diff options
Diffstat (limited to 'ac/n4.lyx')
| -rw-r--r-- | ac/n4.lyx | 4894 | 
1 files changed, 4894 insertions, 0 deletions
| diff --git a/ac/n4.lyx b/ac/n4.lyx new file mode 100644 index 0000000..2479482 --- /dev/null +++ b/ac/n4.lyx @@ -0,0 +1,4894 @@ +#LyX 2.3 created this file. For more info see http://www.lyx.org/ +\lyxformat 544 +\begin_document +\begin_header +\save_transient_properties true +\origin unavailable +\textclass book +\begin_preamble +\input{../defs} +\end_preamble +\use_default_options true +\maintain_unincluded_children false +\language spanish +\language_package default +\inputencoding auto +\fontencoding global +\font_roman "default" "default" +\font_sans "default" "default" +\font_typewriter "default" "default" +\font_math "auto" "auto" +\font_default_family default +\use_non_tex_fonts false +\font_sc false +\font_osf false +\font_sf_scale 100 100 +\font_tt_scale 100 100 +\use_microtype false +\use_dash_ligatures true +\graphics default +\default_output_format default +\output_sync 0 +\bibtex_command default +\index_command default +\paperfontsize default +\spacing single +\use_hyperref false +\papersize default +\use_geometry false +\use_package amsmath 1 +\use_package amssymb 1 +\use_package cancel 1 +\use_package esint 1 +\use_package mathdots 1 +\use_package mathtools 1 +\use_package mhchem 1 +\use_package stackrel 1 +\use_package stmaryrd 1 +\use_package undertilde 1 +\cite_engine basic +\cite_engine_type default +\biblio_style plain +\use_bibtopic false +\use_indices false +\paperorientation portrait +\suppress_date false +\justification true +\use_refstyle 1 +\use_minted 0 +\index Index +\shortcut idx +\color #008000 +\end_index +\secnumdepth 3 +\tocdepth 3 +\paragraph_separation indent +\paragraph_indentation default +\is_math_indent 0 +\math_numbering_side default +\quotes_style french +\dynamic_quotes 0 +\papercolumns 1 +\papersides 1 +\paperpagestyle default +\tracking_changes false +\output_changes false +\html_math_output 0 +\html_css_as_file 0 +\html_be_strict false +\end_header + +\begin_body + +\begin_layout Standard +En adelante, salvo que se indique lo contrario,  +\begin_inset Formula $A$ +\end_inset + + es un DIP y  +\begin_inset Formula ${\cal P}\subseteq A$ +\end_inset + + es un conjunto irredundante de representantes salvo asociados de los elementos + irreducibles o primos de  +\begin_inset Formula $A$ +\end_inset + +. + Por ejemplo, si  +\begin_inset Formula $A=\mathbb{Z}$ +\end_inset + +,  +\begin_inset Formula ${\cal P}$ +\end_inset + + podría ser el conjunto de primos positivos, y cuando  +\begin_inset Formula $A=K[X]$ +\end_inset + + con  +\begin_inset Formula $K$ +\end_inset + + cuerpo,  +\begin_inset Formula ${\cal P}$ +\end_inset + + podría ser el conjunto de polinomios mónicos irreducibles. +\end_layout + +\begin_layout Standard +Como  +\series bold +teorema +\series default +, si  +\begin_inset Formula $G\leq_{A}F$ +\end_inset + + con  +\begin_inset Formula $F$ +\end_inset + + libre, entonces  +\begin_inset Formula $G$ +\end_inset + + es libre y  +\begin_inset Formula $\text{rg}G\leq\text{rg}F$ +\end_inset + +. +  +\series bold +Demostración +\series default + cuando  +\begin_inset Formula $F$ +\end_inset + + tiene rango finito +\series bold +: +\series default + +\begin_inset Foot +status open + +\begin_layout Plain Layout +Demostración general en  +\emph on +\lang english +Algebra +\emph default +\lang spanish + de Thomas W. + Hungerfor, IV.6.1, que usa propiedades de los números ordinales. +\end_layout + +\end_inset + + Sean  +\begin_inset Formula $B=\{x_{1},\dots,x_{n}\}$ +\end_inset + + una base de  +\begin_inset Formula $F$ +\end_inset + + y, para  +\begin_inset Formula $j\in\{0,\dots,n\}$ +\end_inset + +,  +\begin_inset Formula $F_{j}\coloneqq\bigoplus_{i=1}^{j}Ax_{i}$ +\end_inset + +, tenemos una cadena estrictamente ascendente  +\begin_inset Formula $0=F_{0}\subsetneq\dots\subsetneq F_{n}=F$ +\end_inset + + donde  +\begin_inset Formula $\frac{F_{j}}{F_{j-1}}\cong Ax_{j}$ +\end_inset + + para  +\begin_inset Formula $j\in\{1,\dots,n\}$ +\end_inset + +, pero el homomorfismo canónico  +\begin_inset Formula $A\to Ax_{j}$ +\end_inset + +,  +\begin_inset Formula $a\mapsto ax_{j}$ +\end_inset + +, es un isomorfismo (por restricción de  +\begin_inset Formula $\phi:A^{n}\to F$ +\end_inset + +), luego todo submódulo de  +\begin_inset Formula $\frac{F_{j}}{F_{j-1}}$ +\end_inset + + es isomorfo a un ideal de  +\begin_inset Formula $A$ +\end_inset + +, que será principal, y es pues nulo o un  +\begin_inset Formula $A$ +\end_inset + +-módulo libre de rango 1. + Intersecando los términos de esta cadena con  +\begin_inset Formula $G$ +\end_inset + +,  +\begin_inset Formula $0=G\cap F_{0}\subseteq G\cap F_{1}\subseteq\dots\subseteq G\cap F_{n}=G$ +\end_inset + +, y el homomorfismo  +\begin_inset Formula $f_{j}:G\cap F_{j}\hookrightarrow F_{j}\overset{\pi}{\to}\frac{F_{j}}{F_{j-1}}$ +\end_inset + + tiene núcleo  +\begin_inset Formula $G\cap F_{j-1}$ +\end_inset + +, por lo que hay un monomorfismo  +\begin_inset Formula $\frac{G\cap F_{j}}{G\cap F_{j-1}}\rightarrowtail\frac{F_{j}}{F_{j-1}}$ +\end_inset + + y por tanto  +\begin_inset Formula $\frac{G\cap F_{j}}{G\cap F_{j-1}}=0$ +\end_inset + + o es un  +\begin_inset Formula $A$ +\end_inset + +-módulo libre de rango 1. + Tras eliminar términos repetidos de la cadena, existen  +\begin_inset Formula $k_{i}\in\{1,\dots,n\}$ +\end_inset + +,  +\begin_inset Formula $k_{1}<\dots<k_{t}$ +\end_inset + +, con  +\begin_inset Formula $0=G\cap F_{k_{0}}\subsetneq G\cap F_{k_{1}}\subsetneq\dots\subsetneq G\cap F_{k_{t}}=G$ +\end_inset + + y donde cada  +\begin_inset Formula $\frac{G\cap F_{k_{i}}}{G\cap F_{k_{i-1}}}$ +\end_inset + + es un  +\begin_inset Formula $A$ +\end_inset + +-módulo libre de rango 1. + Si  +\begin_inset Formula $t=0$ +\end_inset + + hemos terminado. + En otro caso, sean  +\begin_inset Formula $H_{i}\coloneqq G\cap F_{k_{i}}$ +\end_inset + +,  +\begin_inset Formula $y_{1}$ +\end_inset + + un generador de  +\begin_inset