diff options
Diffstat (limited to 'aalg/n4.lyx')
| -rw-r--r-- | aalg/n4.lyx | 104 | 
1 files changed, 52 insertions, 52 deletions
| diff --git a/aalg/n4.lyx b/aalg/n4.lyx index 96b456a..c6a789e 100644 --- a/aalg/n4.lyx +++ b/aalg/n4.lyx @@ -202,7 +202,7 @@ Sean  \end_inset   y  -\begin_inset Formula $A:=(a_{ij}:=\langle e_{i},e_{j}\rangle)\in{\cal M}_{n}(\mathbb{K})$ +\begin_inset Formula $A\coloneqq (a_{ij}\coloneqq \langle e_{i},e_{j}\rangle)\in{\cal M}_{n}(\mathbb{K})$  \end_inset  , entonces si  @@ -277,7 +277,7 @@ forma cuadrática  \end_inset   dada por  -\begin_inset Formula $\langle u,v\rangle:=\frac{1}{2}(q(u+v)-q(u)-q(v))$ +\begin_inset Formula $\langle u,v\rangle\coloneqq \frac{1}{2}(q(u+v)-q(u)-q(v))$  \end_inset   es una forma bilineal simétrica en  @@ -315,7 +315,7 @@ Llamamos   que asocia a cada forma cuadrática su forma polar es biyectiva y su inversa   asocia a cada forma bilineal simétrica la forma cuadrática dada por  -\begin_inset Formula $q(u):=\langle u,u\rangle$ +\begin_inset Formula $q(u)\coloneqq \langle u,u\rangle$  \end_inset  . @@ -328,7 +328,7 @@ Demostración:  \end_inset   y  -\begin_inset Formula $q(u):=\langle u,u\rangle$ +\begin_inset Formula $q(u)\coloneqq \langle u,u\rangle$  \end_inset  , es claro que  @@ -369,7 +369,7 @@ Sean ahora  \begin_layout Standard  Esta correspondencia permite asociar una matriz  -\begin_inset Formula $A:=(a_{ij})\in{\cal M}_{n}(\mathbb{K})$ +\begin_inset Formula $A\coloneqq (a_{ij})\in{\cal M}_{n}(\mathbb{K})$  \end_inset   a una forma cuadrática  @@ -409,11 +409,11 @@ Sean  \end_inset   un espacio bilineal,  -\begin_inset Formula ${\cal C}:=(u_{1},\dots,u_{n})$ +\begin_inset Formula ${\cal C}\coloneqq (u_{1},\dots,u_{n})$  \end_inset   y  -\begin_inset Formula ${\cal B}:=(v_{1},\dots,v_{n})$ +\begin_inset Formula ${\cal B}\coloneqq (v_{1},\dots,v_{n})$  \end_inset   bases de  @@ -425,11 +425,11 @@ Sean  \end_inset   tiene matrices respectivas  -\begin_inset Formula $A:=(a_{ij})$ +\begin_inset Formula $A\coloneqq (a_{ij})$  \end_inset   y  -\begin_inset Formula $B:=(b_{ij})$ +\begin_inset Formula $B\coloneqq (b_{ij})$  \end_inset  ,  @@ -751,7 +751,7 @@ A\sim A'\iff\langle\cdot\rangle\sim\langle\cdot\rangle'\iff(V,\langle\cdot\rangl  \end_inset   tienen la misma matriz asociada  -\begin_inset Formula $C:=(c_{ij})$ +\begin_inset Formula $C\coloneqq (c_{ij})$  \end_inset  , entonces  @@ -775,11 +775,11 @@ A\sim A'\iff\langle\cdot\rangle\sim\langle\cdot\rangle'\iff(V,\langle\cdot\rangl  \end_inset   una isometría y  -\begin_inset Formula ${\cal B}:=(v_{1},\dots,v_{n})$ +\begin_inset Formula ${\cal B}\coloneqq (v_{1},\dots,v_{n})$  \end_inset  , entonces  -\begin_inset Formula ${\cal B}':=(f(v_{1}),\dots,f(v_{n}))$ +\begin_inset Formula ${\cal B}'\coloneqq (f(v_{1}),\dots,f(v_{n}))$  \end_inset   es una base de  @@ -791,7 +791,7 @@ A\sim A'\iff\langle\cdot\rangle\sim\langle\cdot\rangle'\iff(V,\langle\cdot\rangl  \end_inset  , ambas formas bilineales tienen la misma matriz  -\begin_inset Formula $C:=(c_{ij})$ +\begin_inset Formula $C\coloneqq (c_{ij})$  \end_inset  , y entonces  @@ -827,7 +827,7 @@ subespacio ortogonal  \end_inset   al subespacio  -\begin_inset Formula $E^{\bot}:=\{v\in V\mid \forall e\in E,\langle v,e\rangle=0\}$ +\begin_inset Formula $E^{\bot}\coloneqq \{v\in V\mid \forall e\in E,\langle v,e\rangle=0\}$  \end_inset  . @@ -865,7 +865,7 @@ radical  \end_inset   a  -\begin_inset Formula $Rad(V):=V^{\bot}$ +\begin_inset Formula $Rad(V)\coloneqq V^{\bot}$  \end_inset  . @@ -1022,7 +1022,7 @@ Demostración:  .   Sea  -\begin_inset Formula ${\cal B}:=(e_{1},\dots,e_{m})$ +\begin_inset Formula ${\cal B}\coloneqq (e_{1},\dots,e_{m})$  \end_inset   una base de  @@ -1062,12 +1062,12 @@ x_{m}  \end_inset  tiene solución única y  -\begin_inset Formula $x:=\sum x_{i}e_{i}\in E$ +\begin_inset Formula $x\coloneqq \sum x_{i}e_{i}\in E$  \end_inset  .   Sea  -\begin_inset Formula $v:=u-x$ +\begin_inset Formula $v\coloneqq u-x$  \end_inset  ,  @@ -1147,7 +1147,7 @@ Demostración:  \end_inset   no isótropo y, si  -\begin_inset Formula $E:=<e_{1}>$ +\begin_inset Formula $E\coloneqq <e_{1}>$  \end_inset  ,  @@ -1237,7 +1237,7 @@ Si  \end_inset  , basta tomar  -\begin_inset Formula $P:=E_{1}^{t}\cdots E_{k}^{t}$ +\begin_inset Formula $P\coloneqq E_{1}^{t}\cdots E_{k}^{t}$  \end_inset  . @@ -1954,11 +1954,11 @@ Reescribir  \end_inset  Hacer el cambio  -\begin_inset Formula $x'_{1}:=x_{1}+\frac{p(x_{2},\dots,x_{n})}{2a_{11}}$ +\begin_inset Formula $x'_{1}\coloneqq x_{1}+\frac{p(x_{2},\dots,x_{n})}{2a_{11}}$  \end_inset   y  -\begin_inset Formula $x'_{j}:=x_{j},j\neq1$ +\begin_inset Formula $x'_{j}\coloneqq x_{j},j\neq1$  \end_inset @@ -2040,7 +2040,7 @@ Demostración:  \end_inset   y  -\begin_inset Formula $U:=V_{(\alpha_{1})}\oplus\dots\oplus V_{(\alpha_{m})}$ +\begin_inset Formula $U\coloneqq V_{(\alpha_{1})}\oplus\dots\oplus V_{(\alpha_{m})}$  \end_inset  , siendo  @@ -2165,7 +2165,7 @@ rango  \end_inset   a  -\begin_inset Formula $\text{rg}(\langle\cdot\rangle):=\text{rg}(A)=\dim(V)-\dim Rad(\langle\cdot\rangle)$ +\begin_inset Formula $\text{rg}(\langle\cdot\rangle)\coloneqq \text{rg}(A)=\dim(V)-\dim Rad(\langle\cdot\rangle)$  \end_inset  . @@ -2239,7 +2239,7 @@ Demostración:  \end_inset   con  -\begin_inset Formula $\lambda:=|P|$ +\begin_inset Formula $\lambda\coloneqq |P|$  \end_inset  . @@ -2309,11 +2309,11 @@ Demostración:  \end_inset   es  -\begin_inset Formula $D:=\text{diag}(d_{1},\dots,d_{m},0,\dots,0)$ +\begin_inset Formula $D\coloneqq \text{diag}(d_{1},\dots,d_{m},0,\dots,0)$  \end_inset  , siendo  -\begin_inset Formula $m:=\text{rg}(\langle\cdot\rangle)$ +\begin_inset Formula $m\coloneqq \text{rg}(\langle\cdot\rangle)$  \end_inset  , con  @@ -2434,7 +2434,7 @@ positivos  .   