aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--gcs/n1.lyx5
-rw-r--r--gcs/n3.lyx90
-rw-r--r--ggs/n.lyx179
-rw-r--r--ggs/n1.lyx1623
-rw-r--r--ggs/n2.lyx2142
5 files changed, 4009 insertions, 30 deletions
diff --git a/gcs/n1.lyx b/gcs/n1.lyx
index f24699b..6e1fd95 100644
--- a/gcs/n1.lyx
+++ b/gcs/n1.lyx
@@ -5,6 +5,9 @@
\save_transient_properties true
\origin unavailable
\textclass book
+\begin_preamble
+\input{../defs}
+\end_preamble
\use_default_options true
\maintain_unincluded_children false
\language spanish
@@ -2037,7 +2040,7 @@ Curvas en el espacio
\end_layout
\begin_layout Standard
-Sean
+Sea
\begin_inset Formula $\alpha:I\to\mathbb{R}^{3}$
\end_inset
diff --git a/gcs/n3.lyx b/gcs/n3.lyx
index 02ffa54..5bae145 100644
--- a/gcs/n3.lyx
+++ b/gcs/n3.lyx
@@ -1573,17 +1573,54 @@ Sean
\end_inset
una superficie regular y
-\begin_inset Formula $V:\mathbb{R}\to T_{p}S$
+\begin_inset Formula $\alpha:I\to S$
+\end_inset
+
+ una curva regular, un
+\series bold
+campo de vectores a lo largo de
+\begin_inset Formula $\alpha$
+\end_inset
+
+
+\series default
+ es una función
+\begin_inset Formula $V:I\to\mathbb{R}^{3}$
\end_inset
- diferenciable, llamamos
+, y es
+\series bold
+tangente
+\series default
+ a
+\begin_inset Formula $S$
+\end_inset
+
+ (a lo largo de
+\begin_inset Formula $\alpha$
+\end_inset
+
+) si para
+\begin_inset Formula $t\in S$
+\end_inset
+
+ es
+\begin_inset Formula $V(t)\in T_{\alpha(t)}S$
+\end_inset
+
+.
+ Sea
+\begin_inset Formula $V:I\to\mathbb{R}^{3}$
+\end_inset
+
+ un campo de vectores tangente y diferenciable, llamamos
\series bold
derivada covariante
\series default
a
\begin_inset Formula
\[
-\frac{DV}{dt}(t):=\pi_{T_{p}S}V'(t),
+\frac{DV}{dt}(t):=\pi_{T_{\alpha(t)}S}V'(t),
\]
\end_inset
@@ -1598,11 +1635,11 @@ la proyección de
.
Propiedades: Sean
-\begin_inset Formula $V,W:\mathbb{R}\to T_{p}S$
+\begin_inset Formula $V,W:I\to T_{p}S$
\end_inset
y
-\begin_inset Formula $f:I\subseteq\mathbb{R}\to\mathbb{R}$
+\begin_inset Formula $f:I\to\mathbb{R}$
\end_inset
diferenciables, siendo
@@ -1622,11 +1659,11 @@ la proyección de
\begin_deeper
\begin_layout Standard
Si
-\begin_inset Formula $\pi:=\pi_{T_{p}S}$
+\begin_inset Formula $\pi:=\pi_{T_{\alpha(t)}S}$
\end_inset
,
-\begin_inset Formula $\frac{D(fV)}{dt}=\pi((fV)')=\pi(fV'+f'V)=f\pi V'+f'\pi V=f\frac{DV}{dt}+f'V$
+\begin_inset Formula $\frac{D(fV)}{dt}=\pi((fV)')=\pi(fV'+f'V)=f\pi(V')+f'\pi(V)=f\frac{DV}{dt}+f'V$
\end_inset
.
@@ -1642,7 +1679,7 @@ Si
\begin_deeper
\begin_layout Standard
-\begin_inset Formula $\frac{D(V+W)}{dt}=\pi((V+W)')=\pi V'+\pi W'=\frac{DV}{dt}+\frac{DW}{dt}$
+\begin_inset Formula $\frac{D(V+W)}{dt}=\pi((V+W)')=\pi(V')+\pi(W')=\frac{DV}{dt}+\frac{DW}{dt}$
\end_inset
.
@@ -1678,7 +1715,7 @@ Si
\end_inset
,
-\begin_inset Formula $\langle\frac{dV}{dt}(t),W(t)\rangle=\sum_{i=1}^{3}x_{i}y_{i}\overset{y_{3}=0}{=}x_{1}y_{1}+x_{2}y_{2}=\langle\pi_{T_{p}S}\frac{dV}{dt}(t),W(t)\rangle=\langle\frac{DV}{dt}(t),W(t)\rangle$
+\begin_inset Formula $\langle\frac{dV}{dt}(t),W(t)\rangle=\sum_{i=1}^{3}x_{i}y_{i}\overset{y_{3}=0}{=}x_{1}y_{1}+x_{2}y_{2}=\langle\pi(\frac{dV}{dt}(t)),W(t)\rangle=\langle\frac{DV}{dt}(t),W(t)\rangle$
\end_inset
, y análogamente para
@@ -1686,7 +1723,7 @@ Si
\end_inset
, luego
-\begin_inset Formula $\frac{d}{dt}\langle V,W\rangle=\langle\frac{DV}{dt},W\rangle+\langle V,\frac{dW}{dt}\rangle$
+\begin_inset Formula $\frac{d}{dt}\langle V,W\rangle=\langle\frac{dV}{dt},W\rangle+\langle V,\frac{dW}{dt}\rangle=\langle\frac{DV}{dt},W\rangle+\langle V,\frac{DW}{dt}\rangle$
\end_inset
.
@@ -1773,10 +1810,14 @@ triedro de Darboux
.
Entonces
-\begin_inset Formula $\frac{D\alpha'}{ds}(s)=\kappa_{g}(s)J\alpha'(s)$
+\begin_inset Formula
+\[
+\frac{D\alpha'}{ds}(s)=\kappa_{g}(s)J\alpha'(s),
+\]
+
\end_inset
-, donde
+ donde
\begin_inset Formula $\kappa_{g}:=\langle\alpha'',J\alpha'\rangle:I\to\mathbb{R}$
\end_inset
@@ -1794,15 +1835,10 @@ curvatura geodésica
.
En efecto,
-\begin_inset Formula
-\begin{multline*}
-\langle\frac{D\alpha'}{ds}(s),\alpha'(s)\rangle=\langle\alpha''(s)-\langle\alpha''(s),N(\alpha(s))\rangle N(\alpha(s)),\alpha'(s)\rangle=\\
-=\langle\alpha''(s),\alpha'(s)\rangle-\langle\alpha''(s),N(\alpha(s))\rangle\langle N(\alpha(s)),\alpha'(s)\rangle=0,
-\end{multline*}
-
+\begin_inset Formula $\langle\frac{D\alpha'}{ds}(s),\alpha'(s)\rangle=\langle\alpha''(s)-\langle\alpha''(s),N(\alpha(s))\rangle N(\alpha(s)),\alpha'(s)\rangle=\langle\alpha''(s),\alpha'(s)\rangle-\langle\alpha''(s),N(\alpha(s))\rangle\langle N(\alpha(s)),\alpha'(s)\rangle=0$
\end_inset
-y
+, y
\begin_inset Formula $\kappa_{g}(s)=\langle\frac{D\alpha'}{ds}(s),J\alpha'(s)\rangle=\langle\alpha''(s),J\alpha'(s)\rangle$
\end_inset
@@ -2206,10 +2242,6 @@ direcciones principales
.
\end_layout
-\begin_layout Standard
-Ejemplos:
-\end_layout
-
\begin_layout Enumerate
Todas las direcciones del plano y la esfera son principales.
\end_layout
@@ -3135,15 +3167,15 @@ respecto de la base
, entonces
\begin_inset Formula
-\begin{align*}
+\[
\begin{pmatrix}-e & -f\\
-f & -g
-\end{pmatrix} & =\begin{pmatrix}a_{11} & a_{21}\\
+\end{pmatrix}=\begin{pmatrix}a_{11} & a_{21}\\
a_{12} & a_{22}
\end{pmatrix}\begin{pmatrix}E & F\\
F & G
\end{pmatrix}
-\end{align*}
+\]
\end_inset
@@ -3888,7 +3920,7 @@ símbolos de Christoffel
\end_inset
y
-\begin_inset Formula $\Gamma_{12}^{2}=\Gamma_{22}^{2}$
+\begin_inset Formula $\Gamma_{12}^{2}=\Gamma_{21}^{2}$
\end_inset
, pues
@@ -4103,9 +4135,9 @@ Como
nos da
\begin_inset Formula
-\begin{multline*}
+\[
\Gamma_{11}^{1}f+\Gamma_{11}^{2}g-\Gamma_{12}^{1}e-\Gamma_{12}^{1}f+e_{v}-f_{u}=0,
-\end{multline*}
+\]
\end_inset
diff --git a/ggs/n.lyx b/ggs/n.lyx
new file mode 100644
index 0000000..fe36459
--- /dev/null
+++ b/ggs/n.lyx
@@ -0,0 +1,179 @@
+#LyX 2.3 created this file. For more info see http://www.lyx.org/
+\lyxformat 544
+\begin_document
+\begin_header
+\save_transient_properties true
+\origin unavailable
+\textclass book
+\begin_preamble
+\input{../defs}
+\end_preamble
+\use_default_options true
+\begin_modules
+algorithm2e
+\end_modules
+\maintain_unincluded_children false
+\language spanish
+\language_package default
+\inputencoding auto
+\fontencoding global
+\font_roman "default" "default"
+\font_sans "default" "default"
+\font_typewriter "default" "default"
+\font_math "auto" "auto"
+\font_default_family default
+\use_non_tex_fonts false
+\font_sc false
+\font_osf false
+\font_sf_scale 100 100
+\font_tt_scale 100 100
+\use_microtype false
+\use_dash_ligatures true
+\graphics default
+\default_output_format default
+\output_sync 0
+\bibtex_command default
+\index_command default
+\paperfontsize 10
+\spacing single
+\use_hyperref false
+\papersize a5paper
+\use_geometry true
+\use_package amsmath 1
+\use_package amssymb 1
+\use_package cancel 1
+\use_package esint 1
+\use_package mathdots 1
+\use_package mathtools 1
+\use_package mhchem 1
+\use_package stackrel 1
+\use_package stmaryrd 1
+\use_package undertilde 1
+\cite_engine basic
+\cite_engine_type default
+\biblio_style plain
+\use_bibtopic false
+\use_indices false
+\paperorientation portrait
+\suppress_date false
+\justification true
+\use_refstyle 1
+\use_minted 0
+\index Index
+\shortcut idx
+\color #008000
+\end_index
+\leftmargin 0.2cm
+\topmargin 0.7cm
+\rightmargin 0.2cm
+\bottommargin 0.7cm
+\secnumdepth 3
+\tocdepth 3
+\paragraph_separation indent
+\paragraph_indentation default
+\is_math_indent 0
+\math_numbering_side default
+\quotes_style swiss
+\dynamic_quotes 0
+\papercolumns 1
+\papersides 1
+\paperpagestyle empty
+\listings_params "basicstyle={\ttfamily}"
+\tracking_changes false
+\output_changes false
+\html_math_output 0
+\html_css_as_file 0
+\html_be_strict false
+\end_header
+
+\begin_body
+
+\begin_layout Title
+Geometría Global de Superficies
+\end_layout
+
+\begin_layout Date
+\begin_inset Note Note
+status open
+
+\begin_layout Plain Layout
+
+\end_layout
+
+\end_inset
+
+
+\end_layout
+
+\begin_layout Standard
+\begin_inset ERT
+status open
+
+\begin_layout Plain Layout
+
+
+\backslash
+def
+\backslash
+cryear{2021}
+\end_layout
+
+\end_inset
+
+
+\end_layout
+
+\begin_layout Standard
+\begin_inset CommandInset include
+LatexCommand input
+filename "../license.lyx"
+
+\end_inset
+
+
+\end_layout
+
+\begin_layout Standard
+Bibliografía:
+\end_layout
+
+\begin_layout Itemize
+Luis Alías.
+
+\emph on
+Bloque 1.
+ Geodésicas en superficies
+\emph default
+.
+\end_layout
+
+\begin_layout Chapter
+Campos paralelos
+\end_layout
+
+\begin_layout Standard
+\begin_inset CommandInset include
+LatexCommand input
+filename "n1.lyx"
+
+\end_inset
+
+
+\end_layout
+
+\begin_layout Chapter
+Geodésicas
+\end_layout
+
+\begin_layout Standard
+\begin_inset CommandInset include
+LatexCommand input
+filename "n2.lyx"
+
+\end_inset
+
+
+\end_layout
+
+\end_body
+\end_document
diff --git a/ggs/n1.lyx b/ggs/n1.lyx
new file mode 100644
index 0000000..dff032c
--- /dev/null
+++ b/ggs/n1.lyx
@@ -0,0 +1,1623 @@
+#LyX 2.3 created this file. For more info see http://www.lyx.org/
+\lyxformat 544
+\begin_document
+\begin_header
+\save_transient_properties true
+\origin unavailable
+\textclass book
+\begin_preamble
+\input{../defs}
+\end_preamble
+\use_default_options true
+\maintain_unincluded_children false
+\language spanish
+\language_package default
+\inputencoding auto
+\fontencoding global
+\font_roman "default" "default"
+\font_sans "default" "default"
+\font_typewriter "default" "default"
+\font_math "auto" "auto"
+\font_default_family default
+\use_non_tex_fonts false
+\font_sc false
+\font_osf false
+\font_sf_scale 100 100
+\font_tt_scale 100 100
+\use_microtype false
+\use_dash_ligatures true
+\graphics default
+\default_output_format default
+\output_sync 0
+\bibtex_command default
+\index_command default
+\paperfontsize default
+\spacing single
+\use_hyperref false
+\papersize default
+\use_geometry false
+\use_package amsmath 1
+\use_package amssymb 1
+\use_package cancel 1
+\use_package esint 1
+\use_package mathdots 1
+\use_package mathtools 1
+\use_package mhchem 1
+\use_package stackrel 1
+\use_package stmaryrd 1
+\use_package undertilde 1
+\cite_engine basic
+\cite_engine_type default
+\biblio_style plain
+\use_bibtopic false
+\use_indices false
+\paperorientation portrait
+\suppress_date false
+\justification true
+\use_refstyle 1
+\use_minted 0
+\index Index
+\shortcut idx
+\color #008000
+\end_index
+\secnumdepth 3
+\tocdepth 3
+\paragraph_separation indent
+\paragraph_indentation default
+\is_math_indent 0
+\math_numbering_side default
+\quotes_style french
+\dynamic_quotes 0
+\papercolumns 1
+\papersides 1
+\paperpagestyle default
+\tracking_changes false
+\output_changes false
+\html_math_output 0
+\html_css_as_file 0
+\html_be_strict false
+\end_header
+
+\begin_body
+
+\begin_layout Standard
+Una función real es
+\series bold
+diferenciable
+\series default
+ si es de clase
+\begin_inset Formula ${\cal C}^{\infty}$
+\end_inset
+
+.
