diff options
| author | Juan Marin Noguera <juan@mnpi.eu> | 2022-12-04 22:49:17 +0100 | 
|---|---|---|
| committer | Juan Marin Noguera <juan@mnpi.eu> | 2022-12-04 22:49:17 +0100 | 
| commit | c34b47089a133e58032fe4ea52f61efacaf5f548 (patch) | |
| tree | 4242772e26a9e7b6f7e02b1d1e00dfbe68981345 /ggs/n2.lyx | |
| parent | 214b20d1614b09cd5c18e111df0f0d392af2e721 (diff) | |
Oops
Diffstat (limited to 'ggs/n2.lyx')
| -rw-r--r-- | ggs/n2.lyx | 74 | 
1 files changed, 37 insertions, 37 deletions
| @@ -195,7 +195,7 @@ Sea  \end_inset   un cambio de parámetro y  -\begin_inset Formula $\alpha:=\gamma\circ h$ +\begin_inset Formula $\alpha\coloneqq \gamma\circ h$  \end_inset  , entonces  @@ -287,7 +287,7 @@ Si  \end_inset   es una curva y  -\begin_inset Formula $(u,v):=X^{-1}\circ\alpha:I\to U$ +\begin_inset Formula $(u,v)\coloneqq X^{-1}\circ\alpha:I\to U$  \end_inset  ,  @@ -360,7 +360,7 @@ Teorema de Picard en un abierto:  \end_inset   existe  -\begin_inset Formula $K:=[t_{0}-\alpha,t_{0}+\alpha]\times\overline{B}(x_{0},b)\subseteq\Omega$ +\begin_inset Formula $K\coloneqq [t_{0}-\alpha,t_{0}+\alpha]\times\overline{B}(x_{0},b)\subseteq\Omega$  \end_inset   tal que @@ -569,7 +569,7 @@ intervalo maximal de existencia  Demostración:  \series default   Sea  -\begin_inset Formula ${\cal J}_{p,v}:=\{(I,\alpha)\mid \alpha\mid I\to S\text{ geodésica},0\in I,\alpha(0)=p,\alpha'(0)=v\}$ +\begin_inset Formula ${\cal J}_{p,v}\coloneqq \{(I,\alpha)\mid \alpha\mid I\to S\text{ geodésica},0\in I,\alpha(0)=p,\alpha'(0)=v\}$  \end_inset  . @@ -586,7 +586,7 @@ Demostración:  \end_inset  ,  -\begin_inset Formula $(u_{0},v_{0}):=X^{-1}(p)$ +\begin_inset Formula $(u_{0},v_{0})\coloneqq X^{-1}(p)$  \end_inset   y  @@ -619,7 +619,7 @@ Demostración:  \end_inset  , y entonces  -\begin_inset Formula $\alpha(t):=X(u(t),v(t))$ +\begin_inset Formula $\alpha(t)\coloneqq X(u(t),v(t))$  \end_inset   es una geodésica con  @@ -669,7 +669,7 @@ Sean ahora   es abierto y, por el teorema del peine, también conexo, luego es un intervalo.   Sea  -\begin_inset Formula $A:=\{t\in I_{1}\cap I_{2}\mid \alpha_{1}(t)=\alpha_{2}(t),\alpha'_{1}(t)=\alpha'_{2}(t)\}$ +\begin_inset Formula $A\coloneqq \{t\in I_{1}\cap I_{2}\mid \alpha_{1}(t)=\alpha_{2}(t),\alpha'_{1}(t)=\alpha'_{2}(t)\}$  \end_inset  , y queremos ver que  @@ -694,7 +694,7 @@ Sean ahora  \end_inset  , y es cerrado por ser la anti-imagen del 0 por la función continua  -\begin_inset Formula $F(t):=\Vert\alpha_{1}(t)-\alpha_{2}(t)\Vert+\Vert\alpha'_{1}(t)+\alpha'_{2}(t)\Vert$ +\begin_inset Formula $F(t)\coloneqq \Vert\alpha_{1}(t)-\alpha_{2}(t)\Vert+\Vert\alpha'_{1}(t)+\alpha'_{2}(t)\Vert$  \end_inset  . @@ -742,15 +742,15 @@ Sean ahora  \end_inset  , y si  -\begin_inset Formula $\varepsilon:=\min\{\varepsilon_{1},\varepsilon_{2}\}$ +\begin_inset Formula $\varepsilon\coloneqq \min\{\varepsilon_{1},\varepsilon_{2}\}$  \end_inset  ,  -\begin_inset Formula $(u_{1},v_{1}):=X^{-1}\circ\alpha_{1}$ +\begin_inset Formula $(u_{1},v_{1})\coloneqq X^{-1}\circ\alpha_{1}$  \end_inset   y  -\begin_inset Formula $(u_{2},v_{2}):=X^{-1}\circ\alpha_{2}$ +\begin_inset Formula $(u_{2},v_{2})\coloneqq X^{-1}\circ\alpha_{2}$  \end_inset  , entonces  @@ -802,7 +802,7 @@ Así,  .   