A los elementos de  -\begin_inset Formula $-P:=\{-x\}_{x\in P}$ +\begin_inset Formula $-P\coloneqq \{-x\}_{x\in P}$  \end_inset   los llamamos  @@ -2568,7 +2568,7 @@ Las mismas definiciones se aplican a una forma cuadrática.  \end_inset  ,  -\begin_inset Formula $A:=(a_{ij})$ +\begin_inset Formula $A\coloneqq (a_{ij})$  \end_inset   la matriz de  @@ -2576,7 +2576,7 @@ Las mismas definiciones se aplican a una forma cuadrática.  \end_inset   en cierta base  -\begin_inset Formula ${\cal C}:=(e_{1},\dots,e_{n})$ +\begin_inset Formula ${\cal C}\coloneqq (e_{1},\dots,e_{n})$  \end_inset   y definimos @@ -2608,7 +2608,7 @@ a_{21} & a_{22}  Demostración:  \series default   Sea  -\begin_inset Formula $E:=<e_{1},\dots,e_{n-1}>$ +\begin_inset Formula $E\coloneqq <e_{1},\dots,e_{n-1}>$  \end_inset  , la matriz de  @@ -2675,7 +2675,7 @@ Tenemos  .   Sea  -\begin_inset Formula $\lambda:=|P|$ +\begin_inset Formula $\lambda\coloneqq |P|$  \end_inset  ,  @@ -2691,7 +2691,7 @@ Tenemos  \end_inset   en la base  -\begin_inset Formula $(e_{1},\dots,e_{n-1},w:=\lambda v)$ +\begin_inset Formula $(e_{1},\dots,e_{n-1},w\coloneqq \lambda v)$  \end_inset   es como  @@ -2773,11 +2773,11 @@ teorema de Sylvester   es definida positiva, definida negativa y nula, respectivamente.   Además,  -\begin_inset Formula $p:=\dim(V_{+})$ +\begin_inset Formula $p\coloneqq \dim(V_{+})$  \end_inset   y  -\begin_inset Formula $m:=\dim(V_{-})$ +\begin_inset Formula $m\coloneqq \dim(V_{-})$  \end_inset   son únicos, y al par  @@ -2798,7 +2798,7 @@ signatura  Demostración:  \series default   Sea  -\begin_inset Formula ${\cal C}:=(e_{1},\dots,e_{n})$ +\begin_inset Formula ${\cal C}\coloneqq (e_{1},\dots,e_{n})$  \end_inset   una base de  @@ -3095,7 +3095,7 @@ Si  \end_inset  , y entonces definimos  -\begin_inset Formula $t(w):=-w$ +\begin_inset Formula $t(w)\coloneqq -w$  \end_inset   y vemos que  @@ -3111,11 +3111,11 @@ Como  teorema  \series default  , si  -\begin_inset Formula $D_{1}:=\text{diag}(a_{1},\dots,a_{r},b_{r+1},\dots,b_{n})$ +\begin_inset Formula $D_{1}\coloneqq \text{diag}(a_{1},\dots,a_{r},b_{r+1},\dots,b_{n})$  \end_inset   y  -\begin_inset Formula $D_{2}:=\text{diag}(a_{1},\dots,a_{r},c_{r+1},\dots,c_{n})$ +\begin_inset Formula $D_{2}\coloneqq \text{diag}(a_{1},\dots,a_{r},c_{r+1},\dots,c_{n})$  \end_inset   son matrices con  @@ -3190,7 +3190,7 @@ Demostración:  \end_inset   y  -\begin_inset Formula $E:=<s(u_{2}),\dots,s(u_{n})>=<s(u_{1})>^{\bot}=<v_{1}>^{\bot}=<v_{2},\dots,v_{n}>$ +\begin_inset Formula $E\coloneqq <s(u_{2}),\dots,s(u_{n})>=<s(u_{1})>^{\bot}=<v_{1}>^{\bot}=<v_{2},\dots,v_{n}>$  \end_inset  . @@ -3309,11 +3309,11 @@ Demostración:  \end_inset  , si  -\begin_inset Formula $D_{1}:=\text{diag}(a_{1},\dots,a_{r},b_{r+1},\dots,b_{n})$ +\begin_inset Formula $D_{1}\coloneqq \text{diag}(a_{1},\dots,a_{r},b_{r+1},\dots,b_{n})$  \end_inset   y  -\begin_inset Formula $D_{2}:=\text{diag}(a_{1},\dots,a_{r},c_{r+1},\dots,c_{n})$ +\begin_inset Formula $D_{2}\coloneqq \text{diag}(a_{1},\dots,a_{r},c_{r+1},\dots,c_{n})$  \end_inset   son las matrices de  @@ -3430,7 +3430,7 @@ Sean  \end_inset   es una base y  -\begin_inset Formula $v':=\frac{v}{\langle u,v\rangle}$ +\begin_inset Formula $v'\coloneqq \frac{v}{\langle u,v\rangle}$  \end_inset  , la matriz de  @@ -3453,12 +3453,12 @@ A:=\left(\begin{array}{cc}  \end_inset  con  -\begin_inset Formula $a:=\langle v',v'\rangle$ +\begin_inset Formula $a\coloneqq \langle v',v'\rangle$  \end_inset  .   Sea ahora  -\begin_inset Formula $w:=xu+v'$ +\begin_inset Formula $w\coloneqq xu+v'$  \end_inset   tal que  @@ -3498,7 +3498,7 @@ B:=\left(\begin{array}{cc}  \end_inset  con  -\begin_inset Formula $b:=\langle w',w'\rangle$ +\begin_inset Formula $b\coloneqq \langle w',w'\rangle$  \end_inset  . @@ -3576,7 +3576,7 @@ Si identificamos los vectores con sus coordenadas respecto a la base en  \end_inset   es isótropo no nulo y, si hubiera un  -\begin_inset Formula $v:=(v_{1},v_{2})$ +\begin_inset Formula $v\coloneqq (v_{1},v_{2})$  \end_inset   con  @@ -3744,7 +3744,7 @@ Demostración:   es anisótropo.   Si  -\begin_inset Formula $n:=\dim(V)\geq2$ +\begin_inset Formula $n\coloneqq \dim(V)\geq2$  \end_inset   y  @@ -3827,12 +3827,12 @@ cónica proyectiva  \end_inset  , o de formas cuadráticas no nulas de dimensión 3, bajo la relación  -\begin_inset Formula $q\sim q':\iff\exists\lambda\in\mathbb{K}\backslash\{0\}\mid q'=\lambda q$ +\begin_inset Formula $q\sim q':\iff\exists\lambda\in\mathbb{K}\backslash\{0\}:q'=\lambda q$  \end_inset  .   Escribimos  -\begin_inset Formula ${\cal C}_{q}:=[q]$ +\begin_inset Formula ${\cal C}_{q}\coloneqq [q]$  \end_inset  , y la identificamos con el conjunto de puntos  @@ -3975,7 +3975,7 @@ recta polar  \end_inset   a  -\begin_inset Formula $r_{P}:=\{X\in\mathbb{P}^{2}(\mathbb{K})\mid [P]^{t}\overline{A}[X]=0\}$ +\begin_inset Formula $r_{P}\coloneqq \{X\in\mathbb{P}^{2}(\mathbb{K})\mid [P]^{t}\overline{A}[X]=0\}$  \end_inset  , y decimos que  @@ -4035,7 +4035,7 @@ Una cónica es  no degenerada  \series default   si  -\begin_inset Formula $\Delta:=|\overline{A}|\neq0$ +\begin_inset Formula $\Delta\coloneqq |\overline{A}|\neq0$  \end_inset  . | 
