diff options
| author | Juan Marin Noguera <juan@mnpi.eu> | 2022-12-04 22:49:17 +0100 | 
|---|---|---|
| committer | Juan Marin Noguera <juan@mnpi.eu> | 2022-12-04 22:49:17 +0100 | 
| commit | c34b47089a133e58032fe4ea52f61efacaf5f548 (patch) | |
| tree | 4242772e26a9e7b6f7e02b1d1e00dfbe68981345 /mne/n4.lyx | |
| parent | 214b20d1614b09cd5c18e111df0f0d392af2e721 (diff) | |
Oops
Diffstat (limited to 'mne/n4.lyx')
| -rw-r--r-- | mne/n4.lyx | 28 | 
1 files changed, 14 insertions, 14 deletions
| @@ -321,7 +321,7 @@ Consideremos un método multipaso de paso fijo que, para un problema en un  \end_inset   dada por  -\begin_inset Formula $\tau(h):=\max_{i=0}^{n_{h}}\Vert\tau_{i}(h)\Vert$ +\begin_inset Formula $\tau(h)\coloneqq \max_{i=0}^{n_{h}}\Vert\tau_{i}(h)\Vert$  \end_inset  , el método es  @@ -385,7 +385,7 @@ estable  \end_inset  , sea  -\begin_inset Formula $(t_{i},\omega_{i})_{i=0}^{n}:=(t_{hi},\omega_{hi})_{i=0}^{n_{h}}$ +\begin_inset Formula $(t_{i},\omega_{i})_{i=0}^{n}\coloneqq (t_{hi},\omega_{hi})_{i=0}^{n_{h}}$  \end_inset  , si se puede generar una solución  @@ -393,7 +393,7 @@ estable  \end_inset   con  -\begin_inset Formula $\tilde{\omega}_{i}:=\omega_{i}$ +\begin_inset Formula $\tilde{\omega}_{i}\coloneqq \omega_{i}$  \end_inset   para  @@ -468,7 +468,7 @@ Demostración:  \end_inset   los coeficientes del método y  -\begin_inset Formula $\varepsilon_{i}:=h\tau_{i}(h)$ +\begin_inset Formula $\varepsilon_{i}\coloneqq h\tau_{i}(h)$  \end_inset  , como  @@ -561,11 +561,11 @@ teorema  \end_inset   dado por  -\begin_inset Formula $\omega_{0}:=x(t_{0})$ +\begin_inset Formula $\omega_{0}\coloneqq x(t_{0})$  \end_inset   y  -\begin_inset Formula $\omega_{i+1}:=\omega_{i}+hØ(t_{i},\omega_{i},h)$ +\begin_inset Formula $\omega_{i+1}\coloneqq \omega_{i}+hØ(t_{i},\omega_{i},h)$  \end_inset   con  @@ -594,11 +594,11 @@ Fijado  \end_inset   dados por  -\begin_inset Formula $\omega_{i+1}:=\omega_{i}+hØ(t_{i},\omega_{i},h)$ +\begin_inset Formula $\omega_{i+1}\coloneqq \omega_{i}+hØ(t_{i},\omega_{i},h)$  \end_inset   y  -\begin_inset Formula $\tilde{\omega}_{i+1}:=\tilde{\omega}_{i}+hØ(t_{i},\tilde{\omega}_{i},h)+\varepsilon_{i+1}$ +\begin_inset Formula $\tilde{\omega}_{i+1}\coloneqq \tilde{\omega}_{i}+hØ(t_{i},\tilde{\omega}_{i},h)+\varepsilon_{i+1}$  \end_inset   para ciertos  @@ -641,7 +641,7 @@ Con esto, como  \end_inset  , llamando  -\begin_inset Formula $M:=(1+hL)^{n}$ +\begin_inset Formula $M\coloneqq (1+hL)^{n}$  \end_inset  ,  @@ -806,7 +806,7 @@ donde los  polinomio característico  \series default   de la ecuación es  -\begin_inset Formula $P(\lambda):=\lambda^{m}-a_{m-1}\lambda^{m-1}-\dots-a_{1}\lambda-a_{0}$ +\begin_inset Formula $P(\lambda)\coloneqq \lambda^{m}-a_{m-1}\lambda^{m-1}-\dots-a_{1}\lambda-a_{0}$  \end_inset  . @@ -840,7 +840,7 @@ Dados un método multipaso de paso fijo  \end_inset  y  -\begin_inset Formula $\omega_{i}:=\alpha_{i}$ +\begin_inset Formula $\omega_{i}\coloneqq \alpha_{i}$  \end_inset   para  @@ -950,11 +950,11 @@ begin{sloppypar}  \end_inset  Dados un método implícito  -\begin_inset Formula $\omega_{i}:=F(t_{i},h,\omega_{i-1},\dots,\omega_{i-m})$ +\begin_inset Formula $\omega_{i}\coloneqq F(t_{i},h,\omega_{i-1},\dots,\omega_{i-m})$  \end_inset   y uno explícito  -\begin_inset Formula $\omega_{i}:=G(t_{i},h,\omega_{i},\dots,\omega_{i-m})$ +\begin_inset Formula $\omega_{i}\coloneqq G(t_{i},h,\omega_{i},\dots,\omega_{i-m})$  \end_inset  , el  @@ -1072,7 +1072,7 @@ Sean  \begin_layout Standard  El método es de paso variable, ajustando el paso como en los métodos de   paso fijo pero con error  -\begin_inset Formula $E:=\frac{19}{270}\Vert\beta_{i}-\omega_{i}\Vert$ +\begin_inset Formula $E\coloneqq \frac{19}{270}\Vert\beta_{i}-\omega_{i}\Vert$  \end_inset  . | 
