diff options
| author | Juan Marín Noguera <juan.marinn@um.es> | 2021-01-15 00:10:17 +0100 | 
|---|---|---|
| committer | Juan Marín Noguera <juan.marinn@um.es> | 2021-01-15 00:10:17 +0100 | 
| commit | 2f1821b3f22954176a26665dc0c84e9a26b8e0e4 (patch) | |
| tree | 7efeee4c3410a28cbfa165259d648256705f7cf7 /gcs/n3.lyx | |
| parent | 65e1bb39e0c0f032a72c857ee63a666a49b124f0 (diff) | |
gcs/n4a
Diffstat (limited to 'gcs/n3.lyx')
| -rw-r--r-- | gcs/n3.lyx | 545 | 
1 files changed, 545 insertions, 0 deletions
| @@ -3230,5 +3230,550 @@ si y sólo si  .  \end_layout +\begin_layout Section +Isometrías locales +\end_layout + +\begin_layout Standard +Una  +\series bold +isometría local +\series default + entre dos superficies regulares  +\begin_inset Formula $S_{1}$ +\end_inset + + y  +\begin_inset Formula $S_{2}$ +\end_inset + + es una función diferenciable  +\begin_inset Formula $\phi:S_{1}\to S_{2}$ +\end_inset + + tal que para  +\begin_inset Formula $p\in S_{1}$ +\end_inset + + y  +\begin_inset Formula $v,w\in T_{p}S_{1}$ +\end_inset + + es  +\begin_inset Formula $\langle d\phi_{p}(v),d\phi_{p}(w)\rangle=\langle v,w\rangle$ +\end_inset + +, es decir, tal que  +\begin_inset Formula $d\phi_{p}:T_{p}S_{1}\to T_{\phi(p)}S_{2}$ +\end_inset + + es una isometría lineal. + Entonces  +\begin_inset Formula $\phi$ +\end_inset + + conserva ángulos, longitudes y áreas de  +\begin_inset Formula $S_{1}$ +\end_inset + + a  +\begin_inset Formula $S_{2}$ +\end_inset + +, pero su existencia no implica que exista una isometría lineal  +\begin_inset Formula $\psi:S_{2}\to S_{1}$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Una  +\series bold +isometría +\series default + ( +\series bold +global +\series default +) entre  +\begin_inset Formula $S_{1}$ +\end_inset + + y  +\begin_inset Formula $S_{2}$ +\end_inset + + es una isometría local que es un difeomorfismo. +  +\begin_inset Formula $S_{1}$ +\end_inset + + y  +\begin_inset Formula $S_{2}$ +\end_inset + + son ( +\series bold +globalmente +\series default +)  +\series bold +isométricas +\series default + si existe una isometría global entre ellas, y son  +\series bold +localmente isométricas +\series default + si para cada  +\begin_inset Formula $p\in S_{1}$ +\end_inset + + hay un entorno  +\begin_inset Formula $V\subseteq S_{1}$ +\end_inset + + de  +\begin_inset Formula $p$ +\end_inset + + y una isometría global  +\begin_inset Formula $\phi:V\to\phi(V)\subseteq S_{2}$ +\end_inset + + y para cada  +\begin_inset Formula $q\in S_{2}$ +\end_inset + + hay un entorno  +\begin_inset Formula $W\subseteq S_{2}$ +\end_inset + + de  +\begin_inset Formula $p$ +\end_inset + + y una isometría global  +\begin_inset Formula $\psi:W\to\phi(W)\subseteq S_{1}$ +\end_inset + +. + Si existe una isometría local entre  +\begin_inset Formula $S_{1}$ +\end_inset + + y  +\begin_inset Formula $S_{2}$ +\end_inset + +,  +\begin_inset Formula $S_{1}$ +\end_inset + + y  +\begin_inset Formula $S_{2}$ +\end_inset + + son localmente isométricos. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +sremember{TS} +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset Formula $(\pi_{1}(X,x),*)$ +\end_inset + + es un grupo, llamado  +\series bold +grupo fundamental +\series default + [...] de  +\begin_inset Formula $X$ +\end_inset + + relativo al  +\series bold +punto base +\series default +  +\begin_inset Formula $x$ +\end_inset + + [...]  +\begin_inset Formula $X$ +\end_inset + + es  +\series bold +simplemente conexo +\series default + si es conexo por caminos y  +\begin_inset Formula $\pi_{1}(X,x)$ +\end_inset + + es el grupo trivial [...] para todo  +\begin_inset Formula $x\in X$ +\end_inset + +. + [...] Todo subespacio estrellado de  +\begin_inset Formula $\mathbb{R}^{n}$ +\end_inset + + es simplemente conexo. + [...] El grupo fundamental de  +\begin_inset Formula $\mathbb{S}^{1}$ +\end_inset + + es isomorfo a  +\begin_inset Formula $(\mathbb{Z},+)$ +\end_inset + +. + [...]  +\begin_inset Formula $\pi_{1}(X\times Y,(x,y))\cong\pi_{1}(X,x)\times\pi_{1}(Y,y)$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +eremember +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Existe una isometría local entre el plano  +\begin_inset Formula $\Pi:=\{z=0\}$ +\end_inset + + y el cilindro  +\begin_inset Formula $C:=\mathbb{S}^{1}\times\mathbb{R}$ +\end_inset + +, pero las superficies no son globalmente isométricas. +  +\series bold +Demostración: +\series default + Como el plano es estrellado, su grupo fundamental es el grupo trivial, + y como el cilindro es  +\begin_inset Formula $\mathbb{S}^{1}\times\mathbb{R}$ +\end_inset + +, su grupo fundamental es  +\begin_inset Formula $\pi_{1}(\mathbb{S}^{1}\times\mathbb{R},e_{1})\cong\pi_{1}(\mathbb{S}_{1},e_{1})\times\pi_{1}(\mathbb{R},0)\cong(\mathbb{Z},+)\times1\cong(\mathbb{Z},+)$ +\end_inset + +. + Como los grupos fundamentales no son isomorfos,  +\begin_inset Formula $\Pi$ +\end_inset + + y  +\begin_inset Formula $C$ +\end_inset + + no son homeomorfos y por tanto tampoco isométricos. + Sea ahora  +\begin_inset Formula $\phi:\Pi\to C$ +\end_inset + + dada por  +\begin_inset Formula $\phi(x,y,0):=(\cos x,\sin x,y)$ +\end_inset + +, que es diferenciable. + Para  +\begin_inset Formula $p=(x,y,0)\in\Pi$ +\end_inset + +,  +\begin_inset Formula $T_{p}S=\Pi$ +\end_inset + +, y si  +\begin_inset Formula $v=(v_{1},v_{2},0)\in T_{p}S$ +\end_inset + +, sea  +\begin_inset Formula $\alpha:I\to\Pi$ +\end_inset + + dada por  +\begin_inset Formula $\alpha(t):=p+tv$ +\end_inset + +, +\begin_inset Formula  +\[ +d\phi_{p}(v)=\frac{d(\phi\circ\alpha)}{dt}(0)=\frac{d}{dt}(\cos(x+tv_{1}),\sin(x+tv_{1}),y+tv_{2})(0)=(-v_{1}\sin x,v_{1}\cos x,v_{2}). +\] + +\end_inset + +Para ver que  +\begin_inset Formula $\phi$ +\end_inset + + conserva el producto escalar, basta ver que conserva módulos, pero  +\begin_inset Formula $|d\phi_{p}(v)|^{2}=v_{1}^{2}+v_{2}^{2}=|v|^{2}$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Como  +\series bold +teorema +\series default +, sea  +\begin_inset Formula $\phi:S_{1}\to S_{2}$ +\end_inset + + una isometría local entre superficies regulares, para todo  +\begin_inset Formula $p\in S_{1}$ +\end_inset + + existen parametrizaciones  +\begin_inset Formula $(U,X)$ +\end_inset + + de  +\begin_inset Formula $S_{1}$ +\end_inset + + en  +\begin_inset Formula $p$ +\end_inset + + y  +\begin_inset Formula $(U,\overline{X})$ +\end_inset + + de  +\begin_inset Formula $S_{2}$ +\end_inset + + en  +\begin_inset Formula $\phi(p)$ +\end_inset + + con los mismos parámetros de la primera forma fundamental. +  +\series bold +Demostración: +\series default + Sean  +\begin_inset Formula $(\tilde{U},X)$ +\end_inset + + una parametrización de  +\begin_inset Formula $S_{1}$ +\end_inset + + en  +\begin_inset Formula $p$ +\end_inset + + y  +\begin_inset Formula $\overline{X}:\phi\circ X:\tilde{U}\to S_{2}$ +\end_inset + +, como  +\begin_inset Formula $\phi$ +\end_inset + + es un difeomorfismo local, existe un entorno  +\begin_inset Formula $V\subseteq S_{1}$ +\end_inset + + de  +\begin_inset Formula $p$ +\end_inset + + en el que  +\begin_inset Formula $\phi:V\to\phi(V)$ +\end_inset + + es un difeomorfismo, por lo que si  +\begin_inset Formula $U:=X^{-1}(V)\subseteq\tilde{U}$ +\end_inset + +, restringiendo  +\begin_inset Formula $\overline{X}$ +\end_inset + + a  +\begin_inset Formula $U$ +\end_inset + +,  +\begin_inset Formula $(U,\overline{X})$ +\end_inset + + es una parametrización de  +\begin_inset Formula $S_{2}$ +\end_inset + + en  +\begin_inset Formula $\phi(p)$ +\end_inset + +. + Entonces, si  +\begin_inset Formula $q:=X^{-1}(p)$ +\end_inset + +,  +\begin_inset Formula $d\overline{X}_{q}=d(\phi\circ X)_{q}=d\phi_{p}\circ dX_{q}$ +\end_inset + +, luego  +\begin_inset Formula $\overline{X}_{u}(q)=d\phi_{p}(X_{u}(q))$ +\end_inset + + y  +\begin_inset Formula $\overline{X}_{v}(q)=d\phi_{p}(X_{v}(q))$ +\end_inset + +. + Con esto, como  +\begin_inset Formula $\phi$ +\end_inset + + es una isometría local,  +\begin_inset Formula $\overline{E}=\langle\overline{X}_{u}(q),\overline{X}_{u}(q)\rangle=\langle d\phi_{p}(X_{u}(q)),d\phi(X_{u}(q))\rangle=\langle X_{u}(q),X_{u}(q)\rangle=E$ +\end_inset + +, y análogamente  +\begin_inset Formula $\overline{F}=F$ +\end_inset + + y  +\begin_inset Formula $\overline{G}=G$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Como  +\series bold +teorema +\series default +, dadas dos superficies regulares  +\begin_inset Formula $S_{1}$ +\end_inset + + y  +\begin_inset Formula $S_{2}$ +\end_inset + + y dos parametrizaciones  +\begin_inset Formula $(U,X)$ +\end_inset + + de  +\begin_inset Formula $S_{1}$ +\end_inset + + y  +\begin_inset Formula $(U,\overline{X})$ +\end_inset + + de  +\begin_inset Formula $S_{2}$ +\end_inset + + con los mismos parámetros de la primera forma fundamental, entonces  +\begin_inset Formula $\phi:=\overline{X}\circ X^{-1}:X(U)\to\overline{X}(U)$ +\end_inset + + es una isometría. +  +\series bold +Demostración: +\series default + Es un difeomorfismo por ser composición de difeomorfismos, y queda ver + que conserva productos escalares. + Sean  +\begin_inset Formula $q\in U$ +\end_inset + + y  +\begin_inset Formula $p:=X(q)$ +\end_inset + +,  +\begin_inset Formula $d\phi_{p}\circ dX_{q}=d(\phi\circ X)_{q}=d\overline{X}_{q}$ +\end_inset + + por la regla de la cadena, por lo que  +\begin_inset Formula $d\phi_{p}(X_{u}(q))=\overline{X}_{u}(q)$ +\end_inset + + y  +\begin_inset Formula $d\phi_{p}(X_{v}(q))=\overline{X}_{v}(q)$ +\end_inset + +. + Por tanto, en  +\begin_inset Formula $q$ +\end_inset + +,  +\begin_inset Formula $\langle d\phi_{p}(X_{u}),d\phi_{p}(X_{u})\rangle=\langle\overline{X}_{u},\overline{X}_{u}\rangle=\overline{E}=E=\langle X_{u},X_{u}\rangle$ +\end_inset + +, y de forma análoga  +\begin_inset Formula $\langle d\phi_{p}(X_{u}),d\phi_{p}(X_{v})\rangle=\langle X_{u},X_{v}\rangle$ +\end_inset + + y  +\begin_inset Formula $\langle d\phi_{p}(X_{v}),d\phi_{p}(X_{v})\rangle=\langle X_{v},X_{v}\rangle$ +\end_inset + +, pero  +\begin_inset Formula $(X_{u},X_{v})$ +\end_inset + + es una base de  +\begin_inset Formula $T_{p}S$ +\end_inset + +, luego  +\begin_inset Formula $d\phi_{p}$ +\end_inset + + conserva productos escalares. +\end_layout +  \end_body  \end_document | 
