diff options
| author | Juan Marín Noguera <juan.marinn@um.es> | 2021-06-11 15:03:16 +0200 | 
|---|---|---|
| committer | Juan Marín Noguera <juan.marinn@um.es> | 2021-06-11 15:03:59 +0200 | 
| commit | 84c718bd2189c6d92d8474fc4a4a9ebde12afdee (patch) | |
| tree | 9b99cab57349d14cda3df527b688be41cb8576ef /ealg/n7.lyx | |
| parent | 3667264e3f0897d7f32e4c81e5640b14fb80fed7 (diff) | |
Algebraicas tema 7
Diffstat (limited to 'ealg/n7.lyx')
| -rw-r--r-- | ealg/n7.lyx | 1618 | 
1 files changed, 1618 insertions, 0 deletions
| diff --git a/ealg/n7.lyx b/ealg/n7.lyx new file mode 100644 index 0000000..9e463a3 --- /dev/null +++ b/ealg/n7.lyx @@ -0,0 +1,1618 @@ +#LyX 2.3 created this file. For more info see http://www.lyx.org/ +\lyxformat 544 +\begin_document +\begin_header +\save_transient_properties true +\origin unavailable +\textclass book +\begin_preamble +\input{../defs} +\end_preamble +\use_default_options true +\maintain_unincluded_children false +\language spanish +\language_package default +\inputencoding auto +\fontencoding global +\font_roman "default" "default" +\font_sans "default" "default" +\font_typewriter "default" "default" +\font_math "auto" "auto" +\font_default_family default +\use_non_tex_fonts false +\font_sc false +\font_osf false +\font_sf_scale 100 100 +\font_tt_scale 100 100 +\use_microtype false +\use_dash_ligatures true +\graphics default +\default_output_format default +\output_sync 0 +\bibtex_command default +\index_command default +\paperfontsize default +\spacing single +\use_hyperref false +\papersize default +\use_geometry false +\use_package amsmath 1 +\use_package amssymb 1 +\use_package cancel 1 +\use_package esint 1 +\use_package mathdots 1 +\use_package mathtools 1 +\use_package mhchem 1 +\use_package stackrel 1 +\use_package stmaryrd 1 +\use_package undertilde 1 +\cite_engine basic +\cite_engine_type default +\biblio_style plain +\use_bibtopic false +\use_indices false +\paperorientation portrait +\suppress_date false +\justification true +\use_refstyle 1 +\use_minted 0 +\index Index +\shortcut idx +\color #008000 +\end_index +\secnumdepth 3 +\tocdepth 3 +\paragraph_separation indent +\paragraph_indentation default +\is_math_indent 0 +\math_numbering_side default +\quotes_style french +\dynamic_quotes 0 +\papercolumns 1 +\papersides 1 +\paperpagestyle default +\tracking_changes false +\output_changes false +\html_math_output 0 +\html_css_as_file 0 +\html_be_strict false +\end_header + +\begin_body + +\begin_layout Standard +\begin_inset Formula  +\[ +\text{Gal}(K(X)/K)=\bigg\{\sigma\,\Big\vert\,\exists a,b,c,d\in K:\bigg(ad-bc\neq0\land\sigma(X)=\frac{aX+b}{cX+d}\bigg)\bigg\}. +\] + +\end_inset + + +\end_layout + +\begin_layout Section +Conexión de Galois +\end_layout + +\begin_layout Standard +Sean  +\begin_inset Formula $K\subseteq L$ +\end_inset + + una extensión de cuerpos,  +\begin_inset Formula $G:=\text{Gal}(L/K)$ +\end_inset + +,  +\begin_inset Formula ${\cal F}$ +\end_inset + + el conjunto de cuerpos intermedios de  +\begin_inset Formula $K\subseteq L$ +\end_inset + + y  +\begin_inset Formula ${\cal H}$ +\end_inset + + el conjunto de subgrupos de  +\begin_inset Formula $G$ +\end_inset + +, llamamos  +\series bold +correspondencia +\series default + o  +\series bold +conexión de Galois +\series default + asicada