+\end_layout
+
+\begin_layout Standard
+\begin_inset ERT
+status open
+
+\begin_layout Plain Layout
+
+
+\backslash
+sremember{GCS}
+\end_layout
+
+\end_inset
+
+
+\begin_inset Formula
+\[
+J:=\begin{pmatrix}0 & -1\\
+1 & 0
+\end{pmatrix}.
+\]
+
+\end_inset
+
+Entonces, dada una curva
+\begin_inset Formula $\alpha:I\to\mathbb{R}^{2}$
+\end_inset
+
+ p.p.a., si
+\begin_inset Formula $\mathbf{t}(s):=\alpha'(s)$
+\end_inset
+
+ y
+\begin_inset Formula $\mathbf{n}(s):=J\mathbf{t}(s)$
+\end_inset
+
+ [...], [...]
+\begin_inset Formula $\kappa_{\alpha}(s):=\langle\mathbf{t}'(s),\mathbf{n}(s)\rangle$
+\end_inset
+
+ [...].
+\end_layout
+
+\begin_layout Standard
+Las
+\series bold
+fórmulas de Frenet
+\series default
+ son
+\begin_inset Formula
+\[
+\left\{ \begin{aligned}\mathbf{t}'(s) & =\kappa(s)\mathbf{n}(s),\\
+\mathbf{n}'(s) & =-\kappa(s)\mathbf{t}(s).
+\end{aligned}
+\right.
+\]
+
+\end_inset
+
+[...] Una curva regular
+\begin_inset Formula $\alpha:I\to\mathbb{R}^{2}$
+\end_inset
+
+ [...], [...] la curvatura [...] es
+\begin_inset Formula
+\[
+\kappa_{\alpha}(t)=\frac{\langle\alpha''(t),J\alpha'(t)\rangle}{|\alpha'(t)|^{3}}.
+\]
+
+\end_inset
+
+
+\end_layout
+
+\begin_layout Standard
+[...] Sea
+\begin_inset Formula $\alpha:I\to\mathbb{R}^{3}$
+\end_inset
+
+ una curva regular p.p.a., si
+\begin_inset Formula $\mathbf{t}(s)$
+\end_inset
+
+ es su vector tangente, [...]
+\begin_inset Formula $\kappa(s):=|\mathbf{t}'(s)|$
+\end_inset
+
+.
+ [...]
+\begin_inset Formula $\mathbf{n}(s):=\frac{\mathbf{t}'(s)}{\kappa(s)}[...],$
+\end_inset
+
+[...]
+\begin_inset Formula $\mathbf{b}(s)=\mathbf{t}(s)\land\mathbf{n}(s)$
+\end_inset
+
+ [...].
+ [...]
+\begin_inset Formula $\tau(s)[...]=\langle\mathbf{b}'(s),\mathbf{n}(s)\rangle$
+\end_inset
+
+.
+ [...]
+\end_layout
+
+\begin_layout Standard
+\begin_inset Formula
+\[
+\begin{pmatrix}\mathbf{t}\\
+\mathbf{n}\\
+\mathbf{b}
+\end{pmatrix}^{\prime}=\begin{pmatrix}\kappa\mathbf{n}\\
+-\kappa\mathbf{t}-\tau\mathbf{b}\\
+\tau\mathbf{n}
+\end{pmatrix}=\begin{pmatrix} & \kappa\\
+-\kappa & & -\tau\\
+ & \tau
+\end{pmatrix}\begin{pmatrix}\mathbf{t}\\
+\mathbf{n}\\
+\mathbf{b}
+\end{pmatrix}.
+\]
+
+\end_inset
+
+
+\end_layout
+
+\begin_layout Standard
+[...]
+\begin_inset ERT
+status open
+
+\begin_layout Plain Layout
+
+{
+\end_layout
+
+\end_inset
+
+
+\begin_inset Formula
+\begin{align*}
+\kappa_{\alpha}(t) & :=\frac{|\alpha'(t)\land\alpha''(t)|}{|\alpha'(t)|^{3}}, & \tau_{\alpha}(t) & =-\frac{\det(\alpha'(t),\alpha''(t),\alpha'''(t))}{|\alpha'(t)\land\alpha''(t)|^{2}}.
+\end{align*}
+
+\end_inset
+
+
+\begin_inset ERT
+status open
+
+\begin_layout Plain Layout
+
+}
+\end_layout
+
+\end_inset
+
+
+\end_layout
+
+\begin_layout Standard
+\begin_inset ERT
+status open
+
+\begin_layout Plain Layout
+
+
+\backslash
+eremember
+\end_layout
+
+\end_inset
+
+
+\end_layout
+
+\begin_layout Standard
+\begin_inset ERT
+status open
+
+\begin_layout Plain Layout
+
+
+\backslash
+sremember{GCS}
+\end_layout
+
+\end_inset
+
+
+\begin_inset ERT
+status open
+
+\begin_layout Plain Layout
+
+{
+\end_layout
+
+\end_inset
+
+
+\begin_inset Formula
+\begin{align*}
+e & :=\langle N,X_{uu}\rangle=-\langle N_{u},X_{u}\rangle,\\
+f & :=\langle N,X_{uv}\rangle=-\langle N_{v},X_{u}\rangle=-\langle N_{u},X_{v}\rangle,\\
+g & :=\langle N,X_{vv}\rangle=-\langle N_{v},X_{v}\rangle
+\end{align*}
+
+\end_inset
+
+
+\begin_inset ERT
+status open
+
+\begin_layout Plain Layout
+
+}
+\end_layout
+
+\end_inset
+
+
+\end_layout
+
+\begin_layout Standard
+[...].
+ [...] Si
+\begin_inset Formula
+\[
+dN_{p}\equiv\begin{pmatrix}a_{11} & a_{12}\\
+a_{21} & a_{22}
+\end{pmatrix}
+\]
+
+\end_inset
+
+respecto de la base
+\begin_inset Formula $(X_{u},X_{v})$
+\end_inset
+
+, entonces
+\begin_inset Formula
+\[
+\begin{pmatrix}-e & -f\\
+-f & -g
+\end{pmatrix}=\begin{pmatrix}a_{11} & a_{21}\\
+a_{12} & a_{22}
+\end{pmatrix}\begin{pmatrix}E & F\\
+F & G
+\end{pmatrix}
+\]
+
+\end_inset
+
+ y tenemos las
+\series bold
+fórmulas de Weingarten:
+\series default
+
+\begin_inset ERT
+status open
+
+\begin_layout Plain Layout
+
+{
+\end_layout
+
+\end_inset
+
+
+\begin_inset Formula
+\begin{align*}
+a_{11} & =\frac{fF-eG}{EG-F^{2}}, & a_{12} & =\frac{gF-fG}{EG-F^{2}}, & a_{21} & =\frac{eF-fE}{EG-F^{2}}, & a_{22} & =\frac{fF-gE}{EG-F^{2}}.
+\end{align*}
+
+\end_inset
+
+
+\begin_inset ERT
+status open
+
+\begin_layout Plain Layout
+
+}
+\end_layout
+
+\end_inset
+
+[...]
+\begin_inset ERT
+status open
+
+\begin_layout Plain Layout
+
+{
+\end_layout
+
+\end_inset
+
+
+\begin_inset Formula
+\begin{align*}
+K(p) & =\frac{eg-f^{2}}{EG-F^{2}}, & H(p) & =\frac{1}{2}\frac{eG+gE-2fF}{EG-F^{2}}
+\end{align*}
+
+\end_inset
+
+
+\begin_inset ERT
+status open
+
+\begin_layout Plain Layout
+
+}
+\end_layout
+
+\end_inset
+
+[...].
+ Las
+\series bold
+fórmulas de Gauss
+\series default
+ son
+\begin_inset Formula
+\[
+\left\{ \begin{aligned}X_{uu} & =\Gamma_{11}^{1}X_{u}+\Gamma_{11}^{2}X_{v}+eN,\\
+X_{uv} & =\Gamma_{12}^{1}X_{u}+\Gamma_{12}^{2}X_{v}+fN,\\
+X_{vu} & =\Gamma_{21}^{1}X_{u}+\Gamma_{21}^{2}X_{v}+fN,\\
+X_{vv} & =\Gamma_{22}^{1}X_{u}+\Gamma_{22}^{2}X_{v}+gN
+\end{aligned}
+\right.
+\]
+
+\end_inset
+
+donde los
+\begin_inset Formula $\Gamma_{ij}^{k}$
+\end_inset
+
+ son los
+\series bold
+símbolos de Christoffel
+\series default
+ [...].
+
+\begin_inset Formula $\Gamma_{12}^{1}=\Gamma_{21}^{1}$
+\end_inset
+
+ y
+\begin_inset Formula $\Gamma_{12}^{2}=\Gamma_{21}^{2}$
+\end_inset
+
+ [...].
+ Además,
+\begin_inset Formula
+\[
+\begin{pmatrix}\Gamma_{11}^{1} & \Gamma_{12}^{1} & \Gamma_{22}^{1}\\
+\Gamma_{11}^{2} & \Gamma_{12}^{2} & \Gamma_{22}^{2}
+\end{pmatrix}=\frac{1}{EG-F^{2}}\begin{pmatrix}G & -F\\
+-F & E
+\end{pmatrix}\begin{pmatrix}\frac{E_{u}}{2} & \frac{E_{v}}{2} & F_{v}-\frac{G_{u}}{2}\\
+F_{u}-\frac{E_{v}}{2} & \frac{G_{u}}{2} & \frac{G_{v}}{2}
+\end{pmatrix}.
+\]
+
+\end_inset
+
+
+\end_layout
+
+\begin_layout Standard
+\begin_inset ERT
+status open
+
+\begin_layout Plain Layout
+
+
+\backslash
+eremember
+\end_layout
+
+\end_inset
+
+
+\end_layout
+
+\begin_layout Standard
+Si
+\begin_inset Formula $F=0$
+\end_inset
+
+, la curvatura de Gauss es
+\begin_inset Formula
+\[
+K=\frac{-1}{2\sqrt{EG}}\left[\left(\frac{E_{v}}{\sqrt{EG}}\right)_{v}+\left(\frac{G_{u}}{\sqrt{EG}}\right)_{u}\right].
+\]
+
+\end_inset
+
+
+\series bold
+Demostración:
+\series default
+
+\begin_inset Formula
+\[
+\begin{pmatrix}\Gamma_{11}^{1} & \Gamma_{12}^{1} & \Gamma_{22}^{1}\\
+\Gamma_{11}^{2} & \Gamma_{12}^{2} & \Gamma_{22}^{2}
+\end{pmatrix}=\begin{pmatrix}\frac{E_{u}}{2E} & \frac{E_{v}}{2E} & -\frac{G_{v}}{2E}\\
+-\frac{E_{v}}{2G} & \frac{G_{u}}{2G} & \frac{G_{v}}{2G}
+\end{pmatrix},
+\]
+
+\end_inset
+
+y por la ecuación de Gauss,
+\begin_inset Formula
+\begin{align*}
+K & =\frac{1}{E}\left(\frac{E_{u}G_{u}}{4EG}-\frac{E_{vv}}{2G}+\frac{E_{v}G_{u}}{2G^{2}}-\frac{E_{v}G_{v}}{4G^{2}}+\frac{E_{v}^{2}}{4EG}-\frac{G_{uu}}{2G}+\frac{G_{u}^{2}}{2G^{2}}-\frac{G_{u}^{2}}{4G^{2}}\right)\\
+ & =\left(\frac{E_{u}G_{u}}{4E^{2}G}-\frac{E_{vv}}{4EG}+\frac{E_{v}G_{u}}{2EG^{2}}-\frac{E_{v}G_{v}}{4EG^{2}}-\frac{G_{uu}}{2EG}+\frac{G_{u}^{2}}{4EG^{2}}\right),
+\end{align*}
+
+\end_inset
+
+pero
+\begin_inset Formula
+\begin{align*}
+\left(\frac{E_{v}}{\sqrt{EG}}\right)_{v} & =\frac{E_{vv}}{\sqrt{EG}}-\frac{E_{v}(E_{v}G+EG_{v})}{2(EG)^{3/2}}=\sqrt{EG}\left(\frac{E_{vv}}{EG}-\frac{E_{v}^{2}}{2E^{2}G}-\frac{E_{v}G_{v}}{2EG^{2}}\right),\\
+\left(\frac{G_{u}}{\sqrt{EG}}\right)_{u} & =\frac{G_{uu}}{\sqrt{EG}}-\frac{G_{u}(E_{u}G+EG_{u})}{2(EG)^{3/2}}=\sqrt{EG}\left(\frac{G_{uu}}{EG}-\frac{E_{u}G_{u}}{2E^{2}G}-\frac{G_{u}^{2}}{2EG^{2}}\right),
+\end{align*}
+
+\end_inset
+
+de modo que
+\begin_inset Formula
+\[
+-\frac{1}{2\sqrt{EG}}\left[\left(\frac{E_{v}}{\sqrt{EG}}\right)_{v}+\left(\frac{G_{u}}{\sqrt{EG}}\right)_{u}\right]=K.