Formula $H_{1}$ +\end_inset + + y, para  +\begin_inset Formula $i\in\{2,\dots,n\}$ +\end_inset + +,  +\begin_inset Formula $y_{i}$ +\end_inset + + tal que  +\begin_inset Formula $y_{i}+H_{i-1}$ +\end_inset + + sea un generador de  +\begin_inset Formula $\frac{H_{i}}{H_{i-1}}$ +\end_inset + +, entonces  +\begin_inset Formula $(y_{1},\dots,y_{i})$ +\end_inset + + es base de  +\begin_inset Formula $H_{i}$ +\end_inset + +. + Para  +\begin_inset Formula $i=1$ +\end_inset + + esto es claro. + Para  +\begin_inset Formula $i>1$ +\end_inset + +, por inducción, para  +\begin_inset Formula $m\in H_{i}$ +\end_inset + + existe  +\begin_inset Formula $a\in A$ +\end_inset + + tal que, en  +\begin_inset Formula $\frac{H_{i}}{H_{i-1}}$ +\end_inset + +,  +\begin_inset Formula $\overline{a}\overline{y_{i}}=\overline{m}$ +\end_inset + + y por tanto  +\begin_inset Formula $ay_{i}-m\in H_{i-1}$ +\end_inset + +, que por inducción se puede expresar unívocamente como combinación lineal + de  +\begin_inset Formula $(y_{1},\dots,y_{i-1})$ +\end_inset + +. + Así,  +\begin_inset Formula $\{y_{1},\dots,y_{i}\}$ +\end_inset + + es generador de  +\begin_inset Formula $H_{j}$ +\end_inset + +, y es linealmente independiente porque, al ser  +\begin_inset Formula $\frac{H_{i}}{H_{i-1}}=(\overline{y_{i}})$ +\end_inset + + de rango 1,  +\begin_inset Formula $\phi:A\to(\overline{y_{i}})$ +\end_inset + + dado por  +\begin_inset Formula $\phi(a)\coloneqq a\overline{y_{i}}$ +\end_inset + + es un isomorfismo y, si  +\begin_inset Formula $n\in H_{i-1}$ +\end_inset + + y  +\begin_inset Formula $a\in A$ +\end_inset + + cumplen  +\begin_inset Formula $n+ay_{i}=0$ +\end_inset + +,  +\begin_inset Formula $ay_{i}=-n\in H_{i-1}$ +\end_inset + + y  +\begin_inset Formula $\phi(a)=0$ +\end_inset + +, luego  +\begin_inset Formula $a=0$ +\end_inset + + y  +\begin_inset Formula $n=0$ +\end_inset + +. + Por tanto, para  +\begin_inset Formula $i=t$ +\end_inset + +,  +\begin_inset Formula $H_{t}=G$ +\end_inset + + tiene base  +\begin_inset Formula $(y_{1},\dots,y_{t})$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Todo epimorfismo de  +\begin_inset Formula $A$ +\end_inset + +-módulos  +\begin_inset Formula $p:M\twoheadrightarrow F$ +\end_inset + + con  +\begin_inset Formula $F$ +\end_inset + + libre tiene inverso por la derecha, un  +\begin_inset Formula $f:F\to M$ +\end_inset + + con  +\begin_inset Formula $p\circ f=1_{F}$ +\end_inset + +, y entonces  +\begin_inset Formula $M=\text{Im}f\oplus\ker p$ +\end_inset + + y  +\begin_inset Formula $M\cong F\times\ker p$ +\end_inset + +. +  +\series bold +Demostración: +\series default + Dada una base  +\begin_inset Formula $X=\{x_{i}\}_{i\in I}$ +\end_inset + + de  +\begin_inset Formula $F$ +\end_inset + +, y para  +\begin_inset Formula $i\in I$ +\end_inset + +,  +\begin_inset Formula $m_{i}\in M$ +\end_inset + + con  +\begin_inset Formula $p(m_{i})=x_{i}$ +\end_inset + +, existe un único  +\begin_inset Formula $f:F\to M$ +\end_inset + + con  +\begin_inset Formula $f(x_{i})=m_{i}$ +\end_inset + + para cada  +\begin_inset Formula $i$ +\end_inset + +, luego el homomorfismo  +\begin_inset Formula $p\circ f$ +\end_inset + + es la identidad sobre los elementos de  +\begin_inset Formula $X$ +\end_inset + + y por tanto sobre todos los de  +\begin_inset Formula $F$ +\end_inset + +. + Para la descomposición,  +\begin_inset Formula $\text{Im}f\cap\ker p=0$ +\end_inset + + porque sus elementos son de la forma  +\begin_inset Formula $f(x)$ +\end_inset + + con  +\begin_inset Formula $x\in F$ +\end_inset + + y  +\begin_inset Formula $p(f(x))=0$ +\end_inset + +, pero  +\begin_inset Formula $p(f(x))=x$ +\end_inset + +, e  +\begin_inset Formula $\text{Im}f+\ker p=M$ +\end_inset + + porque, para  +\begin_inset Formula $m\in M$ +\end_inset + +,  +\begin_inset Formula $m=m-f(p(m))+f(p(m))$ +\end_inset + + con  +\begin_inset Formula $f(p(m))\in\text{Im}f$ +\end_inset + + y  +\begin_inset Formula $m-f(p(m))\in\ker p$ +\end_inset + + ya que  +\begin_inset Formula $p(m-f(p(m)))=p(m)-p(m)=0$ +\end_inset + +. + Finalmente, como  +\begin_inset Formula $f$ +\end_inset + + es inyectiva, su restricción a la imagen es un isomorfismo e  +\begin_inset Formula $\text{Im}f\cong F$ +\end_inset + +. +\end_layout + +\begin_layout Section +Grupos abelianos +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +begin{reminder}{GyA} +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Llamamos  +\series bold +orden +\series default + de [un grupo]  +\begin_inset Formula $G$ +\end_inset + + al cardinal del conjunto. + [...] +\end_layout + +\begin_layout Standard +Si  +\begin_inset Formula $A$ +\end_inset + + es un anillo,  +\begin_inset Formula $(A,+)$ +\end_inset + + es su  +\series bold +grupo aditivo +\series default +, que es abeliano, y  +\begin_inset Formula $(A^{*},\cdot)$ +\end_inset + + es su  +\series bold +grupo de unidades +\series default +, que es abeliano cuando el anillo es conmutativo. + [...] +\end_layout + +\begin_layout Standard +Llamamos  +\series bold +orden +\series default + de  +\begin_inset Formula $a\in G$ +\end_inset + + al orden de  +\begin_inset Formula $\langle a\rangle$ +\end_inset + +,  +\begin_inset Formula $|a|\coloneqq|\langle a\rangle|$ +\end_inset + +, y escribimos  +\begin_inset Formula $\langle a\rangle_{n}$ +\end_inset + + para referirnos a  +\begin_inset Formula $\langle a\rangle$ +\end_inset + + indicando que tiene orden  +\begin_inset Formula $n$ +\end_inset + +. + El orden de  +\begin_inset Formula $a$ +\end_inset + + divide al de  +\begin_inset Formula $G$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Sea  +\begin_inset Formula $f:\mathbb{Z}\to G$ +\end_inset + + el homomorfismo dado por  +\begin_inset Formula $f(n)\coloneqq a^{n}$ +\end_inset + +,  +\begin_inset Formula $\ker f=n\mathbb{Z}$ +\end_inset + + para algún  +\begin_inset Formula $n\geq0$ +\end_inset + +. + Si  +\begin_inset Formula $n=0$ +\end_inset + +,  +\begin_inset Formula $f$ +\end_inset + + es inyectivo y  +\begin_inset Formula $(\mathbb{Z},+)\cong\langle