a  +\begin_inset Formula $K\subseteq L$ +\end_inset + + al par  +\begin_inset Formula $(f:{\cal F}\to{\cal H},g:{\cal H}\to{\cal F})$ +\end_inset + + dado por +\begin_inset Formula  +\begin{align*} +f(F):=F' & :=\{\sigma\in G:\forall\alpha\in F,\sigma(\alpha)=\alpha\}=\text{Gal}(L/F),\\ +g(H):=H' & :=\{\alpha\in L:\forall\sigma\in H,\sigma(\alpha)=\alpha\}=\bigcap_{\sigma\in H}\text{Fix}\sigma. +\end{align*} + +\end_inset + +En particular, para  +\begin_inset Formula $\beta\in L$ +\end_inset + +,  +\begin_inset Formula $K(\beta)'=\{\sigma\in G:\sigma(\beta)=\beta\}$ +\end_inset + +, y para  +\begin_inset Formula $\tau\in G$ +\end_inset + +,  +\begin_inset Formula $\langle\tau\rangle'=\text{Fix}\tau$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Propiedades: Sean  +\begin_inset Formula $K\subseteq L$ +\end_inset + +,  +\begin_inset Formula $G:=\text{Gal}(L/K)$ +\end_inset + +,  +\begin_inset Formula $F,F_{1},F_{2}$ +\end_inset + + cuerpos intermedios de  +\begin_inset Formula $K\subseteq L$ +\end_inset + + y  +\begin_inset Formula $H,H_{1},H_{2}$ +\end_inset + + subcuerpos de  +\begin_inset Formula $G$ +\end_inset + +: +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $L'=\{1_{G}\}$ +\end_inset + +,  +\begin_inset Formula $\{1_{G}\}'=L$ +\end_inset + + y  +\begin_inset Formula $K'=G$ +\end_inset + +, pero en general no es  +\begin_inset Formula $G'=K$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Standard +\begin_inset Formula $L'=\text{Gal}(L/L)=1$ +\end_inset + +,  +\begin_inset Formula $1'=\text{Fix}1_{G}=L$ +\end_inset + + y  +\begin_inset Formula $K'=\text{Gal}(L/K)=G$ +\end_inset + +, pero si la extensión es  +\begin_inset Formula $\mathbb{Q}\subseteq\mathbb{Q}(\sqrt[3]{2})$ +\end_inset + +, como  +\begin_inset Formula $\sqrt[3]{2}$ +\end_inset + + es la única raíz de  +\begin_inset Formula $X^{3}-2$ +\end_inset + + en  +\begin_inset Formula $\mathbb{Q}(\sqrt[3]{2})$ +\end_inset + +, debe ser  +\begin_inset Formula $\sigma(\sqrt[3]{2})=\sqrt[3]{2}$ +\end_inset + + para todo  +\begin_inset Formula $\sigma\in G$ +\end_inset + + y por tanto  +\begin_inset Formula $G=1$ +\end_inset + +, y  +\begin_inset Formula $G'=1'=\mathbb{Q}(\sqrt[3]{2})\neq\mathbb{Q}$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Enumerate +\begin_inset Formula $F_{1}\subseteq F_{2}\implies F_{2}'\subseteq F_{1}'$ +\end_inset + +. +\begin_inset Note Comment +status open + +\begin_layout Plain Layout +Si  +\begin_inset Formula $\sigma\in F_{2}'$ +\end_inset + +, todo  +\begin_inset Formula $\alpha\in F_{1}\subseteq F_{2}$ +\end_inset + + cumple  +\begin_inset Formula $\sigma(\alpha)=\alpha$ +\end_inset + +, luego  +\begin_inset Formula $\sigma\in F_{1}'$ +\end_inset + +. +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $H_{1}\subseteq H_{2}\implies H_{2}'\subseteq H_{1}'$ +\end_inset + +. +\begin_inset Note Comment +status open + +\begin_layout Plain Layout +Si  +\begin_inset Formula $\alpha\in H_{2}'$ +\end_inset + +, para  +\begin_inset Formula $\sigma\in H_{1}\subseteq H_{2}$ +\end_inset + + es  +\begin_inset Formula $\sigma(\alpha)=\alpha$ +\end_inset + +, luego  +\begin_inset Formula $\alpha\in H_{1}'$ +\end_inset + +. +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $F\subseteq F''$ +\end_inset + +. +\begin_inset Note Comment +status open + +\begin_layout Plain Layout +\begin_inset Formula $F''=\bigcap_{\sigma\in\text{Gal}(L/F)}\text{Fix}\sigma$ +\end_inset + +, pero  +\begin_inset Formula $\alpha\in F\implies\forall\sigma\in\text{Gal}(L/F),\alpha\in\text{Fix}\sigma\iff\alpha\in F''$ +\end_inset + +. +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $H\subseteq H''$ +\end_inset + +. +\begin_inset Note Comment +status open + +\begin_layout Plain Layout +\begin_inset Formula $H''=\text{Gal}(L/\bigcap_{\sigma\in H}\text{Fix}\sigma)$ +\end_inset + +, pero para  +\begin_inset Formula $\tau\in H$ +\end_inset + +,  +\begin_inset Formula $\bigcap_{\sigma\in H}\text{Fix}\sigma\subseteq\text{Fix}\tau\implies\text{Gal}(L/\text{Fix}\tau)\subseteq H''$ +\end_inset + + y  +\begin_inset Formula $\tau\in\text{Gal}(L/\text{Fix}\tau)$ +\end_inset + +, luego  +\begin_inset Formula $\tau\in H''$ +\end_inset + +. +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $F'=F'''$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Standard +\begin_inset Formula $F'\subseteq(F')''$ +\end_inset + +, y como  +\begin_inset Formula $F\subseteq F''$ +\end_inset + +,  +\begin_inset Formula $(F'')'\subseteq F'$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Enumerate +\begin_inset Formula $H'=H'''$ +\end_inset + +. +\begin_inset Note Comment +status open + +\begin_layout Plain Layout +\begin_inset Formula $H'\subseteq(H')''$ +\end_inset + +, y como  +\begin_inset Formula $H\subseteq H''$ +\end_inset + +,  +\begin_inset Formula $(H'')'\subseteq H'$ +\end_inset + +. +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Sea  +\begin_inset Formula $K\subseteq L$ +\end_inset + + una extensión con retículo de cuerpos intermedios  +\begin_inset Formula ${\cal F}$ +\end_inset + + y  +\begin_inset Formula $G:=\text{Gal}(L/K)$ +\end_inset + + con retículo de subgrupos  +\begin_inset Formula ${\cal H}$ +\end_inset + +, un  +\begin_inset Formula $F\in{\cal F}$ +\end_inset + + es  +\series bold +cerrado +\series default + si  +\begin_inset Formula $F=F''$ +\end_inset + +, si y sólo si existe  +\begin_inset Formula $H\in{\cal H}$ +\end_inset + + con  +\begin_inset Formula $F=H'$ +\end_inset + +, y un  +\begin_inset Formula $H\in{\cal H}$ +\end_inset + + es  +\series bold +cerrado +\series default + si  +\begin_inset Formula $H=H''$ +\end_inset + +, si y sólo si existe  +\begin_inset Formula $F\in{\cal F}$ +\end_inset + + con  +\begin_inset Formula $H=F'$ +\end_inset + +. + Así, la conexión de Galois induce biyecciones inversas una de la otra, + que invierten las inclusiones, entre el conjunto de cuerpos cerrados en +  +\begin_inset Formula ${\cal F}$ +\end_inset + + y el de subgrupos cerrados en  +\begin_inset Formula ${\cal H}$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +sremember{GyA} +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Dados  +\begin_inset Formula $H\leq G$ +\end_inset + +, definimos la relación de equivalencia en  +\begin_inset Formula $G$ +\end_inset + + +\begin_inset Formula  +\[ +a\equiv_{i}b\bmod H:\iff a^{-1}b\in H; +\] + +\end_inset + +la clase de equivalencia de  +\begin_inset Formula $a\in G$ +\end_inset + +, llamada  +\series bold +clase lateral módulo  +\begin_inset Formula $H$ +\end_inset + + por la izquierda +\series default +, es  +\begin_inset Formula $aH=\{ah\}_{h\in H}$ +\end_inset + +, y llamamos  +\begin_inset Formula $G/H:=G/(\equiv_{i}\bmod\ H)$ +\end_inset + +. + [...] Llamamos  +\series bold +índice +\series default + de  +\begin_inset Formula $H$ +\end_inset + + en  +\begin_inset Formula $G$ +\end_inset + + a  +\begin_inset Formula $[G:H]:=|G/H|$ +\end_inset + +. +\end_layout + +\begin_layout Standard +[...] Si  +\begin_inset Formula $G$ +\end_inset + + es un grupo finito y  +\begin_inset Formula $H\leq G$ +\end_inset + +,  +\begin_inset Formula $|G|=|H|[G:H]$ +\end_inset + +. + [...] +\end_layout + +\begin_layout Standard +Un subgrupo  +\begin_inset Formula $N\leq G$ +\end_inset + + es  +\series bold +normal +\series default + si [...]  +\begin_inset Formula $\forall x\in G,Nx=xN$ +\end_inset + +, [...] escribimos  +\begin_inset Formula $N\unlhd G$ +\end_inset + +, y si además es propio, escribimos  +\begin_inset Formula $N\lhd G$ +\end_inset + +. +  +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +eremember +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Si  +\begin_inset Formula $H\leq J\leq G$ +\end_inset + + son grupos,  +\begin_inset Formula $G/H$ +\end_inset + + es un grupo si y sólo si  +\begin_inset Formula $H\unlhd G$ +\end_inset + +, y  +\begin_inset Formula $[G:J][J:H]=[G:H]$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Sean  +\begin_inset Formula $K\subseteq L$ +\end_inset + + una extensión con grupo de Galois  +\begin_inset Formula $G$ +\end_inset + +: +\end_layout + +\begin_layout Enumerate +Dada una torre  +\begin_inset Formula $K\subseteq E\subseteq F\subseteq L$ +\end_inset + +, si  +\begin_inset Formula $[F:E]$ +\end_inset + + es finito,  +\begin_inset Formula $[E':F']\leq[F:E]$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Standard +Hacemos inducción sobre  +\begin_inset Formula $n:=[F:E]$ +\end_inset + +. + Si  +\begin_inset Formula $n=1$ +\end_inset + +,  +\begin_inset Formula $E=F$ +\end_inset + + y es trivial. + Si  +\begin_inset Formula $n>1$ +\end_inset + +, sea  +\begin_inset Formula $\alpha\in F\setminus E$ +\end_inset + +, entonces  +\begin_inset Formula $1<s:=[E(\alpha):E]\leq[F:E]=n$ +\end_inset + +, luego  +\begin_inset Formula $[F:E(\alpha)]=n/s<n$ +\end_inset + +. + Si  +\begin_inset Formula $s<n$ +\end_inset + +, por la hipótesis de inducción,  +\begin_inset Formula $[E':F']=[E':E(\alpha)'][E(\alpha)':F']\leq s\cdot\frac{n}{s}=n$ +\end_inset + +. +\end_layout + +\begin_layout Standard +En otro caso,  +\begin_inset Formula $[F:E(\alpha)]=1$ +\end_inset + + y  +\begin_inset Formula $F=E(\alpha)$ +\end_inset + +, luego  +\begin_inset Formula $f:=\text{Irr}(\alpha,E)$ +\end_inset + + tiene grado  +\begin_inset Formula $n$ +\end_inset + +. + Sea  +\begin_inset Formula $R$ +\end_inset + + el conjunto de raíces de  +\begin_inset Formula $f$ +\end_inset + + en  +\begin_inset Formula $L$ +\end_inset + +, como cada  +\begin_inset Formula $\sigma\in E'$ +\end_inset + + fija los elementos de  +\begin_inset Formula $E$ +\end_inset + + y lleva  +\begin_inset Formula $\alpha$ +\end_inset + + a un elemento de  +\begin_inset Formula $R$ +\end_inset + +, podemos definir  +\begin_inset Formula $f:E'/F'\to R$ +\end_inset + + como  +\begin_inset Formula $f(\sigma F'):=\sigma(\alpha)$ +\end_inset + +, y esto está bien definido y es inyectivo ya que +\begin_inset Formula  +\[ +\sigma F'=\tau