+\]
+
+\end_inset
+
+
+\end_layout
+
+\begin_layout Section
+La derivada covariante
+\end_layout
+
+\begin_layout Standard
+\begin_inset ERT
+status open
+
+\begin_layout Plain Layout
+
+
+\backslash
+sremember{GCS}
+\end_layout
+
+\end_inset
+
+
+\end_layout
+
+\begin_layout Standard
+Sean
+\begin_inset Formula $S$
+\end_inset
+
+ una superficie regular y
+\begin_inset Formula $\alpha:I\to S$
+\end_inset
+
+ una curva regular, un
+\series bold
+campo de vectores a lo largo de
+\begin_inset Formula $\alpha$
+\end_inset
+
+
+\series default
+ es una función
+\begin_inset Formula $V:I\to\mathbb{R}^{3}$
+\end_inset
+
+, y es
+\series bold
+tangente
+\series default
+ a
+\begin_inset Formula $S$
+\end_inset
+
+ (a lo largo de
+\begin_inset Formula $\alpha$
+\end_inset
+
+) si para
+\begin_inset Formula $t\in S$
+\end_inset
+
+ es
+\begin_inset Formula $V(t)\in T_{\alpha(t)}S$
+\end_inset
+
+.
+
+\end_layout
+
+\begin_layout Standard
+\begin_inset ERT
+status open
+
+\begin_layout Plain Layout
+
+
+\backslash
+eremember
+\end_layout
+
+\end_inset
+
+
+\end_layout
+
+\begin_layout Standard
+Para un
+\begin_inset Formula $t\in I$
+\end_inset
+
+,
+\begin_inset Formula $V(t)^{\top}:=\pi_{T_{\alpha(t)}S}V(t)$
+\end_inset
+
+ y
+\begin_inset Formula $V(t)^{\bot}:=\pi_{(T_{\alpha(t)}S)^{\bot}}V(t)$
+\end_inset
+
+.
+ Llamamos
+\begin_inset Formula $\mathfrak{X}(\alpha)$
+\end_inset
+
+ al conjunto de campos de vectores a lo largo de
+\begin_inset Formula $\alpha$
+\end_inset
+
+ diferenciables y tangentes.
+ Así:
+\end_layout
+
+\begin_layout Enumerate
+La velocidad
+\begin_inset Formula $\alpha'\in\mathfrak{X}(\alpha)$
+\end_inset
+
+.
+\end_layout
+
+\begin_layout Enumerate
+La rotación de la velocidad
+\begin_inset Formula $N\wedge\alpha'\in\mathfrak{X}(\alpha)$
+\end_inset
+
+.
+\end_layout
+
+\begin_layout Enumerate
+La aceleración
+\begin_inset Formula $\alpha''(t)$
+\end_inset
+
+ es un campo de vectores diferenciable.
+\end_layout
+
+\begin_layout Enumerate
+Dado un campo de vectores diferenciable
+\begin_inset Formula $V:I\to\mathbb{R}^{3}$
+\end_inset
+
+,
+\begin_inset Formula $V'$
+\end_inset
+
+ es otro campo de vectores, pero
+\begin_inset Formula $V\in\mathfrak{X}(\alpha)$
+\end_inset
+
+ no implica
+\begin_inset Formula $V'\in\mathfrak{X}(\alpha)$
+\end_inset
+
+.
+\end_layout
+
+\begin_layout Standard
+Un
+\series bold
+campo normal unitario
+\series default
+ a lo largo de
+\begin_inset Formula $\alpha$
+\end_inset
+
+ es un campo
+\begin_inset Formula $N:I\to\mathbb{R}^{3}$
+\end_inset
+
+ diferenciable y unitario tal que todo
+\begin_inset Formula $N(t)$
+\end_inset
+
+ es normal a
+\begin_inset Formula $S$
+\end_inset
+
+ en
+\begin_inset Formula $\alpha(t)$
+\end_inset
+
+.
+
+\end_layout
+
+\begin_layout Standard
+\begin_inset ERT
+status open
+
+\begin_layout Plain Layout
+
+
+\backslash
+sremember{GCS}
+\end_layout
+
+\end_inset
+
+
+\end_layout
+
+\begin_layout Standard
+Sea
+\begin_inset Formula $V:I\to\mathbb{R}^{3}$
+\end_inset
+
+ un campo de vectores tangente y diferenciable, llamamos
+\series bold
+derivada covariante
+\series default
+ [o
+\series bold
+intrínseca
+\series default
+] a
+\begin_inset Formula
+\[
+\frac{DV}{dt}(t):=\pi_{T_{\alpha(t)}S}V'(t)
+\]
+
+\end_inset
+
+
+\end_layout
+
+\begin_layout Standard
+\begin_inset ERT
+status open
+
+\begin_layout Plain Layout
+
+
+\backslash
+eremember
+\end_layout
+
+\end_inset
+
+
+\end_layout
+
+\begin_layout Standard
+\begin_inset ERT
+status open
+
+\begin_layout Plain Layout
+
+
+\backslash
+sremember{GCS}
+\end_layout
+
+\end_inset
+
+
+\end_layout
+
+\begin_layout Standard
+Propiedades: Sean
+\begin_inset Formula $V,W:I\to T_{p}S$
+\end_inset
+
+ y
+\begin_inset Formula $f:I\to\mathbb{R}$
+\end_inset
+
+ diferenciables, siendo
+\begin_inset Formula $I$
+\end_inset
+
+ un intervalo:
+\end_layout
+
+\begin_layout Enumerate
+\begin_inset Formula $\frac{D(fV)}{dt}=f'V+f\frac{DV}{dt}$
+\end_inset
+
+.
+\end_layout
+
+\begin_deeper
+\begin_layout Standard
+Si
+\begin_inset Formula $\pi:=\pi_{T_{\alpha(t)}S}$
+\end_inset
+
+,
+\begin_inset Formula $\frac{D(fV)}{dt}=\pi((fV)')=\pi(fV'+f'V)=f\pi(V')+f'\pi(V)=f\frac{DV}{dt}+f'V$
+\end_inset
+
+.
+\end_layout
+
+\end_deeper
+\begin_layout Enumerate
+\begin_inset Formula $\frac{D(V+W)}{dt}=\frac{DV}{dt}+\frac{DW}{dt}$
+\end_inset
+
+.
+\end_layout
+
+\begin_deeper
+\begin_layout Standard
+\begin_inset Formula $\frac{D(V+W)}{dt}=\pi((V+W)')=\pi(V')+\pi(W')=\frac{DV}{dt}+\frac{DW}{dt}$
+\end_inset
+
+.
+\end_layout
+
+\end_deeper
+\begin_layout Enumerate
+\begin_inset Formula $\frac{d}{dt}\langle V,W\rangle=\langle\frac{DV}{dt}W\rangle+\langle V,\frac{DW}{dt}\rangle$
+\end_inset
+
+.
+\end_layout
+
+\begin_deeper
+\begin_layout Standard
+\begin_inset Formula $\frac{d}{dt}\langle V,W\rangle=\langle\frac{dV}{dt},W\rangle+\langle V,\frac{dW}{dt}\rangle$
+\end_inset
+
+, pero dada una base ortonormal
+\begin_inset Formula $(v_{1},v_{2},v_{3})$
+\end_inset
+
+ con
+\begin_inset Formula $T_{p}S=\text{span}\{v_{1},v_{2}\}$
+\end_inset
+
+, si
+\begin_inset Formula $\frac{dV}{dt}(t)=\sum_{i}x_{i}v_{i}$
+\end_inset
+
+ y
+\begin_inset Formula $W(t)=\sum_{i}y_{i}v_{i}$
+\end_inset
+
+,
+\begin_inset Formula $\langle\frac{dV}{dt}(t),W(t)\rangle=\sum_{i=1}^{3}x_{i}y_{i}\overset{y_{3}=0}{=}x_{1}y_{1}+x_{2}y_{2}=\langle\pi(\frac{dV}{dt}(t)),W(t)\rangle=\langle\frac{DV}{dt}(t),W(t)\rangle$
+\end_inset
+
+, y análogamente para
+\begin_inset Formula $\langle V,\frac{dW}{dt}\rangle$
+\end_inset
+
+, luego
+\begin_inset Formula $\frac{d}{dt}\langle V,W\rangle=\langle\frac{dV}{dt},W\rangle+\langle V,\frac{dW}{dt}\rangle=\langle\frac{DV}{dt},W\rangle+\langle V,\frac{DW}{dt}\rangle$
+\end_inset
+
+.
+\end_layout
+
+\end_deeper
+\begin_layout Standard
+\begin_inset ERT
+status open
+
+\begin_layout Plain Layout
+
+
+\backslash
+eremember
+\end_layout
+
+\end_inset
+
+
+\end_layout
+
+\begin_layout Standard
+Sean
+\begin_inset Formula $(U,X)$
+\end_inset
+
+ una carta local de
+\begin_inset Formula $S$
+\end_inset
+
+,
+\begin_inset Formula $\alpha:I\to X(U)$
+\end_inset
+
+ una curva sobre
+\begin_inset Formula $S$
+\end_inset
+
+,
+\begin_inset Formula $V\in\mathfrak{X}(\alpha)$
+\end_inset
+
+,
+\begin_inset Formula $\tilde{\alpha}:=(u,v):=X^{-1}\circ\alpha:I\to U$
+\end_inset
+
+ y
+\begin_inset Formula $(a,b):I\to U$
+\end_inset
+
+ con
+\begin_inset Formula $V(t)=a(t)X_{u}(\tilde{\alpha}(t))+b(t)X_{v}(\tilde{\alpha}(t))$
+\end_inset
+
+, entonces, para
+\begin_inset Formula $t\in I$
+\end_inset
+
+,
+\begin_inset Formula
+\begin{align*}
+\frac{DV}{dt} & =\left(a'+au'\Gamma_{11}^{1}+(av'+bu')\Gamma_{12}^{1}+bv'\Gamma_{22}^{1}\right)X_{u}(\tilde{\alpha})\\
+ & +\left(b'+au'\Gamma_{11}^{2}+(av'+bu')\Gamma_{12}^{2}+bv'\Gamma_{22}^{2}\right)X_{v}(\tilde{\alpha}).
+\end{align*}
+
+\end_inset
+
+
+\series bold
+Demostración:
+\series default
+ Sean
+\begin_inset Formula $t\in I$
+\end_inset
+
+,
+\begin_inset Formula $p:=\alpha(t)$
+\end_inset
+
+,
+\begin_inset Formula $q:=X^{-1}(p)$
+\end_inset
+
+ y
+\begin_inset Formula $N:X(U)\to\mathbb{R}^{3}$
+\end_inset
+
+ un campo normal tal que la base
+\begin_inset Formula $(X_{u}(q),X_{v}(q),N(p))$
+\end_inset
+
+ está orientada positivamente, derivando en
+\begin_inset Formula $V=aX_{u}(u,v)+bX_{v}(u,v)$
+\end_inset
+
+,
+\begin_inset Formula
+\begin{align*}
+V'(t) & =a'X_{u}(u,v)+a\left(X_{uu}(u,v)u'+X_{uv}(u,v)v'\right)+b'X_{v}(u,v)+b\left(X_{vu}(u,v)u'+X_{vv}(u,v)v'\right)\\
+ & =a'X_{u}(u,v)+a\left[(\Gamma_{11}^{1}X_{u}(u,v)+\Gamma_{11}^{2}X_{v}(u,v)+eN)u'+(\Gamma_{12}^{1}X_{u}(u,v)+\Gamma_{12}^{2}X_{v}(u,v)+fN)v'\right]\\
+ & +b'X_{v}(u,v)+b\left[(\Gamma_{12}^{1}X_{u}+\Gamma_{12}^{2}X_{v}+fN)u'+(\Gamma_{22}^{1}X_{u}+\Gamma_{22}^{2}X_{v}+gN)v'\right],
+\end{align*}
+
+\end_inset
+
+y entonces
+\begin_inset Formula $\frac{DV}{dt}$
+\end_inset
+
+ es la parte tangente de esto último,
+\begin_inset Formula
+\begin{align*}
+\frac{DV}{dt} & =\left(a'+a\Gamma_{11}^{1}u'+a\Gamma_{12}^{1}v'+b\Gamma_{12}^{1}u'+b\Gamma_{22}^{1}v'\right)X_{u}(u,v)\\
+ & +\left(a\Gamma_{11}^{2}u'+a\Gamma_{12}^{2}v'+b'+b\Gamma_{12}^{2}u'+b\Gamma_{22}^{2}v'\right)X_{v}(u,v).
+\end{align*}
+
+\end_inset
+
+
+\end_layout
+
+\begin_layout Section
+Campos paralelos
+\end_layout
+
+\begin_layout Standard
+Sean
+\begin_inset Formula $S$
+\end_inset
+
+ una superficie regular y
+\begin_inset Formula $\alpha:I\to S$
+\end_inset
+
+ una curva regular,
+\begin_inset Formula $V\in\mathfrak{X}(\alpha)$
+\end_inset
+
+ es
+\series bold
+paralelo
+\series default
+ (
+\series bold
+a lo largo de
+\begin_inset Formula $\alpha$
+\end_inset
+
+
+\series default
+) si
+\begin_inset Formula $\frac{DV}{dt}=0$
+\end_inset
+
+.
+ Si
+\begin_inset Formula $V,W\in\mathfrak{X}(\alpha)$
+\end_inset
+
+ son paralelos:
+\end_layout
+
+\begin_layout Enumerate
+Para
+\begin_inset Formula $a,b\in\mathbb{R}$
+\end_inset
+
+,
+\begin_inset Formula $aV+bW$
+\end_inset
+
+ es paralelo.
