diff options
| -rw-r--r-- | ealg/n1.lyx | 2 | ||||
| -rw-r--r-- | ealg/n4.lyx | 343 |
2 files changed, 344 insertions, 1 deletions
diff --git a/ealg/n1.lyx b/ealg/n1.lyx index 6086c51..49ea4b2 100644 --- a/ealg/n1.lyx +++ b/ealg/n1.lyx @@ -2706,7 +2706,7 @@ Dado tal que, si \begin_inset Formula \begin{align*} -r & :=\sqrt[3]{-q+\sqrt{q^{2}+p^{3}}}, & s & :=\omega^{k}\sqrt[3]{-q-\sqrt{q^{2}-p^{3}}}, +r & :=\sqrt[3]{-q+\sqrt{q^{2}+p^{3}}}, & s & :=\omega^{k}\sqrt[3]{-q-\sqrt{q^{2}+p^{3}}}, \end{align*} \end_inset diff --git a/ealg/n4.lyx b/ealg/n4.lyx index d6843c6..9673c48 100644 --- a/ealg/n4.lyx +++ b/ealg/n4.lyx @@ -921,6 +921,131 @@ Demostración: \end_layout +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +hbox{ +\backslash +vline +\backslash +hspace{2pt} +\backslash +vbox{ +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Si +\begin_inset Formula $K\subseteq L$ +\end_inset + + es una extensión de grado 2, +\begin_inset Formula $L$ +\end_inset + + es el cuerpo de descomposición sobre +\begin_inset Formula $K$ +\end_inset + + de un polinomio de +\begin_inset Formula $K[X]$ +\end_inset + +. + Sean +\begin_inset Formula $K\subseteq L$ +\end_inset + + y +\begin_inset Formula $K\subseteq M$ +\end_inset + + son extensiones admisibles: +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $L$ +\end_inset + + es un cuerpo de descomposición de +\begin_inset Formula $f\in K[X]$ +\end_inset + + sobre +\begin_inset Formula $K$ +\end_inset + +, +\begin_inset Formula $LM$ +\end_inset + + es un cuerpo de descomposición de +\begin_inset Formula $f$ +\end_inset + + sobre +\begin_inset Formula $M$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $L$ +\end_inset + + y +\begin_inset Formula $M$ +\end_inset + + son cuerpos de descomposición respectivos de +\begin_inset Formula $f,g\in K[X]$ +\end_inset + + sobre +\begin_inset Formula $K$ +\end_inset + +, +\begin_inset Formula $LM$ +\end_inset + + es un cuerpo de descomposición de +\begin_inset Formula $fg$ +\end_inset + + sobre +\begin_inset Formula $K$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + +}} +\end_layout + +\end_inset + + +\end_layout + \begin_layout Section Grupo de Galois de un polinomio \end_layout @@ -2352,5 +2477,223 @@ Sean \end_layout \end_deeper +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +hbox{ +\backslash +vline +\backslash +hspace{2pt} +\backslash +vbox{ +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Si +\begin_inset Formula $p$ +\end_inset + + es primo: +\end_layout + +\begin_layout Enumerate +Todo +\begin_inset Formula $\alpha$ +\end_inset + + algebraico sobre +\begin_inset Formula $\mathbb{Z}_{p}$ +\end_inset + + cumple +\begin_inset Formula $\text{Irr}(\alpha,\mathbb{Z}_{p})=\text{Irr}(\alpha^{p},\mathbb{Z}_{p})$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +La función +\begin_inset Formula $h:\mathbb{F}_{p^{n}}\to\mathbb{F}_{p^{n}}$ +\end_inset + + dada por +\begin_inset Formula $h(x):=x^{p}$ +\end_inset + + es biyectiva. +\end_layout + +\begin_layout Enumerate +La suma de todos los elementos de un cuerpo finito con más de dos elementos + es 0. +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $L$ +\end_inset + + es el cuerpo de descomposición sobre +\begin_inset Formula $\mathbb{Z}_{p}$ +\end_inset + + de un +\begin_inset Formula $f\in\mathbb{Z}_{p}[X]$ +\end_inset + + que se factoriza en irreducibles como +\begin_inset Formula $f=:f_{1}\cdots f_{r}$ +\end_inset + +, sea +\begin_inset Formula $[L:\mathbb{Z}_{p}]=\text{mcm}\{\text{gr}f_{1},\dots,\text{gr}f_{r}\}$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Si +\begin_inset Formula $p=2k+1$ +\end_inset + + es un primo impar, llamamos +\series bold +restos cuadráticos +\series default + módulo +\begin_inset Formula $p$ +\end_inset + + a los cuadrados no nulos en +\begin_inset Formula $\mathbb{Z}_{p}$ +\end_inset + +, +\begin_inset Formula $1^{2},2^{2},\dots,k^{2}$ +\end_inset + +. + Entonces +\begin_inset Formula $\prod_{i=1}^{k}i^{2}=(-1)^{k+1}$ +\end_inset + + y, si +\begin_inset Formula $p\neq3$ +\end_inset + +, +\begin_inset Formula $\sum_{i=1}^{k}i^{k}=0$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Algunos grupos finitos: +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\mathbb{F}_{4}=\{a\alpha+b\}_{a,b\in\mathbb{Z}_{2}}$ +\end_inset + + se obtiene al añadir a +\begin_inset Formula $\mathbb{Z}_{2}$ +\end_inset + + una raíz +\begin_inset Formula $\alpha$ +\end_inset + + del irreducible +\begin_inset Formula $X^{2}+X+1\in\mathbb{Z}_{2}[X]$ +\end_inset + +. + +\begin_inset Formula $\mathbb{F}_{4}^{*}=\langle\alpha\rangle=\langle\alpha+1\rangle$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\mathbb{F}_{8}=\{a\beta^{2}+b\beta+c\}_{a,b,c\in\mathbb{Z}_{2}}$ +\end_inset + + se obtiene al añadir a +\begin_inset Formula $\mathbb{Z}_{2}$ +\end_inset + + una raíz +\begin_inset Formula $\beta$ +\end_inset + + del irreducible +\begin_inset Formula $X^{3}+X+1\in\mathbb{Z}_{2}[X]$ +\end_inset + +. + +\begin_inset Formula $\mathbb{F}_{8}^{*}=\langle x\rangle$ +\end_inset + + para +\begin_inset Formula $x\in\mathbb{F}_{8}^{*}\setminus\{1\}$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\mathbb{F}_{9}=\{a\gamma+b\}_{a,b\in\mathbb{Z}_{3}}$ +\end_inset + + se obtiene al añadir a +\begin_inset Formula $\mathbb{Z}_{3}$ +\end_inset + + una raíz +\begin_inset Formula $\gamma$ +\end_inset + + del irreducible +\begin_inset Formula $X^{2}+1\in\mathbb{Z}_{3}[X]$ +\end_inset + +. + +\begin_inset Formula $\mathbb{F}_{9}^{*}=\langle\gamma+1\rangle$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + +}} +\end_layout + +\end_inset + + +\end_layout + \end_body \end_document |