F'\iff\tau^{-1}\sigma\in F'=E(\alpha)'\iff(\tau^{-1}\sigma)(\alpha)=\alpha\iff\sigma(\alpha)=\tau(\alpha), +\] + +\end_inset + +por ser  +\begin_inset Formula $\tau$ +\end_inset + + y  +\begin_inset Formula $\sigma$ +\end_inset + + biyectivos, luego  +\begin_inset Formula $[E':F']\leq|R|\leq n=[F:E]$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Enumerate +Si  +\begin_inset Formula $H\subseteq J$ +\end_inset + + son subgrupos de  +\begin_inset Formula $G$ +\end_inset + + y  +\begin_inset Formula $[J:H]$ +\end_inset + + es finito,  +\begin_inset Formula $[H':J']\leq[J:H]$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Como  +\series bold +teorema +\series default +, sean  +\begin_inset Formula $K\subseteq E\subseteq F\subseteq L$ +\end_inset + + una torre de extensiones,  +\begin_inset Formula $G:=\text{Gal}(L/K)$ +\end_inset + + y  +\begin_inset Formula $H\subseteq J$ +\end_inset + + subgrupos de  +\begin_inset Formula $G$ +\end_inset + +: +\end_layout + +\begin_layout Enumerate +Si  +\begin_inset Formula $E$ +\end_inset + + es cerrado y  +\begin_inset Formula $[F:E]$ +\end_inset + + es finito, entonces  +\begin_inset Formula $F$ +\end_inset + + es cerrado y  +\begin_inset Formula $[E':F']=[F:E]$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Standard +\begin_inset Formula $[F:E]\geq[E':F']\geq[F'':E'']=[F'':E]=[F'':F][F:E]\geq[F:E]$ +\end_inset + +, lo que da la igualdad, y como entonces  +\begin_inset Formula $[F'':F]=1$ +\end_inset + +,  +\begin_inset Formula $F=F''$ +\end_inset + + es cerrado. +\end_layout + +\end_deeper +\begin_layout Enumerate +Si  +\begin_inset Formula $H$ +\end_inset + + es cerrado y  +\begin_inset Formula $[J:H]$ +\end_inset + + es finito,  +\begin_inset Formula $J$ +\end_inset + + es cerrado y  +\begin_inset Formula $[H':J']=[J:H]$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Standard +Análogo. +\end_layout + +\end_deeper +\begin_layout Enumerate +Todo subgrupo finito de  +\begin_inset Formula $G$ +\end_inset + + es cerrado. +\end_layout + +\begin_deeper +\begin_layout Standard +Sea  +\begin_inset Formula $J$ +\end_inset + + tal subgrupo, como  +\begin_inset Formula $1$ +\end_inset + + es cerrado  +\begin_inset Formula $[J:1]$ +\end_inset + + es finito,  +\begin_inset Formula $J$ +\end_inset + + es cerrado. +\end_layout + +\end_deeper +\begin_layout Section +Extensiones de Galois +\end_layout + +\begin_layout Standard +Una extensión  +\begin_inset Formula $K\subseteq L$ +\end_inset + + con grupo de Galois  +\begin_inset Formula $G$ +\end_inset + + es  +\series bold +de Galois +\series default + si  +\begin_inset Formula $K$ +\end_inset + + es cerrado, es decir, si  +\begin_inset Formula $K=G'$ +\end_inset + +, si y sólo si  +\begin_inset Formula $G'\subseteq K$ +\end_inset + +, si y sólo si  +\begin_inset Formula $\forall\alpha\in L,(\forall\sigma\in G,\sigma(\alpha)=\alpha\implies\alpha\in K)$ +\end_inset + +, si y sólo si  +\begin_inset Formula $\forall\alpha\in L\setminus K,\exists\sigma\in G:\sigma(\alpha)\neq\alpha$ +\end_inset + +. + Si  +\begin_inset Formula $G=\langle\tau\rangle$ +\end_inset + +,  +\begin_inset Formula $K\subseteq L$ +\end_inset + + es de Galois si y sólo si  +\begin_inset Formula $\forall\alpha\in L,(\tau(\alpha)=\alpha\implies\alpha\in K)$ +\end_inset + +, si y sólo si  +\begin_inset Formula $\forall\alpha\in L\setminus K,\tau(\alpha)\neq\alpha$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Ejemplos: +\end_layout + +\begin_layout Enumerate +Las extensiones propias  +\begin_inset Formula $K\subsetneq L$ +\end_inset + + con  +\begin_inset Formula $\text{Gal}(L/K)$ +\end_inset + + trivial no son de Galois. +\end_layout + +\begin_deeper +\begin_layout Standard +\begin_inset Formula $\text{Gal}(L/K)'=1'=L\neq K$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Enumerate +\begin_inset Formula $\mathbb{R}\subseteq\mathbb{C}$ +\end_inset + + es de Galois. +\end_layout + +\begin_deeper +\begin_layout Standard +Si  +\begin_inset Formula $\sigma$ +\end_inset + + es la conjugación,  +\begin_inset Formula $\text{Gal}(\mathbb{C}/\mathbb{R})=\langle\sigma\rangle$ +\end_inset + +, pero  +\begin_inset Formula $\sigma(\alpha)=\alpha\implies\alpha\in\mathbb{R}$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Standard +Sea  +\begin_inset Formula $K\subseteq L$ +\end_inset + + una extensión y  +\begin_inset Formula $F$ +\end_inset + + un cuerpo intermedio cerrado,  +\begin_inset Formula $F\subseteq L$ +\end_inset + + es de Galois, pues  +\begin_inset Formula $F=F''=\text{Gal}(L/F)'$ +\end_inset + +. + En particular  +\begin_inset Formula $\text{Gal}(L/K)'\subseteq L$ +\end_inset + + es de Galois, pues  +\begin_inset Formula $\text{Gal}(L/K)'=\text{Gal}(L/K)'''$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Como  +\series bold +teorema +\series default +, una extensión es algebraica y de Galois si y sólo si es normal y separable. +\end_layout + +\begin_layout Itemize +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\implies]$ +\end_inset + + +\end_layout + +\end_inset + +Sea  +\begin_inset Formula $K\subseteq L$ +\end_inset + + la extensión, queremos ver que si un irreducible mónico  +\begin_inset Formula $f\in K[X]$ +\end_inset + + tiene una raíz  +\begin_inset Formula $\alpha\in L$ +\end_inset + + entonces tiene  +\begin_inset Formula $n:=\text{gr}f$ +\end_inset + + raíces distintas en  +\begin_inset Formula $L$ +\end_inset + +. + Sean entonces  +\begin_inset Formula $\alpha=\alpha_{1},\dots,\alpha_{r}$ +\end_inset + + las raíces distintas de  +\begin_inset Formula $f$ +\end_inset + + en  +\begin_inset Formula $L$ +\end_inset + + con  +\begin_inset Formula $r\leq n$ +\end_inset + + y  +\begin_inset Formula $g:=(X-\alpha_{1})\cdots(X-\alpha_{r})\in L[X]$ +\end_inset + +, cada  +\begin_inset Formula $\sigma\in G:=\text{Gal}(L/K)$ +\end_inset + + permuta las raíces de  +\begin_inset Formula $f$ +\end_inset + + y por tanto  +\begin_inset Formula $\sigma(g)=g$ +\end_inset + +, luego los coeficientes de  +\begin_inset Formula $g$ +\end_inset + + quedan fijos y están en  +\begin_inset Formula $G'=K$ +\end_inset + +. + Por tanto  +\begin_inset Formula $g\in K[X]$ +\end_inset + +,  +\begin_inset Formula $f\mid g$ +\end_inset + + y  +\begin_inset Formula $n=\text{gr}f\leq\text{gr}g=r$ +\end_inset + +. +\end_layout + +\begin_layout Itemize +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\impliedby]$ +\end_inset + + +\end_layout + +\end_inset + +Como es normal es algebraica, y hay que ver que, para  +\begin_inset Formula $\alpha\in L\setminus K$ +\end_inset + +, existe  +\begin_inset Formula $\sigma\in\text{Gal}(L/K)$ +\end_inset + + con  +\begin_inset Formula $\sigma(\alpha)\neq\alpha$ +\end_inset + +. + Sea  +\begin_inset Formula $f:=\text{Irr}(\alpha,K)$ +\end_inset + +, como  +\begin_inset Formula $\alpha\notin K$ +\end_inset + +,  +\begin_inset Formula $n:=\text{gr}f>1$ +\end_inset + +, pero por la hipótesis,  +\begin_inset Formula $f$ +\end_inset + + tiene  +\begin_inset Formula $n$ +\end_inset + + raíces distintas en  +\begin_inset Formula $L$ +\end_inset + + y en particular tiene una raíz  +\begin_inset Formula $\beta\neq\alpha$ +\end_inset + +, luego hay un  +\begin_inset Formula $K$ +\end_inset + +-isomorfismo  +\begin_inset Formula $\sigma:K(\alpha)\to K(\beta)$ +\end_inset + + con  +\begin_inset Formula $\sigma(\alpha)=\beta$ +\end_inset + +. + Como  +\begin_inset Formula $K\subseteq L$ +\end_inset + + es normal,  +\begin_inset Formula $L$ +\end_inset + + es el cuerpo de descomposición de cierto  +\begin_inset Formula ${\cal P}\subseteq K[X]\setminus0$ +\end_inset + + sobre  +\begin_inset Formula $K$ +\end_inset + + y por tanto sobre  +\begin_inset Formula $K(\alpha)$ +\end_inset + + y  +\begin_inset Formula $K(\beta)$ +\end_inset + +, por lo que se extiende a un  +\begin_inset Formula $K$ +\end_inset + +-automorfismo  +\begin_inset Formula $\overline{\sigma}:L\to L$ +\end_inset + + con  +\begin_inset Formula $\sigma(\alpha)=\beta\neq\alpha$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Así: +\end_layout + +\begin_layout Enumerate +\begin_inset Quotes cld +\end_inset + +Ser una extensión algebraica de Galois +\begin_inset Quotes crd +\end_inset + + es estable por levantamientos. +\end_layout + +\begin_layout Enumerate +Si  +\begin_inset Formula $K$ +\end_inset + + es perfecto,  +\begin_inset Formula $K\subseteq L$ +\end_inset + + es algebraica y de Galois si y sólo si es normal, y es finita y de Galois + si y sólo si  +\begin_inset Formula $L$ +\end_inset + + es el cuerpo de descomposición sobre  +\begin_inset Formula $K$ +\end_inset + + de un polinomio de  +\begin_inset Formula $K[X]$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +Toda extensión ciclotómica  +\begin_inset Formula $K\subseteq F$ +\end_inset + + con  +\begin_inset Formula $\text{car}K\nmid[F:K]$ +\end_inset + + es finita y de Galois. +\end_layout + +\begin_layout Enumerate +Si  +\begin_inset Formula $K\subseteq L$ +\end_inset + + es separable con clausura normal  +\begin_inset Formula $N$ +\end_inset + +,  +\begin_inset Formula $K\subseteq N$ +\end_inset + + es de Galois. +\end_layout + +\begin_layout Section +Teoremas fundamentales +\end_layout + +\begin_layout Standard + +\series bold +Primer Teorema Fundamental de la Teoría de Galois: +\series default + Si  +\begin_inset Formula $K\subseteq L$ +\end_inset + + es finita y de Galois con grupo de Galois  +\begin_inset Formula $G$ +\end_inset + +: +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $|G|=[L:K]$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Standard +Como  +\begin_inset Formula $K\subseteq L$ +\end_inset + + es finita y  +\begin_inset Formula $K$ +\end_inset + + es cerrado,  +\begin_inset Formula $[L:K]=[K':L']=[G:1]=|G|$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Enumerate +Todos los cuerpos intermedios entre  +\begin_inset Formula $K$ +\end_inset + + y  +\begin_inset Formula $L$ +\end_inset + + y todos