+\end_layout
+
+\begin_deeper
+\begin_layout Standard
+\begin_inset Formula $\frac{D(aV+bW)}{dt}=a\frac{DV}{dt}+b\frac{DW}{dt}=0$
+\end_inset
+
+.
+\end_layout
+
+\end_deeper
+\begin_layout Enumerate
+\begin_inset Formula $\langle V(t),W(t)\rangle$
+\end_inset
+
+ es constante, por lo que también lo son
+\begin_inset Formula $\Vert V(t)\Vert$
+\end_inset
+
+ y
+\begin_inset Formula $\angle(V,W)$
+\end_inset
+
+.
+\end_layout
+
+\begin_deeper
+\begin_layout Standard
+\begin_inset Formula $\langle V,W\rangle'=\langle\frac{DV}{dt},W\rangle+\langle V,\frac{DW}{dt}\rangle=0+0=0$
+\end_inset
+
+.
+\end_layout
+
+\end_deeper
+\begin_layout Standard
+
+\series bold
+E.d.o extrínseca de los campos paralelos:
+\series default
+
+\begin_inset Formula $V\in\mathfrak{X}(\alpha)$
+\end_inset
+
+ es paralelo a lo largo de
+\begin_inset Formula $\alpha$
+\end_inset
+
+ si y sólo si
+\begin_inset Formula
+\[
+V'(t)+\langle V(t),N'(t)\rangle N(t)=0,
+\]
+
+\end_inset
+
+donde
+\begin_inset Formula $N:I\to\mathbb{R}^{3}$
+\end_inset
+
+ es un campo normal unitario de
+\begin_inset Formula $S$
+\end_inset
+
+ a lo largo de
+\begin_inset Formula $\alpha$
+\end_inset
+
+.
+
+\series bold
+Demostración:
+\series default
+
+\begin_inset Formula $V$
+\end_inset
+
+ es paralelo si y sólo si
+\begin_inset Formula $V'(t)$
+\end_inset
+
+ es proporcional a
+\begin_inset Formula $N(t)$
+\end_inset
+
+ en todo
+\begin_inset Formula $t\in I$
+\end_inset
+
+, si y sólo si
+\begin_inset Formula $V'(t)=\langle V'(t),N(t)\rangle$
+\end_inset
+
+, pero como
+\begin_inset Formula $\langle V(t),N(t)\rangle=0$
+\end_inset
+
+ en todo punto, derivando es
+\begin_inset Formula $\langle V'(t),N(t)\rangle+\langle V(t),N'(t)\rangle=0$
+\end_inset
+
+, luego
+\begin_inset Formula $V'(t)=\langle V'(t),N(t)\rangle$
+\end_inset
+
+ si y sólo si
+\begin_inset Formula $V'(t)-\langle V'(t),N(t)\rangle=V'(t)+\langle V(t),N'(t)\rangle=0$
+\end_inset
+
+.
+\end_layout
+
+\begin_layout Standard
+
+\series bold
+E.d.o intrínseca de los campos paralelos:
+\series default
+ Sean
+\begin_inset Formula $(U,X)$
+\end_inset
+
+ una carta local de la superficie regular
+\begin_inset Formula $S$
+\end_inset
+
+,
+\begin_inset Formula $\alpha:I\to X(U)$
+\end_inset
+
+ una curva sobre
+\begin_inset Formula $S$
+\end_inset
+
+,
+\begin_inset Formula $V\in\mathfrak{X}(\alpha)$
+\end_inset
+
+,
+\begin_inset Formula $(u,v):=X^{-1}\circ\alpha:I\to U$
+\end_inset
+
+ y
+\begin_inset Formula $(a,b):I\to U$
+\end_inset
+
+ tal que
+\begin_inset Formula $V=aX_{u}(\tilde{\alpha})+bX_{v}(\tilde{\alpha})$
+\end_inset
+
+, entonces
+\begin_inset Formula $V$
+\end_inset
+
+ es paralelo a lo largo de
+\begin_inset Formula $\alpha$
+\end_inset
+
+ si y sólo si satisface
+\begin_inset Formula
+\[
+\left\{ \begin{aligned}a'+au'\Gamma_{11}^{1}(u,v)+(av'+bu')\Gamma_{12}^{1}(u,v)+bv'\Gamma_{22}^{1}(u,v) & =0,\\
+b'+au'\Gamma_{11}^{2}(u,v)+(av'+bu')\Gamma_{12}^{2}(u,v)+bv'\Gamma_{22}^{2}(u,v) & =0,
+\end{aligned}
+\right.
+\]
+
+\end_inset
+
+ecuaciones que resultan de sustituir la fórmula intrínseca de la derivada
+ covariante en
+\begin_inset Formula $\frac{DV}{dt}=0$
+\end_inset
+
+ y usar que
+\begin_inset Formula $X_{u}(\tilde{\alpha})$
+\end_inset
+
+ y
+\begin_inset Formula $X_{v}(\tilde{\alpha})$
+\end_inset
+
+.
+\end_layout
+
+\begin_layout Standard
+\begin_inset ERT
+status open
+
+\begin_layout Plain Layout
+
+
+\backslash
+sremember{EDO}
+\end_layout
+
+\end_inset
+
+Una e.d.o.
+ es
+\series bold
+lineal
+\series default
+ si es de la forma
+\begin_inset Formula $\dot{x}=A(t)x+b(t)$
+\end_inset
+
+, con
+\begin_inset Formula $A:I\subseteq\mathbb{R}\to{\cal L}(\mathbb{R}^{n})$
+\end_inset
+
+ y
+\begin_inset Formula $b:I\subseteq\mathbb{R}\to\mathbb{R}^{n}$
+\end_inset
+
+ [...].
+ [...] Si
+\begin_inset Formula $A$
+\end_inset
+
+ y
+\begin_inset Formula $b$
+\end_inset
+
+ son continuas, para
+\begin_inset Formula $(t_{0},x_{0})\in I\times\mathbb{R}^{n}$
+\end_inset
+
+ [...]
+\begin_inset Formula
+\[
+\left\{ \begin{aligned}\dot{x} & =A(t)x+b(t)\\
+x(t_{0}) & =x_{0}
+\end{aligned}
+\right.
+\]
+
+\end_inset
+
+tiene solución única definida en todo
+\begin_inset Formula $I$
+\end_inset
+
+ [...].
+\end_layout
+
+\begin_layout Standard
+\begin_inset ERT
+status open
+
+\begin_layout Plain Layout
+
+
+\backslash
+eremember
+\end_layout
+
+\end_inset
+
+
+\end_layout
+
+\begin_layout Section
+Transporte paralelo
+\end_layout
+
+\begin_layout Standard
+Como
+\series bold
+teorema
+\series default
+, sean
+\begin_inset Formula $S$
+\end_inset
+
+ una superficie regular,
+\begin_inset Formula $\alpha:I\to S$
+\end_inset
+
+ una curva,
+\begin_inset Formula $t_{0}\in I$
+\end_inset
+
+ y
+\begin_inset Formula $v\in T_{\alpha(t_{0})}S$
+\end_inset
+
+, existe un único
+\begin_inset Formula $V\in\mathfrak{X}(\alpha)$
+\end_inset
+
+ paralelo tal que
+\begin_inset Formula $V(t_{0})=v$
+\end_inset
+
+.
+
+\series bold
+Demostración:
+\series default
+ Sea
+\begin_inset Formula $N$
+\end_inset
+
+ un campo normal unitario de
+\begin_inset Formula $S$
+\end_inset
+
+ a lo largo de
+\begin_inset Formula $\alpha$
+\end_inset
+
+,
+\begin_inset Formula $V\in\mathfrak{X}(\alpha)$
+\end_inset
+
+ es paralelo si y sólo si
+\begin_inset Formula
+\[
+0=V'+\langle V,N'\rangle N=\begin{pmatrix}V_{1}'\\
+V_{2}'\\
+V_{3}'
+\end{pmatrix}+\sum_{j=1}^{3}V_{j}N_{j}'\begin{pmatrix}N_{1}\\
+N_{2}\\
+N_{3}
+\end{pmatrix}=\begin{pmatrix}V'_{1}\\
+V'_{2}\\
+V'_{3}
+\end{pmatrix}+\begin{pmatrix}N_{1}N'_{1} & N_{1}N'_{2} & N_{1}N'_{3}\\
+N_{2}N'_{1} & N_{2}N'_{2} & N_{2}N'_{3}\\
+N_{3}N'_{1} & N_{3}N'_{2} & N_{3}N'_{3}
+\end{pmatrix}\begin{pmatrix}V_{1}\\
+V_{2}\\
+V_{3}
+\end{pmatrix},
+\]
+
+\end_inset
+
+lo que nos da una e.d.o.
+ lineal que, añadiendo la condición inicial
+\begin_inset Formula $V(t_{0})=v$
+\end_inset
+
+, tiene solución única definida en todo
+\begin_inset Formula $I$
+\end_inset
+
+.
+ Para ver que realmente la solución es tangente, sabemos que
+\begin_inset Formula $\langle V,N\rangle(t_{0})=\langle v,N(t_{0})\rangle=0$
+\end_inset
+
+, y como por la ecuación es
+\begin_inset Formula $V'=-\langle V,N'\rangle N$
+\end_inset
+
+,
+\begin_inset Formula
+\[
+\langle V,N\rangle'=\langle V',N\rangle+\langle V,N'\rangle=-\langle V,N'\rangle\langle N,N\rangle+\langle V,N'\rangle\overset{\langle N,N\rangle=1}{=}0.
+\]
+
+\end_inset
+
+
+\end_layout
+
+\begin_layout Standard
+Sean
+\begin_inset Formula $S$
+\end_inset
+
+ una superficie regular,
+\begin_inset Formula $\alpha:I\to S$
+\end_inset
+
+ una curva regular,
+\begin_inset Formula $a,b\in I$
+\end_inset
+
+,
+\begin_inset Formula $p:=\alpha(a)$
+\end_inset
+
+,
+\begin_inset Formula $q:=\alpha(b)$
+\end_inset
+
+ y
+\begin_inset Formula $v\in T_{p}S$
+\end_inset
+
+ y
+\begin_inset Formula $V\in\mathfrak{X}(\alpha)$
+\end_inset
+
+ el único campo paralelo con
+\begin_inset Formula $V(a)=v$
+\end_inset
+
+, el
+\series bold
+transporte paralelo
+\series default
+ de
+\begin_inset Formula $v$
+\end_inset
+
+ a lo largo de
+\begin_inset Formula $\alpha$
+\end_inset
+
+ en el punto
+\begin_inset Formula $q$
+\end_inset
+
+ es
+\begin_inset Formula $V(b)$
+\end_inset
+
+.
+
+\end_layout
+
+\begin_layout Standard
+La
+\series bold
+aplicación transporte paralelo
+\series default
+ es la
+\begin_inset Formula $P_{\alpha}:=P_{a}^{b}(\alpha):T_{p}S\to T_{q}S$
+\end_inset
+
+ que a cada
+\begin_inset Formula $v\in T_{p}S$
+\end_inset
+
+ le asigna su transporte paralelo a lo largo de
+\begin_inset Formula $\alpha$
+\end_inset
+
+ en
+\begin_inset Formula $q$
+\end_inset
+
+.
+ Como
+\series bold
+teorema
+\series default
+,
+\begin_inset Formula $P_{\alpha}$
+\end_inset
+
+ es una isometría lineal.
+
+\series bold
+Demostración:
+\series default
+ Para
+\begin_inset Formula $v\in T_{p}S$
+\end_inset
+
+, sea
+\begin_inset Formula $V\in\mathfrak{X}(\alpha)$
+\end_inset
+
+ el único campo paralelo con
+\begin_inset Formula $V(a)=v$
+\end_inset
+
+, este también es el único campo paralelo con
+\begin_inset Formula $V(b)=P_{a}^{b}(\alpha)(v)$
+\end_inset
+
+, por lo que
+\begin_inset Formula $v=P_{b}^{a}(\alpha)(P_{a}^{b}(\alpha)(v))$
+\end_inset
+
+ y, por simetría, para
+\begin_inset Formula $w\in T_{q}S$
+\end_inset
+
+,
+\begin_inset Formula $w=P_{a}^{b}(\alpha)(P_{b}^{a}(\alpha)(v))$
+\end_inset
+
+, de modo que
+\begin_inset Formula $P_{\alpha}$
+\end_inset
+
+ es invertible.
+ Sean ahora
+\begin_inset Formula $v,w\in T_{p}S$
+\end_inset
+
+,
+\begin_inset Formula $V$
+\end_inset
+
+ el único campo paralelo con
+\begin_inset Formula $V(a)=v$
+\end_inset
+
+ y
+\begin_inset Formula $W$
+\end_inset
+
+ el único con
+\begin_inset Formula $W(a)=w$
+\end_inset
+
+, entonces
+\begin_inset Formula $V+W$
+\end_inset
+
+ es otro campo paralelo con
+\begin_inset Formula $(V+W)(a)=v+w$
+\end_inset
+
+ y por tanto el único, luego
+\begin_inset Formula $P_{\alpha}(v+w)=(V+W)(b)=V(b)+W(b)=P_{\alpha}(v)+P_{\alpha}(w)$
+\end_inset
+
+.
+ Del mismo modo, si
+\begin_inset Formula $\lambda\in\mathbb{R}$
+\end_inset
+
+,
+\begin_inset Formula $\lambda V$
+\end_inset
+
+ es un campo paralelo con
+\begin_inset Formula $(\lambda V)(a)=\lambda v$
+\end_inset
+
+, luego
+\begin_inset Formula $P_{\alpha}(\lambda v)=\lambda V(a)=\lambda P_{\alpha}(v)$
+\end_inset
+
+, y con esto
+\begin_inset Formula $P_{\alpha}$
+\end_inset
+
+ es lineal.
