diff options
| author | Juan Marín Noguera <juan.marinn@um.es> | 2021-06-12 15:02:48 +0200 | 
|---|---|---|
| committer | Juan Marín Noguera <juan.marinn@um.es> | 2021-06-12 15:02:48 +0200 | 
| commit | 3eaf9ae717fbd737411df4a6b3aa2e63c4470f1c (patch) | |
| tree | 4f6a549fa9149b1b4ead1fce3c8418f5ff53f2e8 /ealg/n2.lyx | |
| parent | 505cbda8d9f9bed2000495f578bdbf2eedabd66f (diff) | |
x
Diffstat (limited to 'ealg/n2.lyx')
| -rw-r--r-- | ealg/n2.lyx | 391 | 
1 files changed, 367 insertions, 24 deletions
| diff --git a/ealg/n2.lyx b/ealg/n2.lyx index 49dbf78..3d07f3b 100644 --- a/ealg/n2.lyx +++ b/ealg/n2.lyx @@ -237,6 +237,54 @@ Algunas extensiones son  \end_inset  . +  +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +hbox{ +\backslash +vline +\backslash +vbox{ +\end_layout + +\end_inset + +Dados  +\begin_inset Formula $c,d\in\mathbb{Z}$ +\end_inset + + no cuadrados,  +\begin_inset Formula $\mathbb{Q}(\sqrt{c})=\mathbb{Q}(\sqrt{d})$ +\end_inset + + si y sólo si  +\begin_inset Formula $cd$ +\end_inset + + es un cuadrado en  +\begin_inset Formula $\mathbb{Z}$ +\end_inset + +. +\begin_inset ERT +status open + +\begin_layout Plain Layout + +}} +\end_layout + +\end_inset + +  \end_layout  \begin_layout Standard @@ -1184,6 +1232,69 @@ Dadas  \end_layout  \begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +hbox{ +\backslash +vline +\backslash +vbox{ +\end_layout + +\end_inset + +Dado un homomorfismo de cuerpos  +\begin_inset Formula $f:K\to L$ +\end_inset + +,  +\begin_inset Formula $K$ +\end_inset + + y  +\begin_inset Formula $L$ +\end_inset + + tienen un mismo subcuerpo primo  +\begin_inset Formula $P$ +\end_inset + + ( +\begin_inset Formula $\mathbb{Q}$ +\end_inset + + o  +\begin_inset Formula $\mathbb{Z}_{p}$ +\end_inset + +) y  +\begin_inset Formula $f$ +\end_inset + + es un  +\begin_inset Formula $P$ +\end_inset + +-encaje. +\begin_inset ERT +status open + +\begin_layout Plain Layout + +}} +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard  Si   \begin_inset Formula $K\subseteq L$  \end_inset @@ -2539,6 +2650,116 @@ Si  \end_layout  \begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +vspace{-1ex} +\backslash +hbox{ +\backslash +vline +\backslash +vbox{ +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +4. +\end_layout + +\end_inset + +Si  +\begin_inset Formula $f\in K[X]$ +\end_inset + + es irreducible de grado al menos 2,  +\begin_inset Formula $f$ +\end_inset + + no tiene raíces en ninguna extensión finita  +\begin_inset Formula $L$ +\end_inset + + de  +\begin_inset Formula $K$ +\end_inset + + con  +\begin_inset Formula $[L:K]$ +\end_inset + + coprimo con  +\begin_inset Formula $\text{gr}f$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +5. +\end_layout + +\end_inset + +Sean  +\begin_inset Formula $X^{n}-a\in K[X]$ +\end_inset + + es irreducible,  +\begin_inset Formula $\beta$ +\end_inset + + una raíz de  +\begin_inset Formula $X^{n}-a$ +\end_inset + + en una extensión de  +\begin_inset Formula $K$ +\end_inset + + y  +\begin_inset Formula $m\mid n$ +\end_inset + +,  +\begin_inset Formula $[K(\beta^{m}):K]=n/m$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + +}} +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard  Sea   \begin_inset Formula $K\subseteq L$  \end_inset @@ -3559,33 +3780,20 @@ Dada una familia   [...] con el producto componente a componente.  \end_layout -\begin_layout Enumerate -\begin_inset Argument item:1 +\begin_layout Standard +\begin_inset ERT  status open  \begin_layout Plain Layout -4. -\end_layout -\end_inset -Llamamos  -\series bold -grupo cíclico -\series default - de orden  -\begin_inset Formula $n\in\mathbb{N}^{*}$ -\end_inset +\backslash +eremember +\end_layout - a  -\begin_inset Formula $C_{n}:=\{1,a,a^{2},\dots,a^{n-1}\}$  \end_inset - con [...]  -\begin_inset Formula $a^{i}a^{j}:=a^{[i+j]_{n}}$ -\end_inset - [...].  \end_layout  \begin_layout Standard @@ -3596,7 +3804,7 @@ status open  \backslash -eremember +sremember{GyA}  \end_layout  \end_inset @@ -3604,20 +3812,33 @@ eremember  \end_layout -\begin_layout Standard -\begin_inset ERT +\begin_layout Enumerate +\begin_inset Argument item:1  status open  \begin_layout Plain Layout +4. +\end_layout +\end_inset -\backslash -sremember{GyA} -\end_layout +Llamamos  +\series bold +grupo cíclico +\series default + de orden  +\begin_inset Formula $n\in\mathbb{N}^{*}$ +\end_inset + a  +\begin_inset Formula $C_{n}:=\{1,a,a^{2},\dots,a^{n-1}\}$  \end_inset + con [...]  +\begin_inset Formula $a^{i}a^{j}:=a^{[i+j]_{n}}$ +\end_inset + [...].  \end_layout  \begin_layout Enumerate @@ -4738,5 +4959,127 @@ Equivale a ser algebraica y finitamente generada.  \end_layout  \end_deeper +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +hbox{ +\backslash +vline +\backslash +vbox{ +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Además, dada una extensión  +\begin_inset Formula $K\subseteq F$ +\end_inset + + con cuerpos intermedios  +\begin_inset Formula $L$ +\end_inset + + y  +\begin_inset Formula $M$ +\end_inset + +: +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $[LM:K]$ +\end_inset + + es finito si y sólo si lo son  +\begin_inset Formula $[L:K]$ +\end_inset + + y  +\begin_inset Formula $[M:K]$ +\end_inset + +, en cuyo caso  +\begin_inset Formula $[L:K],[M:K]\mid[LM:K]$ +\end_inset + + y  +\begin_inset Formula $[LM:K]\leq[L:K][M:K]$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +Si  +\begin_inset Formula $L$ +\end_inset + + y  +\begin_inset Formula $M$ +\end_inset + + son extensiones algebraicas de  +\begin_inset Formula $K$ +\end_inset + +, también lo es  +\begin_inset Formula $LM$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +Si  +\begin_inset Formula $[LM:K]=[L:K][M:K]$ +\end_inset + +, entonces  +\begin_inset Formula $L\cap M=K$ +\end_inset + +. + El recíproco no se cumple. +\end_layout + +\begin_layout Enumerate +Si  +\begin_inset Formula $[L:K]\leq2$ +\end_inset + + y  +\begin_inset Formula $L\cap M=K$ +\end_inset + +, entonces  +\begin_inset Formula $[LM:K]=[L:K][M:K]$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + +}} +\end_layout + +\end_inset + + +\end_layout +  \end_body  \end_document | 