a\rangle$ +\end_inset + +, y en otro caso  +\begin_inset Formula $\mathbb{Z}_{n}\cong\langle a\rangle$ +\end_inset + +, con lo que  +\begin_inset Formula $n=|a|$ +\end_inset + + y  +\begin_inset Formula $a^{n}=1\iff|a|\mid n$ +\end_inset + +. + De aquí,  +\begin_inset Formula $a^{k}=a^{l}\iff k\equiv l\bmod n$ +\end_inset + +, con lo que  +\begin_inset Formula $|a|$ +\end_inset + + es el menor entero positivo con  +\begin_inset Formula $a^{n}=1$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Si  +\begin_inset Formula $a$ +\end_inset + + tiene orden finito y  +\begin_inset Formula $n>0$ +\end_inset + +,  +\begin_inset Formula  +\[ +|a^{n}|=\frac{|a|}{\text{mcd}\{|a|,n\}}. +\] + +\end_inset + +Si  +\begin_inset Formula $G=\langle a\rangle$ +\end_inset + +: +\end_layout + +\begin_layout Enumerate +Si  +\begin_inset Formula $G$ +\end_inset + + tiene orden infinito,  +\begin_inset Formula $G\cong(\mathbb{Z},+)\cong C_{\infty}$ +\end_inset + + y los subgrupos de  +\begin_inset Formula $G$ +\end_inset + + son los  +\begin_inset Formula $\langle a^{n}\rangle$ +\end_inset + + con  +\begin_inset Formula $n\in\mathbb{N}$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +Si  +\begin_inset Formula $|G|=n$ +\end_inset + +,  +\begin_inset Formula $G\cong(\mathbb{Z}_{n},+)\cong C_{n}$ +\end_inset + + y los subgrupos de  +\begin_inset Formula $G$ +\end_inset + + son exactamente uno de orden  +\begin_inset Formula $d$ +\end_inset + + por cada  +\begin_inset Formula $d\mid n$ +\end_inset + +,  +\begin_inset Formula $\langle a^{n/d}\rangle_{d}$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +Todos los subgrupos y grupos cociente de  +\begin_inset Formula $G$ +\end_inset + + son cíclicos. +\end_layout + +\begin_layout Standard +Así, si  +\begin_inset Formula $p\in\mathbb{N}$ +\end_inset + + es primo, todos los grupos de orden  +\begin_inset Formula $p$ +\end_inset + + son isomorfos a  +\begin_inset Formula $(\mathbb{Z}_{p},+)$ +\end_inset + +. + Si  +\begin_inset Formula $G=\langle g_{1},\dots,g_{n}\rangle$ +\end_inset + + y  +\begin_inset Formula $N\unlhd G$ +\end_inset + +,  +\begin_inset Formula $G/N=\langle g_{1}N,\dots,g_{n}N\rangle$ +\end_inset + +. +\end_layout + +\begin_layout Standard + +\series bold +Teorema chino de los restos para grupos: +\end_layout + +\begin_layout Enumerate +Si  +\begin_inset Formula $G$ +\end_inset + + y  +\begin_inset Formula $H$ +\end_inset + + son subgrupos cíclicos de órdenes respectivos  +\begin_inset Formula $n$ +\end_inset + + y  +\begin_inset Formula $m$ +\end_inset + +,  +\begin_inset Formula $G\times H$ +\end_inset + + es cíclico si y sólo si  +\begin_inset Formula $n$ +\end_inset + + y  +\begin_inset Formula $m$ +\end_inset + + son coprimos. + [...] +\end_layout + +\begin_layout Enumerate +Si  +\begin_inset Formula $g,h\in G$ +\end_inset + + tienen órdenes respectivos  +\begin_inset Formula $n$ +\end_inset + + y  +\begin_inset Formula $m$ +\end_inset + + coprimos y  +\begin_inset Formula $gh=hg$ +\end_inset + +, entonces  +\begin_inset Formula $\langle g,h\rangle$ +\end_inset + + es cíclico de orden  +\begin_inset Formula $nm$ +\end_inset + +. + [...] +\end_layout + +\begin_layout Standard +Dados un grupo  +\begin_inset Formula $G$ +\end_inset + + y  +\begin_inset Formula $a\in G$ +\end_inset + +, llamamos  +\series bold +conjugado +\series default + de  +\begin_inset Formula $g\in G$ +\end_inset + + por  +\begin_inset Formula $a$ +\end_inset + + a  +\begin_inset Formula $g^{a}\coloneqq a^{-1}ga$ +\end_inset + +, y conjugado de  +\begin_inset Formula $X\subseteq G$ +\end_inset + + por  +\begin_inset Formula $a$ +\end_inset + + a  +\begin_inset Formula $X^{a}\coloneqq\{x^{a}\}_{x\in X}$ +\end_inset + +. + Dos elementos  +\begin_inset Formula $x,y\in G$ +\end_inset + + o conjuntos  +\begin_inset Formula $x,y\subseteq G$ +\end_inset + + son  +\series bold +conjugados +\series default + en  +\begin_inset Formula $G$ +\end_inset + + si existe  +\begin_inset Formula $a\in G$ +\end_inset + + con  +\begin_inset Formula $x^{a}=y$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Si  +\begin_inset Formula $a\in G$ +\end_inset + +, llamamos  +\series bold +automorfismo interno +\series default + definido por  +\begin_inset Formula $a$ +\end_inset + + al automorfismo  +\begin_inset Formula $\iota_{a}:G\to G$ +\end_inset + + dado por  +\begin_inset Formula $\iota_{a}(x)\coloneqq x^{a}$ +\end_inset + +. + Su inverso es  +\begin_inset Formula $\iota_{a^{-1}}$ +\end_inset + +. + El conjugado por  +\begin_inset Formula $a$ +\end_inset + + de un subgrupo de  +\begin_inset Formula $G$ +\end_inset + + es otro subgrupo de  +\begin_inset Formula $G$ +\end_inset + + del mismo orden. + [...] +\end_layout + +\begin_layout Standard +\begin_inset Formula $\forall g,a,b\in G,g^{ab}=(g^{a})^{b}$ +\end_inset + +, y [...] la relación de ser conjugados es de equivalencia. + Las clases de equivalencia se llaman  +\series bold +clases de conjugación +\series default + de  +\begin_inset Formula $G$ +\end_inset + +, y llamamos  +\begin_inset Formula $a^{G}\coloneqq[a]=\{a^{g}\}_{g\in G}$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Sea  +\begin_inset Formula $X$ +\end_inset + + un conjunto. + Una  +\series bold +acción por la izquierda +\series default + de  +\begin_inset Formula $G$ +\end_inset + + en  +\begin_inset Formula $X$ +\end_inset + + es una función  +\begin_inset Formula $\cdot:G\times X\to X$ +\end_inset + + tal que  +\begin_inset Formula $\forall x\in X,(\forall g,h\in G,(gh)\cdot x=g\cdot(h\cdot x)\land1\cdot x=x)$ +\end_inset + +, y una  +\series bold +acción por la derecha +\series default + de  +\begin_inset Formula $G$ +\end_inset + + en  +\begin_inset Formula $X$ +\end_inset + + es una función  +\begin_inset Formula $\cdot:X\times G\to X$ +\end_inset + + tal que  +\begin_inset Formula $\forall x\in X,(\forall g,h\in G,x\cdot(gh)=(x\cdot g)\cdot h\land x\cdot1=x)$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Si  +\begin_inset Formula $\cdot:G\times X\to X$ +\end_inset + + es una acción por la izquierda de  +\begin_inset Formula $G$ +\end_inset + + en  +\begin_inset Formula $X$ +\end_inset + + y  +\begin_inset Formula $x\in X$ +\end_inset + +, llamamos  +\series bold +órbita +\series default + de  +\begin_inset Formula $x$ +\end_inset + + en  +\begin_inset Formula $G$ +\end_inset + + a  +\begin_inset Formula $G\cdot x\coloneqq\{g\cdot x\}_{g\in G}$ +\end_inset + + y  +\series bold +estabilizador +\series default + de  +\begin_inset Formula $x$ +\end_inset + + en  +\begin_inset Formula $G$ +\end_inset + + a  +\begin_inset Formula $\text{Estab}_{G}(x)\coloneqq\{g\in G\mid g\cdot x=x\}$ +\end_inset + +. + Si  +\begin_inset Formula $\cdot:X\times G\to X$ +\end_inset + + es una acción por la derecha de  +\begin_inset Formula $G$ +\end_inset + + en  +\begin_inset Formula $X$ +\end_inset + + y  +\begin_inset Formula $x\in X$ +\end_inset + +, llamamos órbita de  +\begin_inset Formula $x$ +\end_inset + + en  +\begin_inset Formula $G$ +\end_inset + + a  +\begin_inset Formula $x\cdot G\coloneqq\{x\cdot g\}_{g\in G}$ +\end_inset + + y estabilizador de  +\begin_inset Formula $x$ +\end_inset + + en  +\begin_inset Formula $G$ +\end_inset + + a  +\begin_inset Formula $\text{Estab}_{G}(x)\coloneqq\{g\in G\mid x\cdot g=x\}$ +\end_inset + +. + Las órbitas forman una partición de  +\begin_inset Formula $G$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +Llamamos  +\series bold +acción por traslación a la izquierda +\series default + a la acción por la izquierda de  +\begin_inset Formula $G$ +\end_inset + + en  +\begin_inset Formula $G/H$ +\end_inset + + dada por  +\begin_inset Formula $g\cdot xH=gxH$ +\end_inset + +. + Entonces  +\begin_inset Formula $G\cdot xH=G/H$ +\end_inset + + y  +\begin_inset Formula  +\[ +\text{Estab}_{G}(xH)=[...]=H^{x^{-1}}. +\] + +\end_inset + +Análogamente llamamos  +\series bold +acción por traslación a la derecha +\series default + a la acción por la derecha de  +\begin_inset Formula $G$ +\end_inset + + en  +\begin_inset Formula $H\backslash G$ +\end_inset + + dada por  +\begin_inset Formula $Hx\cdot g=Hxg$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +Cuando  +\begin_inset Formula $H=1$ +\end_inset + +, la acción de traslación es de  +\begin_inset Formula $G$ +\end_inset + + en  +\begin_inset Formula $G$ +\end_inset + +, con  +\begin_inset Formula $G\cdot x=G$ +\end_inset + + y  +\begin_inset Formula $\text{Estab}_{G}(x)=1$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +La  +\series bold +acción por conjugación +\series default + de  +\begin_inset Formula $G$ +\end_inset + + en  +\begin_inset Formula $G$ +\end_inset + + es la acción por la derecha  +\begin_inset Formula $x\cdot g\coloneqq x^{g}$ +\end_inset + +. + Entonces  +\begin_inset Formula $x\cdot G=x^{G}$ +\end_inset + + y  +\begin_inset Formula $\text{Estab}_{G}(x)=C_{G}(x)$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +Si  +\begin_inset Formula $S$ +\end_inset + + es el conjunto de subgrupos de  +\begin_inset Formula $G$ +\end_inset + +, la  +\series bold +acción por conjugación de  +\begin_inset Formula $G$ +\end_inset + + en sus subgrupos +\series default + es la acción por la derecha de  +\begin_inset Formula $G$ +\end_inset + + en  +\begin_inset Formula $S$ +\end_inset + +  +\begin_inset Formula $H\cdot g=H^{g}$ +\end_inset + +. + [...] +\end_layout + +\begin_layout Enumerate +Si  +\begin_inset Formula $n\in\mathbb{N}$ +\end_inset + + y  +\begin_inset Formula $X$ +\end_inset + + es un conjunto,  +\begin_inset Formula $\cdot:S_{n}\times X^{n}\to X^{n}$ +\end_inset + + dada por  +\begin_inset Formula $\sigma\cdot(x_{1},\dots,x_{n})\coloneqq(x_{\sigma(1)},\dots,x_{\sigma(n)})$ +\end_inset + + es una acción por la izquierda. +\end_layout + +\begin_layout Enumerate +Sean  +\begin_inset Formula $\cdot:G\times X\to X$ +\end_inset + + una acción por la izquierda,  +\begin_inset Formula $H\leq G$ +\end_inset + + e  +\begin_inset Formula $Y\subseteq X$ +\end_inset + +, si  +\begin_inset Formula $\forall h\in H,y\in Y,h\cdot y\in Y$ +\end_inset + +,  +\begin_inset Formula $\cdot|_{H\times Y}$ +\end_inset + + es una acción por la izquierda de  +\begin_inset Formula $H$ +\end_inset + + en  +\begin_inset Formula $Y$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Sean  +\begin_inset Formula $G$ +\end_inset + + un grupo actuando sobre un conjunto  +\begin_inset Formula $X$ +\end_inset + +,  +\begin_inset Formula $x\in X$ +\end_inset + + y  +\begin_inset Formula $g\in G$ +\end_inset + +: +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\text{Estab}_{G}(x)\leq G$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $[G:\text{Estab}_{G}(x)]=|G\cdot x|$ +\end_inset + +. + En particular, si  +\begin_inset Formula $G$ +\end_inset + + es finito,  +\begin_inset Formula $|G\cdot x|\mid|G|$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +Si la acción es por la izquierda,  +\begin_inset Formula $\text{Estab}_{G}(g\cdot x)=\text{Estab}_{G}(x)^{g^{-1}}$ +\end_inset + +, y si es por la derecha,  +\begin_inset Formula $\text{Estab}_{G}(x\cdot g)=\text{Estab}_{G}(x)^{g}$ +\end_inset + +. + En particular, si  +\begin_inset Formula $x,g\in G$ +\end_inset + + y  +\begin_inset Formula $H\leq G$ +\end_inset + +,  +\begin_inset Formula $C_{G}(x^{g})=C_{G}(x)^{g}$ +\end_inset + + y  +\begin_inset Formula $N_{G}(H^{g})=N_{G}(H)^{g}$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +Si  +\begin_inset Formula $R$ +\end_inset + + es un conjunto irredundante de representantes de las órbitas,  +\begin_inset Formula $|X|=\sum_{r\in R}|G\cdot r|=\sum_{r\in R}[G:\text{Estab}_{G}(r)]$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Así, si  +\begin_inset Formula $G$ +\end_inset + + es un grupo y  +\begin_inset Formula $a\in G$ +\end_inset + +,  +\begin_inset Formula $|a^{G}|=[G:C_{G}(a)]$ +\end_inset + +, y en particular  +\begin_inset Formula $a^{G}$ +\end_inset + + es unipuntual si y sólo si  +\begin_inset Formula $a\in Z(G)$ +\end_inset + +. +  +\series bold +Ecuación de clases: +\series default + Si  +\begin_inset Formula $G$ +\end_inset + + es finito y  +\begin_inset Formula $X\subseteq G$ +\end_inset + + contiene exactamente un elemento de cada clase de conjugación con al menos + dos elementos, entonces  +\begin_inset Formula $|G|=|Z(G)|+\sum_{x\in X}[G:C_{G}(x)]$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Dado un número primo  +\begin_inset Formula $p$ +\end_inset + +, un  +\series bold + +\begin_inset Formula $p$ +\end_inset + +-grupo +\series default + es un grupo en que todo elemento tiene orden potencia de  +\begin_inset Formula $p$ +\end_inset + +, y un grupo finito es un  +\begin_inset Formula $p$ +\end_inset + +-grupo si y sólo si su orden es potencia de  +\begin_inset Formula $p$ +\end_inset + +. + [...] +\end_layout + +\begin_layout Standard + +\series bold +Teorema de Cauchy: +\series default + Si  +\begin_inset Formula $G$ +\end_inset + + es un grupo finito con orden múltiplo de un primo  +\begin_inset Formula $p$ +\end_inset + +,  +\begin_inset Formula $G$ +\end_inset + + tiene un elemento de orden  +\begin_inset Formula $p$ +\end_inset + +. + [...] +\end_layout + +\begin_layout Standard +Dados un grupo finito  +\begin_inset Formula $G$ +\end_inset + + y un número primo  +\begin_inset Formula $p$ +\end_inset + +,  +\begin_inset Formula $H\leq G$ +\end_inset + + es un  +\series bold + +\begin_inset Formula $p$ +\end_inset + +-subgrupo de Sylow +\series default + de  +\begin_inset Formula $G$ +\end_inset + + si es un  +\begin_inset Formula $p$ +\end_inset + +-grupo y  +\begin_inset Formula $[G:H]$ +\end_inset + + es coprimo con  +\begin_inset Formula $p$ +\end_inset + +, si y sólo si es un  +\begin_inset Formula $p$ +\end_inset + +-grupo y  +\begin_inset Formula $|H|$ +\end_inset + + es la mayor potencia de  +\begin_inset Formula $p$ +\end_inset + + que divide a  +\begin_inset Formula $|G|$ +\end_inset + +. + Llamamos  +\begin_inset Formula $s_{p}(G)$ +\end_inset + + al número de  +\begin_inset Formula $p$ +\end_inset + +-subgrupos de Sylow de  +\begin_inset Formula $G$ +\end_inset + +. +\end_layout + +\begin_layout Standard + +\series bold +Teoremas de Sylow: +\series default + Sean  +\begin_inset Formula $p$ +\end_inset + + un número primo y  +\begin_inset Formula $G$ +\end_inset + + un grupo finito de orden  +\begin_inset Formula $n\coloneqq p^{k}m$ +\end_inset + + para ciertos  +\begin_inset Formula $k,m\in\mathbb{N}$ +\end_inset + + con  +\begin_inset Formula $p\nmid m$ +\end_inset + +. + Entonces: +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $G$ +\end_inset + + tiene al menos un  +\begin_inset Formula $p$ +\end_inset + +-subgrupo de Sylow, que tendrá orden  +\begin_inset Formula $p^{k}$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +Si  +\begin_inset Formula $P$ +\end_inset + + es un  +\begin_inset Formula $p$ +\end_inset + +-subgrupo de Sylow de  +\begin_inset Formula $G$ +\end_inset + + y  +\begin_inset Formula $Q$ +\end_inset + + es un  +\begin_inset Formula $p$ +\end_inset + +-subgrupo de  +\begin_inset Formula $G$ +\end_inset + +, existe  +\begin_inset Formula $g\in G$ +\end_inset + + tal que  +\begin_inset Formula $Q\subseteq P^{g}$ +\end_inset + +. + En particular, todos los  +\begin_inset Formula $p$ +\end_inset + +-subgrupos de Sylow de  +\begin_inset Formula $G$ +\end_inset + + son conjugados en  +\begin_inset Formula $G$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $s_{p}(G)\mid m$ +\end_inset + + y  +\begin_inset Formula $s_{p}(G)\equiv1\bmod p$ +\end_inset + +. + [...] +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +end{reminder} +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Section +Submódulos de torsión +\end_layout + +\begin_layout Standard +Un  +\begin_inset Formula $x\in_{A}M$ +\end_inset + + es un  +\series bold +elemento de torsión +\series default + si  +\begin_inset Formula $\text{ann}_{A}(x)\neq0$ +\end_inset + +, y es un  +\series bold +elemento de  +\begin_inset Formula $p$ +\end_inset + +-torsión +\series default + para cierto  +\begin_inset Formula $p\in{\cal P}$ +\end_inset + + si existe  +\begin_inset Formula $t\in\mathbb{N}$ +\end_inset + + con  +\begin_inset Formula $\text{ann}_{A}(x)=(p^{t})$ +\end_inset + +, si y sólo si existe  +\begin_inset Formula $s\in\mathbb{N}$ +\end_inset + + con  +\begin_inset Formula $p^{s}x=0$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Llamamos  +\series bold +submódulo de torsión +\series default + de  +\begin_inset Formula $_{A}M$ +\end_inset + + a  +\begin_inset Formula $t(M)\coloneqq\{x\in M\mid x\text{ es de torsión}\}\leq_{A}M$ +\end_inset + +. + En efecto, para  +\begin_inset Formula $a\in A$ +\end_inset + + y  +\begin_inset Formula $x,y\in t(M)$ +\end_inset + +, sean  +\begin_inset Formula $b\in\text{ann}_{A}(x)\setminus0$ +\end_inset + + y  +\begin_inset Formula $c\in\text{ann}_{A}(y)\setminus0$ +\end_inset + +, entonces  +\begin_inset Formula $bc(x-y)=bcx-bcy=0-0=0$ +\end_inset + +, luego  +\begin_inset Formula $0\neq bc\in\text{ann}_{A}(x-y)$ +\end_inset + + y  +\begin_inset Formula $x-y\in t(M)$ +\end_inset + +, y como  +\begin_inset Formula $abx=0$ +\end_inset + + y  +\begin_inset Formula $ab\neq0$ +\end_inset + +,  +\begin_inset Formula $ax\in t(M)$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Para  +\begin_inset Formula $p\in{\cal P}$ +\end_inset + +, llamamos  +\series bold +subgrupo de  +\begin_inset Formula $p$ +\end_inset + +-torsión +\series default + de  +\begin_inset Formula $_{A}M$ +\end_inset + + a  +\begin_inset Formula $M(p)\coloneqq\{x\in M\mid x\text{ es de }p\text{-torsión}\}\leq_{A}M$ +\end_inset + +. + En efecto, para  +\begin_inset Formula $a\in A$ +\end_inset + + y  +\begin_inset Formula $x,y\in M(p)$ +\end_inset + +, existe  +\begin_inset Formula $s\in\mathbb{N}$ +\end_inset + + con  +\begin_inset Formula $p^{s}x=p^{s}y=0$ +\end_inset + + y entonces  +\begin_inset Formula $ap^{s}x=0$ +\end_inset + + y  +\begin_inset Formula $p^{s}(x+y)=0$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Para  +\begin_inset Formula $_{A}M$ +\end_inset + +,  +\begin_inset Formula $t(M)=\bigoplus_{p\in{\cal P}}M(p)$ +\end_inset + +. +  +\series bold +Demostración: +\series default + Claramente  +\begin_inset Formula $\sum_{p\in{\cal P}}M(p)\leq_{A}t(M)$ +\end_inset + +. + Para ver que la suma es directa, sean  +\begin_inset Formula $q\in{\cal P}$ +\end_inset + + y  +\begin_inset Formula $x\in M(q)\cap\sum_{p\in{\cal P}\setminus\{q\}}M(p)$ +\end_inset + +, existen  +\begin_inset Formula $s\in\mathbb{N}$ +\end_inset + + con  +\begin_inset Formula $q^{s}x=0$ +\end_inset + +, una descomposición  +\begin_inset Formula $x=x_{1}+\dots+x_{r}$ +\end_inset + + con cada  +\begin_inset Formula $x_{i}\in M(p_{i})$ +\end_inset + + para cierto  +\begin_inset Formula $p_{i}\in{\cal P}\setminus\{q\}$ +\end_inset + + y, para cada  +\begin_inset Formula $i$ +\end_inset + +,  +\begin_inset Formula $t_{i}\in\mathbb{N}$ +\end_inset + + con  +\begin_inset Formula $p_{i}^{t_{i}}x_{i}=0$ +\end_inset + +, con lo que si  +\begin_inset Formula $a\coloneqq\prod_{i=1}^{r}p_{i}^{t_{i}}$ +\end_inset + +,  +\begin_inset Formula $ax=0$ +\end_inset + +, pero  +\begin_inset Formula $\gcd\{q^{s},a\}=1$ +\end_inset + +, por lo que hay una identidad de Bézout  +\begin_inset Formula $q^{s}b+ac=1$ +\end_inset + + y por tanto  +\begin_inset Formula $x=1x=q^{s}bx+acx=0$ +\end_inset + +. + Queda ver que  +\begin_inset Formula $t(M)\subseteq\sum_{p\in{\cal P}}M(p)$ +\end_inset + +. + Sea  +\begin_inset Formula $x\in t(M)\setminus0$ +\end_inset + +,  +\begin_inset Formula $\text{ann}_{A}(x)\triangleleft A$ +\end_inset + +, pero como  +\begin_inset Formula $A$ +\end_inset + + es un DIP existen  +\begin_inset Formula $(b)\in A\setminus(A^{*}\cup\{0\})$ +\end_inset + + con  +\begin_inset Formula $\text{ann}_{A}(x)=(b)$ +\end_inset + + y una factorización en irreducibles  +\begin_inset Formula $b=up_{1}^{t_{1}}\cdots p_{r}^{t_{r}}$ +\end_inset + + con  +\begin_inset Formula $u\in A^{*}$ +\end_inset + +, los  +\begin_inset Formula $p_{i}\in{\cal P}$ +\end_inset + + irreducibles distintos y los  +\begin_inset Formula $t_{i}>0$ +\end_inset + +, y queremos ver que  +\begin_inset Formula $x\in\sum_{i=1}^{r}M(p_{i})\subseteq\sum_{p\in{\cal P}}M(p)$ +\end_inset + +. + Si  +\begin_inset Formula $r=1$ +\end_inset + +,  +\begin_inset Formula $x\in M(p_{1})$ +\end_inset + + y hemos terminado. + Si  +\begin_inset Formula $r>1$ +\end_inset + +, por inducción, como  +\begin_inset Formula $\gcd\{p_{1}^{t_{1}}\cdots p_{r-1}^{t_{r-1}},p_{r}^{t_{r}}\}=1$ +\end_inset + +, existe una identidad de Bézout  +\begin_inset Formula $p_{1}^{t_{1}}\cdots p_{r-1}^{t_{r-1}}b+p_{r}^{t_{r}}c=1$ +\end_inset + + y  +\begin_inset Formula $x=p_{1}^{t_{1}}\cdots p_{r-1}^{t_{r-1}}bx+p_{r}^{t_{r}}cx$ +\end_inset + +, donde el primer sumando es anulado por  +\begin_inset Formula $p_{r}^{t_{r}}$ +\end_inset + + y por tanto está en  +\begin_inset Formula $M(p_{r})$ +\end_inset + + y el segundo es anulado por  +\begin_inset Formula $p_{1}^{t_{1}}\cdots p_{r-1}^{t_{r-1}}$ +\end_inset + + y por tanto está en  +\begin_inset Formula $\sum_{i=1}^{r}M(p_{i})$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Si  +\begin_inset Formula $_{A}M\neq0$ +\end_inset + + es finitamente generado, existen  +\begin_inset Formula $p_{1},\dots,p_{r}\in{\cal P}$ +\end_inset + +, unívocamente determinados salvo permutación, tales que  +\begin_inset Formula $t(M)=\bigoplus_{i=1}^{r}M(p_{i})$ +\end_inset + + y cada  +\begin_inset Formula $M(p_{i})\neq0$ +\end_inset + +. +  +\series bold +Demostración: +\series default + Como  +\begin_inset Formula $A$ +\end_inset + + es noetheriano,  +\begin_inset Formula $M$ +\end_inset + + es noetheriano y  +\begin_inset Formula $t(M)$ +\end_inset + + es finitamente generado. + Como  +\begin_inset Formula $t(M)=\bigoplus_{p\in{\cal P}}M(p)$ +\end_inset + + es finitamente generado, digamos por  +\begin_inset Formula $\{x_{1},\dots,x_{s}\}$ +\end_inset + +, entendiendo la suma directa como externa, como cada  +\begin_inset Formula $x_{i}$ +\end_inset + + tiene una cantidad finita de elementos no nulos,  +\begin_inset Formula $(x_{1},\dots,x_{s})$ +\end_inset + + tiene una cantidad finita de índices no nulos y casi todo  +\begin_inset Formula $M(p)=0$ +\end_inset + +, luego  +\begin_inset Formula $t(M)=\bigoplus_{i=1}^{r}M(p_{i})$ +\end_inset + + para ciertos  +\begin_inset Formula $p_{i}$ +\end_inset + +. + La unicidad se sigue de que los  +\begin_inset Formula $p_{i}$ +\end_inset + + deben ser justo aquellos con  +\begin_inset Formula $M(p_{i})\neq0$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset Formula $_{A}M$ +\end_inset + + es  +\series bold +de torsión +\series default + si  +\begin_inset Formula $M=t(M)$ +\end_inset + +, y es  +\series bold +de  +\begin_inset Formula $p$ +\end_inset + +-torsión +\series default + para un  +\begin_inset Formula $p\in{\cal P}$ +\end_inset + + si  +\begin_inset Formula $M=M(p)$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +Si  +\begin_inset Formula $G$ +\end_inset + + es un grupo abeliano, es finitamente generado de torsión si y sólo si es + finito, y para  +\begin_inset Formula $p$ +\end_inset + + primo positivo, es de  +\begin_inset Formula $p$ +\end_inset + +-torsión finitamente generado si y sólo si es finito y  +\begin_inset Formula $p^{m}M=0$ +\end_inset + + para cierto  +\begin_inset Formula $m>0$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +Sean  +\begin_inset Formula $K$ +\end_inset + + un cuerpo y  +\begin_inset Formula $M_{(V,f)}$ +\end_inset + + el  +\begin_inset Formula $K[X]$ +\end_inset + +-módulo asociado a un par  +\begin_inset Formula $(V,f)$ +\end_inset + + de un espacio vectorial y un  +\begin_inset Formula $K$ +\end_inset + +-endomorfismo  +\begin_inset Formula $V\to V$ +\end_inset + +,  +\begin_inset Formula $M_{(V,f)}$ +\end_inset + + es de torsión finitamente generado si y sólo si  +\begin_inset Formula $_{K}V$ +\end_inset + + es de dimensión finita, y si  +\begin_inset Formula $p\in K[X]$ +\end_inset + + es irreducible,  +\begin_inset Formula $M_{(V,f)}$ +\end_inset + + es finitamente generado