+ Finalmente, como
+\begin_inset Formula $\langle V(t),W(t)\rangle$
+\end_inset
+
+ es constante en
+\begin_inset Formula $t$
+\end_inset
+
+,
+\begin_inset Formula $\langle v,w\rangle=\langle V(a),W(a)\rangle=\langle V(b),W(b)\rangle=\langle P_{\alpha}(v),P_{\alpha}(v)\rangle$
+\end_inset
+
+ y
+\begin_inset Formula $P_{\alpha}$
+\end_inset
+
+ es una isometría.
+\end_layout
+
+\end_body
+\end_document
diff --git a/ggs/n2.lyx b/ggs/n2.lyx
new file mode 100644
index 0000000..a0f5b5e
--- /dev/null
+++ b/ggs/n2.lyx
@@ -0,0 +1,2142 @@
+#LyX 2.3 created this file. For more info see http://www.lyx.org/
+\lyxformat 544
+\begin_document
+\begin_header
+\save_transient_properties true
+\origin unavailable
+\textclass book
+\begin_preamble
+\input{../defs}
+\end_preamble
+\use_default_options true
+\maintain_unincluded_children false
+\language spanish
+\language_package default
+\inputencoding auto
+\fontencoding global
+\font_roman "default" "default"
+\font_sans "default" "default"
+\font_typewriter "default" "default"
+\font_math "auto" "auto"
+\font_default_family default
+\use_non_tex_fonts false
+\font_sc false
+\font_osf false
+\font_sf_scale 100 100
+\font_tt_scale 100 100
+\use_microtype false
+\use_dash_ligatures true
+\graphics default
+\default_output_format default
+\output_sync 0
+\bibtex_command default
+\index_command default
+\paperfontsize default
+\spacing single
+\use_hyperref false
+\papersize default
+\use_geometry false
+\use_package amsmath 1
+\use_package amssymb 1
+\use_package cancel 1
+\use_package esint 1
+\use_package mathdots 1
+\use_package mathtools 1
+\use_package mhchem 1
+\use_package stackrel 1
+\use_package stmaryrd 1
+\use_package undertilde 1
+\cite_engine basic
+\cite_engine_type default
+\biblio_style plain
+\use_bibtopic false
+\use_indices false
+\paperorientation portrait
+\suppress_date false
+\justification true
+\use_refstyle 1
+\use_minted 0
+\index Index
+\shortcut idx
+\color #008000
+\end_index
+\secnumdepth 3
+\tocdepth 3
+\paragraph_separation indent
+\paragraph_indentation default
+\is_math_indent 0
+\math_numbering_side default
+\quotes_style french
+\dynamic_quotes 0
+\papercolumns 1
+\papersides 1
+\paperpagestyle default
+\tracking_changes false
+\output_changes false
+\html_math_output 0
+\html_css_as_file 0
+\html_be_strict false
+\end_header
+
+\begin_body
+
+\begin_layout Standard
+Una curva
+\begin_inset Formula $\gamma:I\to S$
+\end_inset
+
+ es una
+\series bold
+geodésica
+\series default
+ de la superficie regular
+\begin_inset Formula $S$
+\end_inset
+
+ si
+\begin_inset Formula $\gamma'$
+\end_inset
+
+ es paralelo.
+ Propiedades: Sea
+\begin_inset Formula $\gamma:I\to S$
+\end_inset
+
+ una geodésica:
+\end_layout
+
+\begin_layout Enumerate
+\begin_inset Formula $\Vert\gamma'(t)\Vert$
+\end_inset
+
+ es constante.
+\end_layout
+
+\begin_layout Enumerate
+\begin_inset Formula $\gamma$
+\end_inset
+
+ es constante si y sólo si existe
+\begin_inset Formula $t_{0}\in I$
+\end_inset
+
+ con
+\begin_inset Formula $\gamma'(t_{0})=0$
+\end_inset
+
+, por lo que toda geodésica no constante es una curva regular.
+\end_layout
+
+\begin_deeper
+\begin_layout Enumerate
+\begin_inset Argument item:1
+status open
+
+\begin_layout Plain Layout
+\begin_inset Formula $\implies]$
+\end_inset
+
+
+\end_layout
+
+\end_inset
+
+Obvio.
+\end_layout
+
+\begin_layout Enumerate
+\begin_inset Argument item:1
+status open
+
+\begin_layout Plain Layout
+\begin_inset Formula $\impliedby]$
+\end_inset
+
+
+\end_layout
+
+\end_inset
+
+Para
+\begin_inset Formula $t\in I$
+\end_inset
+
+,
+\begin_inset Formula $\Vert\gamma'(t)\Vert=\Vert\gamma'(t_{0})\Vert=0$
+\end_inset
+
+.
+\end_layout
+
+\end_deeper
+\begin_layout Enumerate
+La condición de geodésica se conserva por isometrías locales.
+\end_layout
+
+\begin_deeper
+\begin_layout Standard
+La derivada covariante se conserva por ser un concepto intrínseco.
+\end_layout
+
+\end_deeper
+\begin_layout Enumerate
+Si
+\begin_inset Formula $\gamma$
+\end_inset
+
+ no es constante, una reparametrización suya es una geodésica si y sólo
+ si el cambio de parámetro es afín.
+\end_layout
+
+\begin_deeper
+\begin_layout Standard
+Sea
+\begin_inset Formula $h:J\to I$
+\end_inset
+
+ un cambio de parámetro y
+\begin_inset Formula $\alpha:=\gamma\circ h$
+\end_inset
+
+, entonces
+\begin_inset Formula $\alpha'(s)=h'(s)\gamma'(h(s))$
+\end_inset
+
+ y
+\begin_inset Formula
+\begin{align*}
+\frac{D\alpha'}{ds}(s) & =(h''(s)\gamma'(h(s))+h'(s)^{2}\gamma''(h(s)))^{\top}=h''(s)\gamma'(h(s))+h'(s)^{2}\frac{D\gamma'}{dt}(h(s))=\\
+ & =h''(s)\gamma'(h(s)),
+\end{align*}
+
+\end_inset
+
+pues
+\begin_inset Formula $\frac{D\gamma'}{dt}(h(s))=0$
+\end_inset
+
+ por ser
+\begin_inset Formula $\gamma$
+\end_inset
+
+ una geodésica.
+ Como
+\begin_inset Formula $\gamma$
+\end_inset
+
+ no es constante,
+\begin_inset Formula $\gamma'(h(s))\neq0$
+\end_inset
+
+ en todo
+\begin_inset Formula $s$
+\end_inset
+
+, luego
+\begin_inset Formula $\frac{D\alpha'}{ds}(s)=h''(s)\gamma'(h(s))=0\iff h''(s)=0\iff\exists a,b\in\mathbb{R}:h(s)=as+b$
+\end_inset
+
+.
+\end_layout
+
+\end_deeper
+\begin_layout Standard
+Sean
+\begin_inset Formula $S$
+\end_inset
+
+ una superficie regular,
+\begin_inset Formula $\alpha:I\to S$
+\end_inset
+
+ una curva regular y
+\begin_inset Formula $N:I\to\mathbb{R}^{3}$
+\end_inset
+
+ un campo normal unitario a lo largo de
+\begin_inset Formula $\alpha$
+\end_inset
+
+, entonces
+\begin_inset Formula $\alpha$
+\end_inset
+
+ es una geodésica si y sólo si
+\begin_inset Formula
+\[
+\alpha''(t)+\langle\alpha'(t),N'(t)\rangle N(t)=0,
+\]
+
+\end_inset
+
+sustituyendo en la e.d.o.
+ extrínseca de los campos paralelos.
+\end_layout
+
+\begin_layout Standard
+Si
+\begin_inset Formula $(U,X)$
+\end_inset
+
+ es una parametrización de
+\begin_inset Formula $S$
+\end_inset
+
+,
+\begin_inset Formula $\alpha:I\to X(U)$
+\end_inset
+
+ es una curva y
+\begin_inset Formula $(u,v):=X^{-1}\circ\alpha:I\to U$
+\end_inset
+
+,
+\begin_inset Formula $\alpha$
+\end_inset
+
+ es una geodésica de
+\begin_inset Formula $S$
+\end_inset
+
+ si y sólo si
+\begin_inset Formula
+\[
+\left\{ \begin{aligned}u''+(u')^{2}\Gamma_{11}^{1}(u,v)+2u'v'\Gamma_{12}^{1}(u,v)+(v')^{2}\Gamma_{22}^{1}(u,v) & =0,\\
+v''+(u')^{2}\Gamma_{11}^{2}(u,v)+2u'v'\Gamma_{12}^{2}(u,v)+(v')^{2}\Gamma_{22}^{2}(u,v) & =0.
+\end{aligned}
+\right.
+\]
+
+\end_inset
+
+En efecto, como
+\begin_inset Formula $\alpha=X(u,v)$
+\end_inset
+
+,
+\begin_inset Formula $\alpha'=dX_{(u,v)}(u',v')=u'X_{u}(u,v)+v'X_{v}(u,v)$
+\end_inset
+
+, y solo hay que sustituir en la e.d.o.
+ intrínseca de los campos paralelos.
+\end_layout
+
+\begin_layout Section
+Geodésicas maximales
+\end_layout
+
+\begin_layout Standard
+\begin_inset ERT
+status open
+
+\begin_layout Plain Layout
+
+
+\backslash
+sremember{EDO}
+\end_layout
+
+\end_inset
+
+
+\end_layout
+
+\begin_layout Standard
+
+\series bold
+Teorema de Picard en un abierto:
+\series default
+ Sean
+\begin_inset Formula $\Omega\subseteq\mathbb{R}\times\mathbb{R}^{n}$
+\end_inset
+
+ abierto y
+\begin_inset Formula $f:\Omega\to\mathbb{R}^{n}$
+\end_inset
+
+ continua y localmente lipschitziana respecto a la segunda variable, para
+
+\begin_inset Formula $(t_{0},x_{0})\in\Omega$
+\end_inset
+
+ existe
+\begin_inset Formula $K:=[t_{0}-\alpha,t_{0}+\alpha]\times\overline{B}(x_{0},b)\subseteq\Omega$
+\end_inset
+
+ tal que
+\begin_inset Formula
+\[
+\left\{ \begin{aligned}\dot{x} & =f(t,x)\\
+x(t_{0}) & =x_{0}
+\end{aligned}
+\right.
+\]
+
+\end_inset
+
+tiene solución única definida en
+\begin_inset Formula $[t_{0}-\alpha,t_{0}+\alpha]$
+\end_inset
+
+ con gráfica contenida en
+\begin_inset Formula $K$
+\end_inset
+
+.
+\end_layout
+
+\begin_layout Standard
+[...] Sea
+\begin_inset Formula $\Omega\subseteq\mathbb{R}\times\mathbb{R}^{n}$
+\end_inset
+
+ abierto, si para cada
+\begin_inset Formula $(t_{0},x_{0})\in\Omega$
+\end_inset
+
+ existe un intervalo en que el problema de Cauchy
+\begin_inset Formula
+\[
+\left\{ \begin{aligned}\dot{x} & =f(t,x)\\
+x(t_{0}) & =x_{0}
+\end{aligned}
+\right.
+\]
+
+\end_inset
+
+tiene solución única, entonces para cualesquiera soluciones
+\begin_inset Formula $x$
+\end_inset
+
+ e
+\begin_inset Formula $y$
+\end_inset
+
+ de
+\begin_inset Formula $\dot{x}=f(t,x)$
+\end_inset
+
+ definidas respectivamente en
+\begin_inset Formula $I_{x}$
+\end_inset
+
+ e
+\begin_inset Formula $I_{y}$
+\end_inset
+
+, si ambas coinciden en un
+\begin_inset Formula $\xi\in I_{x}\cap I_{y}$
+\end_inset
+
+, coinciden en toda la intersección.
+\end_layout
+
+\begin_layout Standard
+\begin_inset ERT
+status open
+
+\begin_layout Plain Layout
+
+
+\backslash
+eremember
+\end_layout
+
+\end_inset
+
+
+\end_layout
+
+\begin_layout Standard
+Dados un abierto
+\begin_inset Formula $\Omega\subseteq\mathbb{R}^{m}$
+\end_inset
+
+ y
+\begin_inset Formula $f:\Omega\to\mathbb{R}^{n}$
+\end_inset
+
+ diferenciable,
+\begin_inset Formula $f$
+\end_inset
+
+ es localmente lipschitziana.
+ En efecto, para
+\begin_inset Formula $x\in\Omega$
+\end_inset
+
+ existe
+\begin_inset Formula $\varepsilon$
+\end_inset
+
+ tal que
+\begin_inset Formula $\overline{B}(x,\varepsilon)\subseteq\Omega$
+\end_inset
+
+, y al ser
+\begin_inset Formula $f'$
+\end_inset
+
+ continua,
+\begin_inset Formula $(f')(\overline{B}(x,\varepsilon))$
+\end_inset
+
+ está acotada por un cierto
+\begin_inset Formula $M$
+\end_inset
+
+ y, para
+\begin_inset Formula $a,b\in B(x,\varepsilon)$
+\end_inset
+
+,
+\begin_inset Formula $\Vert f(a)-f(b)\Vert\leq M\Vert a-b\Vert$
+\end_inset
+
+.