los subgrupos de  +\begin_inset Formula $G$ +\end_inset + + son cerrados. +\end_layout + +\begin_deeper +\begin_layout Standard +Sea  +\begin_inset Formula $F$ +\end_inset + + un cuerpo intermedio,  +\begin_inset Formula $K\subseteq F$ +\end_inset + + es finita por serlo  +\begin_inset Formula $K\subseteq L$ +\end_inset + + y  +\begin_inset Formula $K$ +\end_inset + + es cerrado, luego  +\begin_inset Formula $F$ +\end_inset + + es cerrado. + Si  +\begin_inset Formula $H\leq G$ +\end_inset + +,  +\begin_inset Formula $[H:1]$ +\end_inset + + es finito por serlo  +\begin_inset Formula $[G:1]$ +\end_inset + +, luego  +\begin_inset Formula $H$ +\end_inset + + es cerrado. +\end_layout + +\end_deeper +\begin_layout Enumerate +Si  +\begin_inset Formula $X\subseteq Y$ +\end_inset + + son cuerpos intermedios o subgrupos,  +\begin_inset Formula $[X':Y']=[Y:X]$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Standard +Por lo anterior,  +\begin_inset Formula $X$ +\end_inset + + es cerrado e  +\begin_inset Formula $[Y:X]$ +\end_inset + + es finito. +\end_layout + +\end_deeper +\begin_layout Enumerate +La correspondencia de Galois establece biyecciones inversas una de la otra, + que invierten las inclusiones, entre el conjunto de cuerpos intermedios + de  +\begin_inset Formula $K\subseteq L$ +\end_inset + + y el de subgrupos de  +\begin_inset Formula $G$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Standard +Estas se dan entre los cerrados, pero ahora todos son cerrados. +\end_layout + +\end_deeper +\begin_layout Standard +Una extensión finita  +\begin_inset Formula $K\subseteq L$ +\end_inset + + es de Galois si y sólo si  +\begin_inset Formula $|\text{Gal}(L/K)|=[L:K]$ +\end_inset + +. +\end_layout + +\begin_layout Itemize +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\implies]$ +\end_inset + + +\end_layout + +\end_inset + +Por el teorema. +\end_layout + +\begin_layout Itemize +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\impliedby]$ +\end_inset + + +\end_layout + +\end_inset + +Sean  +\begin_inset Formula $G:=\text{Gal}(L/K)$ +\end_inset + + y  +\begin_inset Formula $K_{0}:=G'$ +\end_inset + +,  +\begin_inset Formula $K_{0}\subseteq L$ +\end_inset + + es finita por serlo  +\begin_inset Formula $K\subseteq L$ +\end_inset + +, y es de Galois con  +\begin_inset Formula $\text{Gal}(L/K_{0})=K_{0}'=G$ +\end_inset + +, luego por el teorema es  +\begin_inset Formula $|G|=[L:K_{0}]$ +\end_inset + +, pero  +\begin_inset Formula $|G|=[L:K]=[L:K_{0}][K_{0}:K]$ +\end_inset + +, luego  +\begin_inset Formula $[K_{0}:K]=1$ +\end_inset + + y  +\begin_inset Formula $K=K_{0}$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Sean  +\begin_inset Formula $K\subseteq L_{1}$ +\end_inset + + y  +\begin_inset Formula $K\subseteq L_{2}$ +\end_inset + + extensiones finitas y de Galois admisibles,  +\begin_inset Formula $K\subseteq L_{1}L_{2}$ +\end_inset + + es finita y de Galois y  +\begin_inset Formula $\varphi:\text{Gal}(L_{1}L_{2}/K)\to\text{Gal}(L_{1}/K)\times\text{Gal}(L_{2}/K)$ +\end_inset + + dado por  +\begin_inset Formula $\varphi(\sigma):=(\sigma|_{L_{1}},\sigma|_{L_{2}})$ +\end_inset + + es un homomorfismo inyectivo de grupos, que es biyectivo si  +\begin_inset Formula $L_{1}\cap L_{2}=K$ +\end_inset + +. +  +\end_layout + +\end_body +\end_document | 
