x$ +\begin_inset Formula $\tilde{x}\coloneqq C^{t}x$  \end_inset  , el sistema  | 