+\end_layout
+
+\begin_layout Standard
+Como
+\series bold
+teorema
+\series default
+, sean
+\begin_inset Formula $S$
+\end_inset
+
+ es una superficie regular,
+\begin_inset Formula $p\in S$
+\end_inset
+
+ y
+\begin_inset Formula $v\in T_{p}S$
+\end_inset
+
+, existe una única geodésica
+\begin_inset Formula $\gamma_{v}:I_{v}\to S$
+\end_inset
+
+ tal que
+\begin_inset Formula $0\in I_{v}$
+\end_inset
+
+,
+\begin_inset Formula $\gamma_{v}(0)=p$
+\end_inset
+
+,
+\begin_inset Formula $\gamma'_{v}(0)=v$
+\end_inset
+
+ y cualquier otra geodésica que cumpla estas condiciones es una restricción
+ de esta a un subintervalo, y llamamos
+\series bold
+geodésica maximal
+\series default
+ con
+\series bold
+condiciones iniciales
+\series default
+
+\begin_inset Formula $p$
+\end_inset
+
+ y
+\begin_inset Formula $v$
+\end_inset
+
+ a
+\begin_inset Formula $\gamma_{v}$
+\end_inset
+
+ e
+\series bold
+intervalo maximal de existencia
+\series default
+ a
+\begin_inset Formula $I_{v}$
+\end_inset
+
+.
+
+\end_layout
+
+\begin_layout Standard
+
+\series bold
+Demostración:
+\series default
+ Sea
+\begin_inset Formula ${\cal J}_{p,v}:=\{(I,\alpha):\alpha:I\to S\text{ geodésica},0\in I,\alpha(0)=p,\alpha'(0)=v\}$
+\end_inset
+
+.
+ Sean
+\begin_inset Formula $(X,U)$
+\end_inset
+
+ una carta local de
+\begin_inset Formula $S$
+\end_inset
+
+ en
+\begin_inset Formula $p$
+\end_inset
+
+,
+\begin_inset Formula $(u_{0},v_{0}):=X^{-1}(p)$
+\end_inset
+
+ y
+\begin_inset Formula $a,b\in\mathbb{R}$
+\end_inset
+
+ con
+\begin_inset Formula $v=aX_{u}(u_{0},v_{0})+bX_{u}(u_{0},v_{0})$
+\end_inset
+
+, por el teorema de Picard, existe una solución
+\begin_inset Formula $(u,v):(-\varepsilon,\varepsilon)\to U$
+\end_inset
+
+ de la e.d.o.
+ intrínseca de los campos paralelos con
+\begin_inset Formula $u(0)=u_{0}$
+\end_inset
+
+,
+\begin_inset Formula $v(0)=v_{0}$
+\end_inset
+
+,
+\begin_inset Formula $u'(0)=a$
+\end_inset
+
+ y
+\begin_inset Formula $v'(0)=b$
+\end_inset
+
+, y entonces
+\begin_inset Formula $\alpha(t):=X(u(t),v(t))$
+\end_inset
+
+ es una geodésica con
+\begin_inset Formula $\alpha(0)=X(u_{0},v_{0})=p$
+\end_inset
+
+ y
+\begin_inset Formula $\alpha'(0)=dX_{(u_{0},v_{0})}(a,b)=aX_{u}(u_{0},v_{0})+bX_{v}(u_{0},v_{0})=v$
+\end_inset
+
+, de modo que
+\begin_inset Formula $\alpha\in{\cal J}_{p,v}\neq\emptyset$
+\end_inset
+
+.
+\end_layout
+
+\begin_layout Standard
+Sean ahora
+\begin_inset Formula $(I_{1},\alpha_{1}),(I_{2},\alpha_{2})\in{\cal J}_{p,v}$
+\end_inset
+
+, y queremos ver que
+\begin_inset Formula $\alpha_{1}(t)=\alpha_{2}(t)$
+\end_inset
+
+ para todo
+\begin_inset Formula $t\in I_{1}\cap I_{2}$
+\end_inset
+
+.
+ Como
+\begin_inset Formula $0\in I_{1}\cap I_{2}$
+\end_inset
+
+ e
+\begin_inset Formula $I_{1}$
+\end_inset
+
+ e
+\begin_inset Formula $I_{2}$
+\end_inset
+
+ son abiertos conexos,
+\begin_inset Formula $I_{1}\cap I_{2}$
+\end_inset
+
+ es abierto y, por el teorema del peine, también conexo, luego es un intervalo.
+ Sea
+\begin_inset Formula $A:=\{t\in I_{1}\cap I_{2}:\alpha_{1}(t)=\alpha_{2}(t),\alpha'_{1}(t)=\alpha'_{2}(t)\}$
+\end_inset
+
+, y queremos ver que
+\begin_inset Formula $A$
+\end_inset
+
+ es abierto y cerrado en
+\begin_inset Formula $I_{1}\cap I_{2}$
+\end_inset
+
+ y no vacío y por tanto
+\begin_inset Formula $A=I_{1}\cap I_{2}$
+\end_inset
+
+.
+ Claramente es no vacío, pues
+\begin_inset Formula $\alpha_{1}(0)=\alpha_{2}(0)=p$
+\end_inset
+
+ y
+\begin_inset Formula $\alpha'_{1}(0)=\alpha'_{2}(0)=v$
+\end_inset
+
+, y es cerrado por ser la anti-imagen del 0 por la función continua
+\begin_inset Formula $F(t):=\Vert\alpha_{1}(t)-\alpha_{2}(t)\Vert+\Vert\alpha'_{1}(t)+\alpha'_{2}(t)\Vert$
+\end_inset
+
+.
+\end_layout
+
+\begin_layout Standard
+Sean ahora
+\begin_inset Formula $t_{0}\in A$
+\end_inset
+
+ y
+\begin_inset Formula $(X,U)$
+\end_inset
+
+ una parametrización de
+\begin_inset Formula $S$
+\end_inset
+
+ en
+\begin_inset Formula $\alpha_{1}(t_{0})=\alpha_{2}(t_{0})$
+\end_inset
+
+, existen
+\begin_inset Formula $\varepsilon_{1}>0$
+\end_inset
+
+ tal que para
+\begin_inset Formula $t\in(t_{0}-\varepsilon_{1},t_{0}+\varepsilon_{1})$
+\end_inset
+
+ es
+\begin_inset Formula $\alpha_{1}(t)\in X(U)$
+\end_inset
+
+ y
+\begin_inset Formula $\varepsilon_{2}>0$
+\end_inset
+
+ tal que para
+\begin_inset Formula $t\in(t_{0}-\varepsilon_{2},t_{0}+\varepsilon_{2})$
+\end_inset
+
+ es
+\begin_inset Formula $\alpha_{2}(t)\in X(U)$
+\end_inset
+
+, y si
+\begin_inset Formula $\varepsilon:=\min\{\varepsilon_{1},\varepsilon_{2}\}$
+\end_inset
+
+,
+\begin_inset Formula $(u_{1},v_{1}):=X^{-1}\circ\alpha_{1}$
+\end_inset
+
+ y
+\begin_inset Formula $(u_{2},v_{2}):=X^{-1}\circ\alpha_{2}$
+\end_inset
+
+, entonces
+\begin_inset Formula $(u_{1},v_{1})$
+\end_inset
+
+ y
+\begin_inset Formula $(u_{2},v_{2})$
+\end_inset
+
+ son soluciones de la e.d.o.
+ intrínseca de las geodésicas con las mismas condiciones iniciales en
+\begin_inset Formula $t_{0}$
+\end_inset
+
+.
+ Por el teorema de Picard, la e.d.o.
+ tiene solución única local para cualesquiera
+\begin_inset Formula $(u,v)(t_{0})\in U$
+\end_inset
+
+ y
+\begin_inset Formula $(u',v')(t_{0})\in\mathbb{R}^{2}$
+\end_inset
+
+, por lo que
+\begin_inset Formula $(u_{1},v_{1})$
+\end_inset
+
+ y
+\begin_inset Formula $(u_{2},v_{2})$
+\end_inset
+
+ coinciden en todo
+\begin_inset Formula $(t_{0}-\varepsilon,t_{0}+\varepsilon)$
+\end_inset
+
+ y
+\begin_inset Formula $A$
+\end_inset
+
+ es abierto.
+\end_layout
+
+\begin_layout Standard
+Así,
+\begin_inset Formula $A=I_{1}\cap I_{2}$
+\end_inset
+
+.
+ Sea entonces
+\begin_inset Formula $I_{v}:=\bigcup_{(I,\alpha)\in{\cal J}_{p,v}}I$
+\end_inset
+
+,
+\begin_inset Formula $I_{v}$
+\end_inset
+
+ es un intervalo abierto por ser unión de intervalos abiertos que contienen
+ al 0, y definiendo
+\begin_inset Formula $\gamma_{v}:I_{v}\to S$
+\end_inset
+
+ como
+\begin_inset Formula $\gamma_{v}(t)=\alpha(t)$
+\end_inset
+
+ para
+\begin_inset Formula $(I,\alpha)\in{\cal J}_{p,v}$
+\end_inset
+
+ con
+\begin_inset Formula $t\in I$
+\end_inset
+
+, entonces
+\begin_inset Formula $\gamma_{v}$
+\end_inset
+
+ está bien definido por lo anterior y cumple las propiedades.
+\end_layout
+
+\begin_layout Section
+Ecuaciones diferenciales lineales
+\end_layout
+
+\begin_layout Standard
+\begin_inset ERT
+status open
+
+\begin_layout Plain Layout
+
+
+\backslash
+sremember{EDO}
+\end_layout
+
+\end_inset
+
+
+\end_layout
+
+\begin_layout Standard
+\begin_inset Formula $T\in{\cal L}(\mathbb{R}^{n})$
+\end_inset
+
+ [...], el problema de Cauchy
+\begin_inset Formula
+\[
+\left\{ \begin{aligned}\dot{x} & =Tx\\
+x(t_{0}) & =x_{0}
+\end{aligned}
+\right.
+\]
+
+\end_inset
+
+tiene solución única definida en todo
+\begin_inset Formula $\mathbb{R}$
+\end_inset
+
+ y dada por
+\begin_inset Formula $x(t)=e^{(t-t_{0})T}x_{0}$
+\end_inset
+
+.
+ [...]
+\end_layout
+
+\begin_layout Standard
+
+\series bold
+Cálculo de
+\begin_inset Formula $e^{At}$
+\end_inset
+
+
+\series default
+ [...] Si el polinomio característico de
+\begin_inset Formula $T\in{\cal L}(E)$
+\end_inset
+
+, con
+\begin_inset Formula $E$
+\end_inset
+
+ real o complejo, es [...]
+\begin_inset Formula $\prod_{k=1}^{p}(t-\lambda_{k})^{n_{k}}$
+\end_inset
+
+, [...]
+\begin_inset Formula $E(T,\lambda_{k}):=\ker(T-\lambda_{k}I)^{n_{k}}$
+\end_inset
+
+, y [...]
+\begin_inset Formula $E=E(T,\lambda_{1})\oplus\dots\oplus E(T,\lambda_{p})$
+\end_inset
+
+ [...].
+ [...]
+\end_layout
+
+\begin_layout Enumerate
+Hallar los valores propios
+\begin_inset Formula $\lambda_{1},\dots,\lambda_{r},a_{1}+ib_{1},a_{1}-ib_{1},\dots,a_{s}+ib_{s},a_{s}-ib_{s}$
+\end_inset
+
+ [
+\begin_inset Formula $\lambda_{i},a_{i},b_{i}\in\mathbb{R}$
+\end_inset
+
+] de
+\begin_inset Formula $A_{\mathbb{C}}$
+\end_inset
+
+.
+\end_layout
+
+\begin_layout Enumerate
+Hallar bases
+\begin_inset Formula $(w_{k1},\dots,w_{kp_{k}})$
+\end_inset
+
+ de
+\begin_inset Formula $\mathbb{R}^{n}(A,\lambda_{k})$
+\end_inset
+
+ y
+\begin_inset Formula $(u_{k1}+iv_{k1},\dots,u_{kq_{k}}+v_{kq_{k}})$
+\end_inset
+
+ de
+\begin_inset Formula $\mathbb{C}^{n}(A_{\mathbb{C}},a_{k}+ib_{k})$
+\end_inset
+
+.
+\end_layout
+
+\begin_layout Enumerate
+Respecto de la base
+\begin_inset ERT
+status open
+
+\begin_layout Plain Layout
+
+{
+\end_layout
+
+\end_inset
+
+
+\begin_inset Formula
+\begin{align*}
+{\cal B}:= & (w_{11},\dots,w_{1p_{1}},\dots,w_{r1},\dots,w_{rp_{r}},\\
+ & \,v_{11},u_{11},\dots,v_{1q_{1}},u_{1q_{1}},\dots,v_{s1},u_{s1},\dots,v_{sq_{s}},u_{sq_{s}}),
+\end{align*}
+
+\end_inset
+
+
+\begin_inset ERT
+status open
+
+\begin_layout Plain Layout
+
+}
+\end_layout
+
+\end_inset
+
+
+\end_layout
+
+\begin_layout Standard
+\begin_inset ERT
+status open
+
+\begin_layout Plain Layout
+
+
+\backslash
+eremember
+\end_layout
+
+\end_inset
+
+
+\end_layout
+
+\begin_layout Standard
+\begin_inset ERT
+status open
+
+\begin_layout Plain Layout
+
+
+\backslash
+sremember{EDO}
+\end_layout
+
+\end_inset
+
+
+\end_layout
+
+\begin_layout Enumerate
+\begin_inset Argument item:1
+status open
+
+\begin_layout Plain Layout
+
+\end_layout
+
+\end_inset
+
+la matriz semisimple es
+\begin_inset Formula
+\[
+S_{0}:=\begin{pmatrix}\boxed{D_{1}}\\
+ & \ddots\\
+ & & \boxed{D_{r}}\\
+ & & & \boxed{M_{1}}\\
+ & & & & \ddots\\
+ & & & & & \boxed{M_{s}}
+\end{pmatrix},
+\]
+
+\end_inset
+
+donde
+\begin_inset ERT
+status open
+
+\begin_layout Plain Layout
+
+{
+\end_layout
+
+\end_inset
+
+
+\begin_inset Formula
+\begin{align*}
+D_{k} & =\begin{pmatrix}\lambda_{k}\\
+ & \ddots\\
+ & & \lambda_{k}
+\end{pmatrix}, & M_{k} & :=\begin{pmatrix}a_{k} & -b_{k}\\
+b_{k} & a_{k}\\
+ & & \ddots\\
+ & & & a_{k} & -b_{k}\\
+ & & & b_{k} & a_{k}
+\end{pmatrix}.