Sea entonces  -\begin_inset Formula $I_{v}:=\bigcup_{(I,\alpha)\in{\cal J}_{p,v}}I$ +\begin_inset Formula $I_{v}\coloneqq \bigcup_{(I,\alpha)\in{\cal J}_{p,v}}I$  \end_inset  ,  @@ -892,7 +892,7 @@ Demostración:  \end_inset   con  -\begin_inset Formula $\alpha(t):=\gamma_{v}(\lambda t)$ +\begin_inset Formula $\alpha(t)\coloneqq \gamma_{v}(\lambda t)$  \end_inset  , claramente  @@ -925,7 +925,7 @@ e  .   Ahora bien, sea  -\begin_inset Formula $w:=\lambda v$ +\begin_inset Formula $w\coloneqq \lambda v$  \end_inset   y  @@ -933,7 +933,7 @@ e  \end_inset   dada por  -\begin_inset Formula $\beta(t):=\gamma_{w}(\frac{1}{\lambda}v)$ +\begin_inset Formula $\beta(t)\coloneqq \gamma_{w}(\frac{1}{\lambda}v)$  \end_inset  , por el mismo argumento es  @@ -1024,7 +1024,7 @@ Cálculo de  \end_inset  , [...]  -\begin_inset Formula $E(T,\lambda_{k}):=\ker(T-\lambda_{k}I)^{n_{k}}$ +\begin_inset Formula $E(T,\lambda_{k})\coloneqq \ker(T-\lambda_{k}I)^{n_{k}}$  \end_inset  , y [...]  @@ -1160,15 +1160,15 @@ status open  \begin_layout Enumerate  Sea  -\begin_inset Formula $P:=M_{{\cal CB}}$ +\begin_inset Formula $P\coloneqq M_{{\cal CB}}$  \end_inset  , entonces la parte semisimple es  -\begin_inset Formula $S:=PS_{0}P^{-1}$ +\begin_inset Formula $S\coloneqq PS_{0}P^{-1}$  \end_inset   y la nilpotente es  -\begin_inset Formula $N:=A-S$ +\begin_inset Formula $N\coloneqq A-S$  \end_inset  . @@ -1421,7 +1421,7 @@ Dado el plano  \end_inset   dada por  -\begin_inset Formula $\gamma(t):=p+tv$ +\begin_inset Formula $\gamma(t)\coloneqq p+tv$  \end_inset  . @@ -1430,7 +1430,7 @@ Dado el plano  \begin_deeper  \begin_layout Standard  Tomando la normal  -\begin_inset Formula $N(p):=a$ +\begin_inset Formula $N(p)\coloneqq a$  \end_inset  , como  @@ -1471,7 +1471,7 @@ Dado  \end_inset  , la geodésica maximal de la esfera  -\begin_inset Formula $S:=\mathbb{S}^{2}(r)$ +\begin_inset Formula $S\coloneqq \mathbb{S}^{2}(r)$  \end_inset   con condiciones iniciales  @@ -1500,11 +1500,11 @@ Dado  \begin_deeper  \begin_layout Standard  Tomando la normal  -\begin_inset Formula $N(p):=\frac{p}{r}$ +\begin_inset Formula $N(p)\coloneqq \frac{p}{r}$  \end_inset   y llamando  -\begin_inset Formula $N(t):=N(\gamma(t))$ +\begin_inset Formula $N(t)\coloneqq N(\gamma(t))$  \end_inset  ,  @@ -1524,7 +1524,7 @@ Tomando la normal  \end_inset  Si  -\begin_inset Formula $c:=\frac{\Vert v\Vert^{2}}{r^{2}}=0$ +\begin_inset