diff options
| author | Juan Marin Noguera <juan@mnpi.eu> | 2022-12-04 22:49:17 +0100 | 
|---|---|---|
| committer | Juan Marin Noguera <juan@mnpi.eu> | 2022-12-04 22:49:17 +0100 | 
| commit | c34b47089a133e58032fe4ea52f61efacaf5f548 (patch) | |
| tree | 4242772e26a9e7b6f7e02b1d1e00dfbe68981345 /ggs/n1.lyx | |
| parent | 214b20d1614b09cd5c18e111df0f0d392af2e721 (diff) | |
Oops
Diffstat (limited to 'ggs/n1.lyx')
| -rw-r--r-- | ggs/n1.lyx | 30 | 
1 files changed, 15 insertions, 15 deletions
| @@ -137,15 +137,15 @@ Entonces, dada una curva  \end_inset   p.p.a., si  -\begin_inset Formula $\mathbf{t}(s):=\alpha'(s)$ +\begin_inset Formula $\mathbf{t}(s)\coloneqq \alpha'(s)$  \end_inset   y  -\begin_inset Formula $\mathbf{n}(s):=J\mathbf{t}(s)$ +\begin_inset Formula $\mathbf{n}(s)\coloneqq J\mathbf{t}(s)$  \end_inset   [...], [...]  -\begin_inset Formula $\kappa_{\alpha}(s):=\langle\mathbf{t}'(s),\mathbf{n}(s)\rangle$ +\begin_inset Formula $\kappa_{\alpha}(s)\coloneqq \langle\mathbf{t}'(s),\mathbf{n}(s)\rangle$  \end_inset   [...]. @@ -192,12 +192,12 @@ fórmulas de Frenet  \end_inset   es su vector tangente, [...]  -\begin_inset Formula $\kappa(s):=|\mathbf{t}'(s)|$ +\begin_inset Formula $\kappa(s)\coloneqq |\mathbf{t}'(s)|$  \end_inset  .   [...]  -\begin_inset Formula $\mathbf{n}(s):=\frac{\mathbf{t}'(s)}{\kappa(s)}[...],$ +\begin_inset Formula $\mathbf{n}(s)\coloneqq \frac{\mathbf{t}'(s)}{\kappa(s)}[...],$  \end_inset  [...]  @@ -613,11 +613,11 @@ Para un  \end_inset  ,  -\begin_inset Formula $V(t)^{\top}:=\pi_{T_{\alpha(t)}S}V(t)$ +\begin_inset Formula $V(t)^{\top}\coloneqq \pi_{T_{\alpha(t)}S}V(t)$  \end_inset   y  -\begin_inset Formula $V(t)^{\bot}:=\pi_{(T_{\alpha(t)}S)^{\bot}}V(t)$ +\begin_inset Formula $V(t)^{\bot}\coloneqq \pi_{(T_{\alpha(t)}S)^{\bot}}V(t)$  \end_inset  . @@ -772,7 +772,7 @@ Propiedades: Sean  \begin_deeper  \begin_layout Standard  Si  -\begin_inset Formula $\pi:=\pi_{T_{\alpha(t)}S}$ +\begin_inset Formula $\pi\coloneqq \pi_{T_{\alpha(t)}S}$  \end_inset  ,  @@ -881,7 +881,7 @@ Sean  \end_inset  ,  -\begin_inset Formula $\tilde{\alpha}:=(u,v):=X^{-1}\circ\alpha:I\to U$ +\begin_inset Formula $\tilde{\alpha}\coloneqq (u,v)\coloneqq X^{-1}\circ\alpha:I\to U$  \end_inset   y  @@ -914,11 +914,11 @@ Demostración:  \end_inset  ,  -\begin_inset Formula $p:=\alpha(t)$ +\begin_inset Formula $p\coloneqq \alpha(t)$  \end_inset  ,  -\begin_inset Formula $q:=X^{-1}(p)$ +\begin_inset Formula $q\coloneqq X^{-1}(p)$  \end_inset   y  @@ -1148,7 +1148,7 @@ E.d.o intrínseca de los campos paralelos:  \end_inset  ,  -\begin_inset Formula $(u,v):=X^{-1}\circ\alpha:I\to U$ +\begin_inset Formula $(u,v)\coloneqq X^{-1}\circ\alpha:I\to U$  \end_inset   y  @@ -1391,11 +1391,11 @@ Sean  \end_inset  ,  -\begin_inset Formula $p:=\alpha(a)$ +\begin_inset Formula $p\coloneqq \alpha(a)$  \end_inset  ,  -\begin_inset Formula $q:=\alpha(b)$ +\begin_inset Formula $q\coloneqq \alpha(b)$  \end_inset   y  @@ -1440,7 +1440,7 @@ La  aplicación transporte paralelo  \series default   es la  -\begin_inset Formula $P_{\alpha}:=P_{a}^{b}(\alpha):T_{p}S\to T_{q}S$ +\begin_inset Formula $P_{\alpha}\coloneqq P_{a}^{b}(\alpha):T_{p}S\to T_{q}S$  \end_inset   que a cada  | 