+\end{align*}
+
+\end_inset
+
+
+\begin_inset ERT
+status open
+
+\begin_layout Plain Layout
+
+}
+\end_layout
+
+\end_inset
+
+
+\end_layout
+
+\begin_layout Enumerate
+\begin_inset Argument item:1
+status open
+
+\begin_layout Plain Layout
+4.
+\end_layout
+
+\end_inset
+
+Sea
+\begin_inset Formula $P:=M_{{\cal CB}}$
+\end_inset
+
+, entonces la parte semisimple es
+\begin_inset Formula $S:=PS_{0}P^{-1}$
+\end_inset
+
+ y la nilpotente es
+\begin_inset Formula $N:=A-S$
+\end_inset
+
+.
+\end_layout
+
+\begin_layout Enumerate
+\begin_inset Argument item:1
+status open
+
+\begin_layout Plain Layout
+5.
+\end_layout
+
+\end_inset
+
+Finalmente,
+\begin_inset Formula
+\[
+e^{At}=Pe^{S_{0}t}P^{-1}\sum_{k=1}^{n}\frac{N^{k}t^{k}}{k!}.
+\]
+
+\end_inset
+
+
+\end_layout
+
+\begin_layout Standard
+[...] Sea
+\begin_inset Formula $E$
+\end_inset
+
+ un
+\begin_inset Formula $\mathbb{R}$
+\end_inset
+
+-espacio vectorial y
+\begin_inset Formula $T\in{\cal L}(E)$
+\end_inset
+
+, existe una base de
+\begin_inset Formula $E$
+\end_inset
+
+ respecto a la que
+\begin_inset Formula $T$
+\end_inset
+
+ tiene una matriz compuesta de bloques diagonales de la forma
+\begin_inset ERT
+status open
+
+\begin_layout Plain Layout
+
+{
+\end_layout
+
+\end_inset
+
+
+\begin_inset Formula
+\begin{align*}
+\begin{pmatrix}\lambda\\
+1 & \ddots\\
+ & \ddots & \ddots\\
+ & & 1 & \lambda
+\end{pmatrix} & & \text{ó} & & \begin{pmatrix}\boxed{D} & \ddots\\
+\boxed{I_{2}} & \ddots & \ddots\\
+ & & \boxed{I_{2}} & \boxed{D}
+\end{pmatrix}, & & D & =\begin{pmatrix}a & -b\\
+b & a
+\end{pmatrix}
+\end{align*}
+
+\end_inset
+
+
+\begin_inset ERT
+status open
+
+\begin_layout Plain Layout
+
+}
+\end_layout
+
+\end_inset
+
+Si
+\begin_inset Formula $A$
+\end_inset
+
+ es [de la primera forma][...], [...]
+\begin_inset Formula
+\[
+e^{tA}[...]=e^{t\lambda}\begin{pmatrix}1\\
+t & 1\\
+\frac{t^{2}}{2} & t & 1\\
+\vdots & \ddots & \ddots & \ddots\\
+\frac{t^{n-1}}{(n-1)!} & \cdots & \frac{t^{2}}{2} & t & 1
+\end{pmatrix}
+\]
+
+\end_inset
+
+
+\begin_inset ERT
+status open
+
+\begin_layout Plain Layout
+
+
+\backslash
+eremember
+\end_layout
+
+\end_inset
+
+
+\end_layout
+
+\begin_layout Standard
+\begin_inset ERT
+status open
+
+\begin_layout Plain Layout
+
+
+\backslash
+sremember{EDO}
+\end_layout
+
+\end_inset
+
+
+\end_layout
+
+\begin_layout Standard
+Si [es de la segunda][...],
+\begin_inset Formula
+\[
+[e^{tA}]=e^{at}\begin{pmatrix}\tilde{D}\\
+t\tilde{D} & \tilde{D}\\
+\frac{t^{2}}{2}\tilde{D} & t\tilde{D} & \tilde{D}\\
+\vdots & \ddots & \ddots & \ddots\\
+\frac{t^{m-1}}{(m-1)!}\tilde{D} & \cdots & \frac{t^{2}}{2}\tilde{D} & t\tilde{D} & \tilde{D}
+\end{pmatrix}
+\]
+
+\end_inset
+
+[...]
+\begin_inset Formula
+\[
+\tilde{D}=\begin{pmatrix}\cos(bt) & -\sin(bt)\\
+\sin(bt) & \cos(bt)
+\end{pmatrix}
+\]
+
+\end_inset
+
+[...] Llamamos
+\series bold
+base de soluciones
+\series default
+ de
+\begin_inset Formula $x^{(n)}+a_{1}(t)x^{(n-1)}+\dots+a_{1}(t)x=0$
+\end_inset
+
+ a una familia
+\begin_inset Formula $x_{1},\dots,x_{n}$
+\end_inset
+
+ de soluciones linealmente independiente.
+
+\end_layout
+
+\begin_layout Standard
+[...] Dada la ecuación homogénea
+\begin_inset Formula $x^{(n)}+a_{1}x^{(n-1)}+\dots+a_{n}x=0$
+\end_inset
+
+, una combinación lineal de soluciones de esta ecuación es también solución,
+ así como la derivada de una solución.
+\end_layout
+
+\begin_layout Standard
+La matriz de la ecuación vectorial asociada [con coeficientes
+\begin_inset Formula $(x,\dot{x},\dots,x^{(n-1)})$
+\end_inset
+
+] es
+\begin_inset Formula
+\[
+\begin{pmatrix} & 1\\
+ & & \ddots\\
+ & & & 1\\
+-a_{n} & \cdots & \cdots & -a_{1}
+\end{pmatrix},
+\]
+
+\end_inset
+
+que llamamos
+\series bold
+asociada
+\series default
+ al polinomio
+\begin_inset Formula $p(\lambda)=(-1)^{n}(\lambda^{n}+a_{1}\lambda^{n-1}+\dots+a_{n-1}\lambda+a_{n})$
+\end_inset
+
+, [...] el polinomio característico de la matriz.
+\end_layout
+
+\begin_layout Standard
+\begin_inset ERT
+status open
+
+\begin_layout Plain Layout
+
+
+\backslash
+eremember
+\end_layout
+
+\end_inset
+
+
+\end_layout
+
+\begin_layout Section
+Superficies geodésicamente completas
+\end_layout
+
+\begin_layout Standard
+Una superficie regular
+\begin_inset Formula $S$
+\end_inset
+
+ es
+\series bold
+geodésicamente completa
+\series default
+ en un
+\begin_inset Formula $p\in S$
+\end_inset
+
+ si para
+\begin_inset Formula $v\in T_{p}S$
+\end_inset
+
+ es
+\begin_inset Formula $I_{v}=\mathbb{R}$
+\end_inset
+
+ en
+\begin_inset Formula $p$
+\end_inset
+
+, y es geodésicamente completa si lo es en todo
+\begin_inset Formula $p\in S$
+\end_inset
+
+.
+\end_layout
+
+\begin_layout Enumerate
+Dado el plano
+\begin_inset Formula $S=\{p\in\mathbb{R}^{3}:\langle p,a\rangle=c\}$
+\end_inset
+
+, la geodésica maximal de
+\begin_inset Formula $S$
+\end_inset
+
+ con condiciones iniciales
+\begin_inset Formula $p\in S$
+\end_inset
+
+ y
+\begin_inset Formula $v\in T_{p}S$
+\end_inset
+
+ es la recta
+\begin_inset Formula $\gamma:\mathbb{R}\to S$
+\end_inset
+
+ dada por
+\begin_inset Formula $\gamma(t):=p+tv$
+\end_inset
+
+.
+\end_layout
+
+\begin_deeper
+\begin_layout Standard
+Tomando la normal
+\begin_inset Formula $N(p):=a$
+\end_inset
+
+, como
+\begin_inset Formula $N$
+\end_inset
+
+ es constante, debe ser
+\begin_inset Formula
+\[
+0=\gamma''(t)+\langle\gamma'(t),(N\circ\gamma)'(t))\rangle N(\gamma(t))=\gamma''(t),
+\]
+
+\end_inset
+
+de modo que
+\begin_inset Formula $\gamma$
+\end_inset
+
+ es de la forma
+\begin_inset Formula $\gamma(t)=a+bt$
+\end_inset
+
+, pero
+\begin_inset Formula $p=\gamma(0)=a$
+\end_inset
+
+ y
+\begin_inset Formula $v=\gamma'(0)=b$
+\end_inset
+
+.
+\end_layout
+
+\end_deeper
+\begin_layout Enumerate
+Dado
+\begin_inset Formula $r>0$
+\end_inset
+
+, la geodésica maximal de la esfera
+\begin_inset Formula $S:=\mathbb{S}^{2}(r)$
+\end_inset
+
+ con condiciones iniciales
+\begin_inset Formula $p\in S$
+\end_inset
+
+ y
+\begin_inset Formula $v\in T_{p}S\setminus0$
+\end_inset
+
+ es el círculo máximo
+\begin_inset Formula $\gamma:\mathbb{R}\to S$
+\end_inset
+
+ dado por
+\begin_inset Formula
+\[
+\gamma(t)=\cos\left(\frac{\Vert v\Vert}{r}t\right)p+\frac{r}{\Vert v\Vert}\sin\left(\frac{\Vert v\Vert}{r}t\right)v.
+\]
+
+\end_inset
+
+
+\end_layout
+
+\begin_deeper
+\begin_layout Standard
+Tomando la normal
+\begin_inset Formula $N(p):=\frac{p}{r}$
+\end_inset
+
+ y llamando
+\begin_inset Formula $N(t):=N(\gamma(t))$
+\end_inset
+
+,
+\begin_inset Formula $N(t)=\frac{\gamma(t)}{r}$
+\end_inset
+
+ y
+\begin_inset Formula $N'(t)=\frac{1}{r}\gamma'(t)$
+\end_inset
+
+, y debe ser
+\begin_inset Formula
+\[
+0=\gamma''(t)+\left\langle \gamma'(t),\frac{1}{r}\gamma'(t)\right\rangle \frac{1}{r}\gamma(t)=\gamma''(t)+\frac{1}{r^{2}}\Vert\gamma'(t)\Vert^{2}\gamma(t)\overset{\Vert\gamma'(t)\Vert=\Vert\gamma'(0)\Vert}{=}\gamma''(t)+\frac{\Vert v\Vert^{2}}{r^{2}}\gamma(t),
+\]
+
+\end_inset
+
+Si
+\begin_inset Formula $c:=\frac{\Vert v\Vert^{2}}{r^{2}}=0$
+\end_inset
+
+,
+\begin_inset Formula $v=0$
+\end_inset
+
+, y en otro caso, en cada coordenada, el polinomio asociado a la ecuación
+ lineal homogénea
+\begin_inset Formula $p(\lambda)=\lambda^{2}+c$
+\end_inset
+
+, los valores propios son
+\begin_inset Formula $\pm\sqrt{c}i$
+\end_inset
+
+ y una base de soluciones es pues
+\begin_inset Formula $\{\cos(\sqrt{c}t),\sin(\sqrt{c}t)\}$
+\end_inset
+
+.
+ Por tanto existen
+\begin_inset Formula $a_{i},b_{i}\in\mathbb{R}$
+\end_inset
+
+ con
+\begin_inset Formula $\gamma_{i}(t)=a_{i}\cos(\sqrt{c}t)+b_{i}\sin(\sqrt{c}t)$
+\end_inset
+
+, pero
+\begin_inset Formula
+\begin{align*}
+p_{i} & =\gamma_{i}(0)=a_{i}, & v_{i} & =\gamma'_{i}(0)=b_{i}\sqrt{c},
+\end{align*}
+
+\end_inset
+
+luego en resumen
+\begin_inset Formula $\gamma(t)=p\cos(\sqrt{c}t)+\frac{v}{\sqrt{C}}\sin(\sqrt{c}t)$
+\end_inset
+
+, y
+\begin_inset Formula $\sqrt{c}=\frac{\Vert v\Vert}{r}$
+\end_inset
+
+.
+\end_layout
+
+\end_deeper
+\begin_layout Enumerate
+Sean
+\begin_inset Formula $r>0$
+\end_inset
+
+,
+\begin_inset Formula $S:=\{(x,y,z)\in\mathbb{R}^{3}:x^{2}+y^{2}=r^{2}\}$
+\end_inset
+
+ un cilindro,
+\begin_inset Formula $p\in S$
+\end_inset
+
+ y
+\begin_inset Formula $v\in T_{p}S$
+\end_inset
+
+, la geodésica maximal de
+\begin_inset Formula $S$
+\end_inset
+
+ con condiciones iniciales
+\begin_inset Formula $p$
+\end_inset
+
+ y
+\begin_inset Formula $v$
+\end_inset
+
+ es la recta
+\begin_inset Formula $\gamma:\mathbb{R}\to S$
+\end_inset
+
+ dada por
+\begin_inset Formula
+\[
+\gamma(t):=p+tv
+\]
+
+\end_inset
+
+si
+\begin_inset Formula $v_{1}=v_{2}=0$
+\end_inset
+
+ o la hélice
+\begin_inset Formula $\gamma:\mathbb{R}\to S$
+\end_inset
+
+ dada por
+\begin_inset Formula
+\[
+\gamma(t):=\begin{pmatrix}{\displaystyle p_{1}\cos(ct)+\frac{v_{1}}{c}\sin(ct)}\\
+{\displaystyle p_{2}\cos(ct)+\frac{v_{2}}{c}\sin(ct)}\\
+p_{3}+tv_{3}
+\end{pmatrix}
+\]
+
+\end_inset
+
+en otro caso, donde
+\begin_inset Formula $c:=\frac{\sqrt{\Vert v\Vert^{2}-v_{3}^{2}}}{r}$
+\end_inset
+
+, que es una circunferencia horizontal si
+\begin_inset Formula $v_{3}=0$
+\end_inset
+
+.
