aboutsummaryrefslogtreecommitdiff
path: root/aalg
diff options
context:
space:
mode:
Diffstat (limited to 'aalg')
-rw-r--r--aalg/n1.lyx4
-rw-r--r--aalg/n2.lyx2
-rw-r--r--aalg/n3.lyx10
-rw-r--r--aalg/n4.lyx6
4 files changed, 11 insertions, 11 deletions
diff --git a/aalg/n1.lyx b/aalg/n1.lyx
index 520ce4b..a783d88 100644
--- a/aalg/n1.lyx
+++ b/aalg/n1.lyx
@@ -1235,7 +1235,7 @@ Demostración:
en común, los tres puntos estarían alineados.
Así, podemos tomar
-\begin_inset Formula $\{O\}:=m\cap m'$
+\begin_inset Formula $\{O\}\mid =m\cap m'$
\end_inset
y entonces
@@ -2296,7 +2296,7 @@ hemisferio norte
\end_inset
de la hipérbola (
-\begin_inset Formula $\{(x,y)\in{\cal H}:y\geq0\}$
+\begin_inset Formula $\{(x,y)\in{\cal H}\mid y\geq0\}$
\end_inset
), dado por
diff --git a/aalg/n2.lyx b/aalg/n2.lyx
index 94fb772..d6c0241 100644
--- a/aalg/n2.lyx
+++ b/aalg/n2.lyx
@@ -338,7 +338,7 @@ Los vectores propios de
.
Así,
-\begin_inset Formula $V_{\lambda}=\text{Nuc}(f-\lambda Id)=\{v\in V:(f-\lambda Id)(v)=0\}=\{v\in V:f(v)=\lambda v\}$
+\begin_inset Formula $V_{\lambda}=\text{Nuc}(f-\lambda Id)=\{v\in V\mid (f-\lambda Id)(v)=0\}=\{v\in V\mid f(v)=\lambda v\}$
\end_inset
es el
diff --git a/aalg/n3.lyx b/aalg/n3.lyx
index d0e0932..a6df369 100644
--- a/aalg/n3.lyx
+++ b/aalg/n3.lyx
@@ -1883,7 +1883,7 @@ Sean
\end_inset
y
-\begin_inset Formula ${\cal L}:=\{(x,y)\in\mathbb{A}^{2}(\mathbb{K}):f(x,y)=0\}$
+\begin_inset Formula ${\cal L}:=\{(x,y)\in\mathbb{A}^{2}(\mathbb{K})\mid f(x,y)=0\}$
\end_inset
, llamamos
@@ -1899,7 +1899,7 @@ completación proyectiva
\end_inset
a
-\begin_inset Formula $\overline{{\cal L}}:=\{<(x,y,z)>\in\mathbb{P}^{2}(\mathbb{K}):f^{*}(x,y,z)=0\}$
+\begin_inset Formula $\overline{{\cal L}}:=\{<(x,y,z)>\in\mathbb{P}^{2}(\mathbb{K})\mid f^{*}(x,y,z)=0\}$
\end_inset
, y para
@@ -1915,7 +1915,7 @@ parte afín
\end_inset
es
-\begin_inset Formula $\hat{{\cal L}}^{\text{afín}}:=\{(x,y)\in\mathbb{A}^{2}(\mathbb{K}):<(x,y,1)>\in\hat{{\cal L}}\}$
+\begin_inset Formula $\hat{{\cal L}}^{\text{afín}}:=\{(x,y)\in\mathbb{A}^{2}(\mathbb{K})\mid <(x,y,1)>\in\hat{{\cal L}}\}$
\end_inset
.
@@ -1928,12 +1928,12 @@ parte afín
\end_inset
,
-\begin_inset Formula $\hat{{\cal L}}^{\text{afín}}=\{(x,y):F(x,y,1)=0\}=\{(x,y):F_{*}(x,y)=0\}$
+\begin_inset Formula $\hat{{\cal L}}^{\text{afín}}=\{(x,y)\mid F(x,y,1)=0\}=\{(x,y)\mid F_{*}(x,y)=0\}$
\end_inset
.
Entonces
-\begin_inset Formula $\overline{\hat{{\cal L}}^{\text{afín}}}=\{<(a,b,c)>:(F_{*})^{*}(a,b,c)=0\}=\hat{{\cal L}}\cup\{<(x,y,0)>:F(x,y,0)=0\}$
+\begin_inset Formula $\overline{\hat{{\cal L}}^{\text{afín}}}=\{<(a,b,c)>\mid (F_{*})^{*}(a,b,c)=0\}=\hat{{\cal L}}\cup\{<(x,y,0)>\mid F(x,y,0)=0\}$
\end_inset
, y si
diff --git a/aalg/n4.lyx b/aalg/n4.lyx
index 11a1a77..96b456a 100644
--- a/aalg/n4.lyx
+++ b/aalg/n4.lyx
@@ -827,7 +827,7 @@ subespacio ortogonal
\end_inset
al subespacio
-\begin_inset Formula $E^{\bot}:=\{v\in V:\forall e\in E,\langle v,e\rangle=0\}$
+\begin_inset Formula $E^{\bot}:=\{v\in V\mid \forall e\in E,\langle v,e\rangle=0\}$
\end_inset
.
@@ -3827,7 +3827,7 @@ cónica proyectiva
\end_inset
, o de formas cuadráticas no nulas de dimensión 3, bajo la relación
-\begin_inset Formula $q\sim q':\iff\exists\lambda\in\mathbb{K}\backslash\{0\}:q'=\lambda q$
+\begin_inset Formula $q\sim q':\iff\exists\lambda\in\mathbb{K}\backslash\{0\}\mid q'=\lambda q$
\end_inset
.
@@ -3975,7 +3975,7 @@ recta polar
\end_inset
a
-\begin_inset Formula $r_{P}:=\{X\in\mathbb{P}^{2}(\mathbb{K}):[P]^{t}\overline{A}[X]=0\}$
+\begin_inset Formula $r_{P}:=\{X\in\mathbb{P}^{2}(\mathbb{K})\mid [P]^{t}\overline{A}[X]=0\}$
\end_inset
, y decimos que