Formula $c\coloneqq \frac{\Vert v\Vert^{2}}{r^{2}}=0$  \end_inset  ,  @@ -1579,7 +1579,7 @@ Sean  \end_inset  ,  -\begin_inset Formula $S:=\{(x,y,z)\in\mathbb{R}^{3}\mid x^{2}+y^{2}=r^{2}\}$ +\begin_inset Formula $S\coloneqq \{(x,y,z)\in\mathbb{R}^{3}\mid x^{2}+y^{2}=r^{2}\}$  \end_inset   un cilindro,  @@ -1634,7 +1634,7 @@ p_{3}+tv_{3}  \end_inset  en otro caso, donde  -\begin_inset Formula $c:=\frac{\sqrt{\Vert v\Vert^{2}-v_{3}^{2}}}{r}$ +\begin_inset Formula $c\coloneqq \frac{\sqrt{\Vert v\Vert^{2}-v_{3}^{2}}}{r}$  \end_inset  , que es una circunferencia horizontal si  @@ -1679,7 +1679,7 @@ N(x,y,z)=\frac{\nabla f}{\Vert\nabla f\Vert}=\frac{(2x,2y,0)}{2\sqrt{x^{2}+y^{2}  \end_inset  Entonces, sean  -\begin_inset Formula $N(t):=N(\gamma(t))$ +\begin_inset Formula $N(t)\coloneqq N(\gamma(t))$  \end_inset   y  @@ -1897,7 +1897,7 @@ Sea  triedro de Darboux  \series default   es la base [...]  -\begin_inset Formula $(\alpha'(s),J\alpha'(s):=\alpha'(s)\wedge N(\alpha(s)),N(\alpha(s))\rangle$ +\begin_inset Formula $(\alpha'(s),J\alpha'(s)\coloneqq \alpha'(s)\wedge N(\alpha(s)),N(\alpha(s))\rangle$  \end_inset  . @@ -1910,7 +1910,7 @@ triedro de Darboux  \end_inset  donde  -\begin_inset Formula $\kappa_{g}:=\langle\alpha'',J\alpha'\rangle:I\to\mathbb{R}$ +\begin_inset Formula $\kappa_{g}\coloneqq \langle\alpha'',J\alpha'\rangle:I\to\mathbb{R}$  \end_inset  , es la  @@ -1926,7 +1926,7 @@ curvatura geodésica  \end_inset  [, y  -\begin_inset Formula $\kappa_{n}:=\langle\alpha'',N(\alpha)\rangle$ +\begin_inset Formula $\kappa_{n}\coloneqq \langle\alpha'',N(\alpha)\rangle$  \end_inset   es la  @@ -1995,7 +1995,7 @@ Si  \end_inset   es un cambio de parámetro que conserva la orientación con  -\begin_inset Formula $\beta:=\alpha\circ h$ +\begin_inset Formula $\beta\coloneqq \alpha\circ h$  \end_inset   p.p.a., la curvatura geodésica de  @@ -2027,7 +2027,7 @@ Demostración:  \end_inset  , sea  -\begin_inset Formula $s:=h^{-1}(t)$ +\begin_inset Formula $s\coloneqq h^{-1}(t)$  \end_inset  , @@ -2080,7 +2080,7 @@ pregeodésica  \end_inset   tal que  -\begin_inset Formula $\beta:=\alpha\circ h$ +\begin_inset Formula $\beta\coloneqq \alpha\circ h$  \end_inset   es una geodésica de  @@ -2112,7 +2112,7 @@ Sea  \end_inset   un cambio de parámetro tal que  -\begin_inset Formula $\beta:=\alpha\circ h$ +\begin_inset Formula $\beta\coloneqq \alpha\circ h$  \end_inset   es una geodésica, entonces  @@ -2124,7 +2124,7 @@ Sea  \end_inset  , luego  -\begin_inset Formula $\gamma(s):=\beta(\frac{s}{c})$ +\begin_inset Formula $\gamma(s)\coloneqq \beta(\frac{s}{c})$  \end_inset   es una geodésica y es p.p.a. @@ -2134,7 +2134,7 @@ Sea  .   Sea entonces  -\begin_inset Formula $\tilde{h}(s):=h(\frac{s}{c})$ +\begin_inset Formula $\tilde{h}(s)\coloneqq h(\frac{s}{c})$  \end_inset  , entonces  | 