+\end_layout
+
+\begin_deeper
+\begin_layout Standard
+Sea
+\begin_inset Formula $f(x,y,z)=x^{2}+y^{2}$
+\end_inset
+
+, como
+\begin_inset Formula $f'(x,y,z)=(2x,2y,0)$
+\end_inset
+
+, los puntos críticos de
+\begin_inset Formula $f$
+\end_inset
+
+ son aquellos con
+\begin_inset Formula $z=0$
+\end_inset
+
+, el único valor crítico es 0 y
+\begin_inset Formula $r^{2}$
+\end_inset
+
+ es un valor regular, de modo que
+\begin_inset Formula $S=\{f(x,y,z)=r^{2}\}$
+\end_inset
+
+ es una superficie de nivel con normal
+\begin_inset Formula
+\[
+N(x,y,z)=\frac{\nabla f}{\Vert\nabla f\Vert}=\frac{(2x,2y,0)}{2\sqrt{x^{2}+y^{2}}}=\frac{1}{r}(x,y,0).
+\]
+
+\end_inset
+
+Entonces, sean
+\begin_inset Formula $N(t):=N(\gamma(t))$
+\end_inset
+
+ y
+\begin_inset Formula $\gamma(t)=:(x(t),y(t),z(t))$
+\end_inset
+
+,
+\begin_inset Formula $N'(t)=\frac{1}{r}(x'(t),y'(t),0)$
+\end_inset
+
+ y
+\begin_inset Formula $\gamma$
+\end_inset
+
+ debe cumplir
+\begin_inset Formula
+\[
+\gamma''(t)+\langle\gamma'(t),N'(t)\rangle N(t)=\begin{pmatrix}x''(t)\\
+y''(t)\\
+z''(t)
+\end{pmatrix}+\frac{1}{r^{2}}(x'(t)^{2}+y'(t)^{2})\begin{pmatrix}x'(t)\\
+y'(t)\\
+0
+\end{pmatrix}=0.
+\]
+
+\end_inset
+
+Así,
+\begin_inset Formula $z''(t)=0$
+\end_inset
+
+ y por tanto
+\begin_inset Formula $z(t)=a+bt$
+\end_inset
+
+ para ciertos
+\begin_inset Formula $a,b\in\mathbb{R}$
+\end_inset
+
+, con
+\begin_inset Formula $p_{3}=z(0)=a$
+\end_inset
+
+ y
+\begin_inset Formula $v_{3}=z'(0)=b$
+\end_inset
+
+.
+ Si
+\begin_inset Formula $v_{1}=v_{2}=0$
+\end_inset
+
+ entonces
+\begin_inset Formula $x$
+\end_inset
+
+ es constante en
+\begin_inset Formula $p_{1}$
+\end_inset
+
+ e
+\begin_inset Formula $y$
+\end_inset
+
+ lo es en
+\begin_inset Formula $p_{2}$
+\end_inset
+
+.
+ En otro caso
+\begin_inset Formula $c>0$
+\end_inset
+
+, y como
+\begin_inset Formula $z'$
+\end_inset
+
+ es constante en
+\begin_inset Formula $v_{3}$
+\end_inset
+
+ y
+\begin_inset Formula $\Vert\gamma'\Vert$
+\end_inset
+
+ lo es en
+\begin_inset Formula $\Vert v\Vert$
+\end_inset
+
+, se tiene
+\begin_inset Formula
+\[
+x'(t)^{2}+y'(t)^{2}=\Vert\gamma'(t)\Vert^{2}-z'(t)^{2}=\Vert v\Vert^{2}-v_{3}^{2}
+\]
+
+\end_inset
+
+ y
+\begin_inset Formula $\frac{x'(t)^{2}+y'(t)^{2}}{r^{2}}=c^{2}$
+\end_inset
+
+, y queda
+\begin_inset Formula
+\[
+(x''(t),y''(t))+c^{2}(x'(t),y'(t))=0.
+\]
+
+\end_inset
+
+Para la coordenada
+\begin_inset Formula $x$
+\end_inset
+
+, el polinomio asociado es
+\begin_inset Formula $p(\lambda)=\lambda^{2}+c^{2}$
+\end_inset
+
+ y los valores propios son
+\begin_inset Formula $\pm ci$
+\end_inset
+
+, de modo que una base de soluciones es
+\begin_inset Formula $\{\cos(ct),\sin(ct)\}$
+\end_inset
+
+ y existen
+\begin_inset Formula $a,b\in\mathbb{R}$
+\end_inset
+
+ tales que
+\begin_inset Formula $x(t)=a\cos(ct)+b\sin(ct)$
+\end_inset
+
+, pero
+\begin_inset Formula
+\begin{align*}
+p_{1} & =x(0)=a, & v_{1} & =x'(0)=bc,
+\end{align*}
+
+\end_inset
+
+de modo que
+\begin_inset Formula $x(t)=p_{1}\cos(ct)+\frac{v_{1}}{c}\sin(ct)$
+\end_inset
+
+, y análogamente
+\begin_inset Formula $y(t)=p_{2}\cos(ct)+\frac{v_{2}}{c}\sin(ct)$
+\end_inset
+
+.
+\end_layout
+
+\end_deeper
+\begin_layout Standard
+Así, el plano, la esfera y el cilindro son geodésicamente completos; de
+ hecho toda superficie de nivel de una función
+\begin_inset Formula $f:\mathbb{R}^{3}\to\mathbb{R}$
+\end_inset
+
+ lo es.
+\end_layout
+
+\begin_layout Section
+Pregeodésicas
+\end_layout
+
+\begin_layout Standard
+\begin_inset ERT
+status open
+
+\begin_layout Plain Layout
+
+
+\backslash
+sremember{GCS}
+\end_layout
+
+\end_inset
+
+
+\end_layout
+
+\begin_layout Standard
+Sean
+\begin_inset Formula $S$
+\end_inset
+
+ una superficie regular orientada por
+\begin_inset Formula $N$
+\end_inset
+
+ y
+\begin_inset Formula $\alpha:I\to S$
+\end_inset
+
+ una curva, [...]
+\begin_inset Formula
+\[
+\alpha''(t)=\frac{D\alpha'}{dt}(t)+\langle\alpha''(t),N(\alpha(t))\rangle N(\alpha(t)).
+\]
+
+\end_inset
+
+
+\end_layout
+
+\begin_layout Standard
+Sea
+\begin_inset Formula $\alpha:I\to S$
+\end_inset
+
+ una curva parametrizada por [...] arco, el
+\series bold
+triedro de Darboux
+\series default
+ es la base [...]
+\begin_inset Formula $(\alpha'(s),J\alpha'(s):=\alpha'(s)\wedge N(\alpha(s)),N(\alpha(s))\rangle$
+\end_inset
+
+.
+ Entonces
+\begin_inset Formula
+\[
+\frac{D\alpha'}{ds}(s)=\kappa_{g}(s)J\alpha'(s),
+\]
+
+\end_inset
+
+donde
+\begin_inset Formula $\kappa_{g}:=\langle\alpha'',J\alpha'\rangle:I\to\mathbb{R}$
+\end_inset
+
+, es la
+\series bold
+curvatura geodésica
+\series default
+ de
+\begin_inset Formula $\alpha$
+\end_inset
+
+, cuyo signo depende de
+\begin_inset Formula $N$
+\end_inset
+
+[, y
+\begin_inset Formula $\kappa_{n}:=\langle\alpha'',N(\alpha)\rangle$
+\end_inset
+
+ es la
+\series bold
+curvatura normal
+\series default
+ de
+\begin_inset Formula $\alpha$
+\end_inset
+
+].
+\end_layout
+
+\begin_layout Standard
+\begin_inset ERT
+status open
+
+\begin_layout Plain Layout
+
+
+\backslash
+eremember
+\end_layout
+
+\end_inset
+
+
+\end_layout
+
+\begin_layout Standard
+Una curva
+\begin_inset Formula $\alpha:I\to S$
+\end_inset
+
+ p.p.a.
+ es una geodésica si y sólo si
+\begin_inset Formula $\kappa_{g}\equiv0$
+\end_inset
+
+, pues
+\begin_inset Formula $\frac{D\alpha'}{ds}(s)=0$
+\end_inset
+
+ si y sólo si
+\begin_inset Formula $\kappa_{g}(s)J\alpha'(s)=0$
+\end_inset
+
+, pero
+\begin_inset Formula $J\alpha'(s)\neq0$
+\end_inset
+
+.
+\end_layout
+
+\begin_layout Standard
+Si
+\begin_inset Formula $S$
+\end_inset
+
+ es una superficie regular,
+\begin_inset Formula $\alpha:I\to S$
+\end_inset
+
+ es una curva y
+\begin_inset Formula $h:J\to I$
+\end_inset
+
+ es un cambio de parámetro que conserva la orientación con
+\begin_inset Formula $\beta:=\alpha\circ h$
+\end_inset
+
+ p.p.a., la curvatura geodésica de
+\begin_inset Formula $\alpha$
+\end_inset
+
+ es
+\begin_inset Formula
+\[
+\kappa_{g}^{\alpha}(t):=\kappa_{g}^{\beta}(h^{-1}(t))=\frac{\langle\alpha''(t),J\alpha'(t)\rangle}{\Vert\alpha'(t)\Vert^{3}}.
+\]
+
+\end_inset
+
+
+\series bold
+Demostración:
+\series default
+
+\begin_inset Formula $1=\Vert\beta'(s)\Vert=h'(s)\Vert\alpha'(h(s))\Vert$
+\end_inset
+
+, luego
+\begin_inset Formula $h'(s)=\frac{1}{\Vert\alpha'(h(s))\Vert}$
+\end_inset
+
+ y para
+\begin_inset Formula $t\in I$
+\end_inset
+
+, sea
+\begin_inset Formula $s:=h^{-1}(t)$
+\end_inset
+
+,
+\begin_inset Formula
+\begin{align*}
+\kappa_{g}^{\alpha}(t) & =\kappa_{g}^{\beta}(s)=\langle\beta''(s),J\beta'(s)\rangle=\langle h''(s)\alpha'(h(s))+h'(s)^{2}\alpha''(h(s)),h'(s)J\alpha'(h(s))\rangle\\
+ & =h'(s)^{3}\langle\alpha''(h(s)),J\alpha'(h(s))\rangle=\frac{\langle\alpha''(t),J\alpha'(t)\rangle}{\Vert\alpha'(t)\Vert^{3}},
+\end{align*}
+
+\end_inset
+
+donde en la penúltima igualdad se usa que
+\begin_inset Formula $\langle\alpha'(h(s)),J\alpha'(h(s))\rangle=0$
+\end_inset
+
+.
+\end_layout
+
+\begin_layout Standard
+Una curva
+\begin_inset Formula $\alpha:I\to S$
+\end_inset
+
+ es una
+\series bold
+pregeodésica
+\series default
+ de
+\begin_inset Formula $S$
+\end_inset
+
+ si existe un cambio de parámetro
+\begin_inset Formula $h:J\to I$
+\end_inset
+
+ tal que
+\begin_inset Formula $\beta:=\alpha\circ h$
+\end_inset
+
+ es una geodésica de
+\begin_inset Formula $S$
+\end_inset
+
+, si y sólo si
+\begin_inset Formula $\kappa_{g}^{\alpha}\equiv0$
+\end_inset
+
+.
+\end_layout
+
+\begin_layout Itemize
+\begin_inset Argument item:1
+status open
+
+\begin_layout Plain Layout
+\begin_inset Formula $\implies]$
+\end_inset
+
+
+\end_layout
+
+\end_inset
+
+Sea
+\begin_inset Formula $h$
+\end_inset
+
+ un cambio de parámetro tal que
+\begin_inset Formula $\beta:=\alpha\circ h$
+\end_inset
+
+ es una geodésica, entonces
+\begin_inset Formula $\Vert\beta'\Vert$
+\end_inset
+
+ es constante en algún
+\begin_inset Formula $c>0$
+\end_inset
+
+, luego
+\begin_inset Formula $\gamma(s):=\beta(\frac{s}{c})$
+\end_inset
+
+ es una geodésica y es p.p.a.
+ al ser
+\begin_inset Formula $\Vert\gamma'(s)\Vert=\Vert\frac{1}{c}\beta'(s)\Vert=1$
+\end_inset
+
+.
+ Sea entonces
+\begin_inset Formula $\tilde{h}(s):=h(\frac{s}{c})$
+\end_inset
+
+, entonces
+\begin_inset Formula $\gamma=\alpha\circ\tilde{h}$
+\end_inset
+
+ y
+\begin_inset Formula $\kappa_{g}^{\alpha}(t)=\kappa_{g}^{\gamma}(\tilde{h}^{-1}(t))=0$
+\end_inset
+
+.
+\end_layout
+
+\begin_layout Itemize
+\begin_inset Argument item:1
+status open
+
+\begin_layout Plain Layout
+\begin_inset Formula $\impliedby]$
+\end_inset
+
+
+\end_layout
+
+\end_inset
+
+Sea
+\begin_inset Formula $\beta=\alpha\circ h$
+\end_inset
+
+ la reparametrización por arco de
+\begin_inset Formula $\alpha$
+\end_inset
+
+, como
+\begin_inset Formula $\kappa_{g}^{\alpha}(t)=\kappa_{g}^{\beta}(h^{-1}(t))$
+\end_inset
+
+,
+\begin_inset Formula $\kappa_{g}^{\beta}(s)=\kappa_{g}^{\alpha}(h(s))=0$
+\end_inset
+
+, luego
+\begin_inset Formula $\beta$
+\end_inset
+
+ es una geodésica y por tanto
+\begin_inset Formula $\alpha$
+\end_inset
+
+ es una pregeodésica.
+\end_layout
+
+\end_body
+\end_document