de  +\begin_inset Formula $p$ +\end_inset + +-torsión si y sólo si  +\begin_inset Formula $_{K}V$ +\end_inset + + es de dimensión finita y  +\begin_inset Formula $p(f)^{m}=0\in\text{End}_{K}(V)$ +\end_inset + + para cierto  +\begin_inset Formula $m>0$ +\end_inset + +. +\begin_inset Foot +status open + +\begin_layout Plain Layout +¿Qué será  +\begin_inset Formula $p(f)^{m}$ +\end_inset + +? +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Section +Parte libre de torsión de un módulo finitamente generado +\end_layout + +\begin_layout Standard +\begin_inset Formula $_{A}F$ +\end_inset + + es  +\series bold +libre de torsión +\series default + si  +\begin_inset Formula $t(F)=0$ +\end_inset + +. + Llamamos  +\series bold +parte libre de torsión +\series default + de  +\begin_inset Formula $_{A}M$ +\end_inset + + a  +\begin_inset Formula $\frac{M}{t(M)}$ +\end_inset + +, que es libre de torsión. +  +\series bold +Demostración: +\series default + Queremos ver que, para  +\begin_inset Formula $\overline{x}\in\frac{M}{t(M)}\setminus0$ +\end_inset + + es  +\begin_inset Formula $\text{ann}_{A}(\overline{x})=0$ +\end_inset + +. + Sean entonces  +\begin_inset Formula $x\in M$ +\end_inset + + con  +\begin_inset Formula $\text{ann}_{A}(\overline{x})\neq0$ +\end_inset + + y  +\begin_inset Formula $a\in A\setminus0$ +\end_inset + + con  +\begin_inset Formula $a\overline{x}=0$ +\end_inset + +, entonces  +\begin_inset Formula $ax\in t(M)$ +\end_inset + + y existe  +\begin_inset Formula $b\in A\setminus0$ +\end_inset + + con  +\begin_inset Formula $bax=0$ +\end_inset + +, luego  +\begin_inset Formula $x\in t(M)$ +\end_inset + + y  +\begin_inset Formula $\overline{x}=0$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Todo  +\begin_inset Formula $A$ +\end_inset + +-módulo libre es libre de torsión, pues es isomorfo a un  +\begin_inset Formula $A^{(I)}$ +\end_inset + + y, si hubiera un  +\begin_inset Formula $a\in A$ +\end_inset + + y un  +\begin_inset Formula $v\in A^{(I)}$ +\end_inset + + con  +\begin_inset Formula $av=0$ +\end_inset + +, como estamos en un dominio,  +\begin_inset Formula $a=0$ +\end_inset + + o  +\begin_inset Formula $v=0$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Como  +\series bold +teorema +\series default +: +\end_layout + +\begin_layout Enumerate +Un  +\begin_inset Formula $A$ +\end_inset + +-módulo es finitamente generado y libre de torsión si y sólo si es libre + de rango finito. +\end_layout + +\begin_deeper +\begin_layout Enumerate +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\implies]$ +\end_inset + + +\end_layout + +\end_inset + +Para  +\begin_inset Formula $_{A}F=0$ +\end_inset + + es obvio. + Si  +\begin_inset Formula $_{A}F\neq0$ +\end_inset + +, sean  +\begin_inset Formula $X=\{x_{1},\dots,x_{n}\}$ +\end_inset + + un generador finito de  +\begin_inset Formula $F$ +\end_inset + + y  +\begin_inset Formula $S=\{x_{1},\dots,x_{k}\}$ +\end_inset + + con  +\begin_inset Formula $k\leq n$ +\end_inset + + un subconjunto linealmente independiente maximal,  +\begin_inset Formula $G\coloneqq(x_{1},\dots,x_{k})\leq_{A}F$ +\end_inset + + es libre con base  +\begin_inset Formula $S$ +\end_inset + +. +  +\begin_inset Formula $\frac{F}{G}$ +\end_inset + + es finitamente generado, y queremos ver que es de torsión. + Para  +\begin_inset Formula $x\in X\setminus S$ +\end_inset + +,  +\begin_inset Formula $S\cup\{x\}$ +\end_inset + + no es linealmente independiente, luego existen  +\begin_inset Formula $a_{1},\dots,a_{k},a\in A$ +\end_inset + + no todos nulos con  +\begin_inset Formula $a_{1}x_{1}+\dots+a_{k}x_{k}=ax$ +\end_inset + +, lo que implica que  +\begin_inset Formula $a\neq0$ +\end_inset + + y que  +\begin_inset Formula $ax\in(X)=G$ +\end_inset + +, luego  +\begin_inset Formula $a\overline{x}=0$ +\end_inset + + con  +\begin_inset Formula $a\neq0$ +\end_inset + + y  +\begin_inset Formula $\overline{x}\in t(\frac{F}{G})$ +\end_inset + +. + Entonces, como  +\begin_inset Formula $\frac{F}{G}=(\overline{X})=(\overline{x_{1}},\dots,\overline{x_{n}})=(\overline{0},\dots,\overline{0},\overline{x_{k+1}},\dots,\overline{x_{n}})=(\overline{X\setminus S})$ +\end_inset + +,  +\begin_inset Formula $X\subseteq t(\frac{F}{G})$ +\end_inset + + y  +\begin_inset Formula $\frac{F}{G}=t(\frac{F}{G})$ +\end_inset + +. + Por tanto, para  +\begin_inset Formula $i\in\{k+1,\dots,n\}$ +\end_inset + + existe  +\begin_inset Formula $a_{i}\in A\setminus0$ +\end_inset + + con  +\begin_inset Formula $a_{i}\overline{x_{i}}=0$ +\end_inset + +, luego  +\begin_inset Formula $r\coloneqq a_{k+1}\cdots a_{n}\neq0$ +\end_inset + + cumple  +\begin_inset Formula $rx\in G$ +\end_inset + + para todo  +\begin_inset Formula $x\in X$ +\end_inset + + y por tanto  +\begin_inset Formula $rF\subseteq G$ +\end_inset + +, pero  +\begin_inset Formula $F\to rF$ +\end_inset + + dada por  +\begin_inset Formula $z\mapsto rz$ +\end_inset + + es un  +\begin_inset Formula $A$ +\end_inset + +-isomorfismo ya que es un epimorfismo y, como  +\begin_inset Formula $r$ +\end_inset + + es libre de torsión,  +\begin_inset Formula $z\neq0\implies rz\neq0$ +\end_inset + +. + Entonces, como  +\begin_inset Formula $G$ +\end_inset + + es libre y  +\begin_inset Formula $rF\leq_{A}G$ +\end_inset + +,  +\begin_inset Formula $rF$ +\end_inset + + es libre y por tanto  +\begin_inset Formula $F$ +\end_inset + + también con  +\begin_inset Formula $\text{rg}F\leq\text{rg}G=k$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\impliedby]$ +\end_inset + + +\end_layout + +\end_inset + +Es libre de torsión por ser libre y es finitamente generado por ser de rango + finito. +\end_layout + +\end_deeper +\begin_layout Enumerate +Todo  +\begin_inset Formula $_{A}M$ +\end_inset + + finitamente generado admite una descomposición en suma directa interna +  +\begin_inset Formula $M=t(M)\oplus L$ +\end_inset + + con  +\begin_inset Formula $_{A}L$ +\end_inset + + libre de rango finito. +\end_layout + +\begin_deeper +\begin_layout Standard +\begin_inset Formula $\frac{M}{t(M)}$ +\end_inset + + es finitamente generado y libre de torsión, y por el apartado anterior + es libre de rango finito, luego la proyección canónica  +\begin_inset Formula $p:M\twoheadrightarrow\frac{M}{t(M)}$ +\end_inset + + tiene inversa por la derecha  +\begin_inset Formula $\alpha:\frac{M}{t(M)}\to M$ +\end_inset + + y si  +\begin_inset Formula $L\coloneqq\text{Im}\alpha\cong\frac{M}{t(M)}$ +\end_inset + +,  +\begin_inset Formula $M=\ker p\oplus\text{Im}\alpha=t(M)\oplus F$ +\end_inset + + con  +\begin_inset Formula $F$ +\end_inset + + libre de rango finito. +\end_layout + +\end_deeper +\begin_layout Enumerate +Si  +\begin_inset Formula $_{A}F$ +\end_inset + + es libre de rango finito,  +\begin_inset Formula $|S|=\text{rg}F$ +\end_inset + + para todo  +\begin_inset Formula $S\subseteq F$ +\end_inset + + linealmente independiente maximal. +  +\end_layout + +\begin_deeper +\begin_layout Standard +\begin_inset Formula $S$ +\end_inset + + es finito porque, de no serlo,  +\begin_inset Formula $G\coloneqq(S)$ +\end_inset + + sería un submódulo libre de rango infinito de uno de rango finito, y como +  +\begin_inset Formula $\frac{F}{G}$ +\end_inset + + es finitamente generado con un cierto generador  +\begin_inset Formula $\{\overline{y_{1}},\dots,\overline{y_{s}}\}$ +\end_inset + +,  +\begin_inset Formula $X\coloneqq S\cup\{y_{1},\dots,y_{s}\}$ +\end_inset + + es un generador finito de  +\begin_inset Formula $F$ +\end_inset + + en que  +\begin_inset Formula $S$ +\end_inset + + es linealmente independiente maximal. + Entonces, por un argumento como el del primer apartado, existe  +\begin_inset Formula $r\in F$ +\end_inset + + con  +\begin_inset Formula $rF\leq_{A}G\leq_{A}F$ +\end_inset + + y  +\begin_inset Formula $rF\cong F$ +\end_inset + +, pero como  +\begin_inset Formula $G$ +\end_inset + + es libre,  +\begin_inset Formula $rF\cong F$ +\end_inset + + también y  +\begin_inset Formula $\text{rg}F\leq\text{rg}G$ +\end_inset + +, y como ahora  +\begin_inset Formula $F$ +\end_inset + + es libre,  +\begin_inset Formula $\text{rg}G\leq\text{rg}F$ +\end_inset + +, luego  +\begin_inset Formula $\text{rg}F=\text{rg}G=|S|$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Section +Módulos finitamente generados de  +\begin_inset Formula $p$ +\end_inset + +-torsión sobre un DIP +\end_layout + +\begin_layout Standard +En un anillo conmutativo unitario  +\begin_inset Formula $A$ +\end_inset + + arbitrario,  +\begin_inset Formula $N\leq_{A}M$ +\end_inset + + es un  +\series bold +submódulo esencial +\series default + de  +\begin_inset Formula $M$ +\end_inset + + si  +\begin_inset Formula $\forall L\leq_{A}M,(L\neq0\implies L\cap N\neq0)$ +\end_inset + +, y un monomorfismo de  +\begin_inset Formula $A$ +\end_inset + +-módulos  +\begin_inset Formula $f:L\rightarrowtail M$ +\end_inset + + es un  +\series bold +monomorfismo esencial +\series default + si su imagen es un submódulo esencial de  +\begin_inset Formula $M$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Si  +\begin_inset Formula $A$ +\end_inset + + es un anillo conmutativo unitario arbitrario: +\end_layout + +\begin_layout Enumerate +Si  +\begin_inset Formula $N\leq_{A}M$ +\end_inset + +, un  +\series bold +pseudocomplemento +\series default + de  +\begin_inset Formula $N$ +\end_inset + + en  +\begin_inset Formula $M$ +\end_inset + + es un elemento maximal  +\begin_inset Formula $X$ +\end_inset + + de  +\begin_inset Formula ${\cal C}_{N}(M)\coloneqq\{L\leq_{A}M:L\cap N=0\}$ +\end_inset + + por inclusión, que siempre existe. + El homomorfismo  +\begin_inset Formula $f:N\hookrightarrow M\overset{\pi}{\twoheadrightarrow}\frac{M}{X}$ +\end_inset + + es un monomorfismo esencial, y es un isomorfismo si y sólo si  +\begin_inset Formula $X$ +\end_inset + + es complemento directo de  +\begin_inset Formula $N$ +\end_inset + + en  +\begin_inset Formula $M$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Standard +La existencia es por el lema de Zorn. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +TODO +\end_layout + +\end_inset + + +\end_layout + +\end_deeper +\begin_layout Enumerate +Si  +\begin_inset Formula $A$ +\end_inset + + es un dominio, los ideales ( +\begin_inset Formula $A$ +\end_inset + +-submódulos) esenciales de  +\begin_inset Formula $A$ +\end_inset + + son precisamente los ideales no nulos. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +TODO +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +Si  +\begin_inset Formula $A$ +\end_inset + + es un dominio,  +\begin_inset Formula $_{A}F$ +\end_inset + + es libre y  +\begin_inset Formula $N\leq_{A}F$ +\end_inset + + contiene un subconjunto linealmente independiente maximal de  +\begin_inset Formula $F$ +\end_inset + + entonces  +\begin_inset Formula $N$ +\end_inset + + es un submódulo esencial de  +\begin_inset Formula $F$ +\end_inset + +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +TODO +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset Formula $_{A}M$ +\end_inset + + es finitamente generado de  +\begin_inset Formula $p$ +\end_inset + +-torsión para cierto  +\begin_inset Formula $p\in{\cal P}$ +\end_inset + +, existen  +\begin_inset Formula $r>0$ +\end_inset + + y  +\begin_inset Formula $0<n_{1}\leq\dots\leq n_{r}$ +\end_inset + + únicos tales que  +\begin_inset Formula $M\cong\frac{A}{(p^{n_{1}})}\oplus\dots\oplus\frac{A}{(p^{n_{r}})}$ +\end_inset + +. +\end_layout + +\begin_layout Standard + +\series bold +Demostración: +\series default + El enunciado se puede reescribir cambiando  +\begin_inset Formula $0<n_{1}\leq\dots\leq n_{r}$ +\end_inset + + por  +\begin_inset Formula $n_{1}\geq\dots\geq n_{r}>0$ +\end_inset + +. + Sea  +\begin_inset Formula $X=\{x_{1},\dots,x_{k}\}$ +\end_inset + + un generador de  +\begin_inset Formula $M$ +\end_inset + +, para la existencia hacemos inducción en  +\begin_inset Formula $k$ +\end_inset + +. +\end_layout + +\begin_layout Itemize +Si  +\begin_inset Formula $k=1$ +\end_inset + +,  +\begin_inset Formula $M=(x_{1})$ +\end_inset + + y, como  +\begin_inset Formula $x_{1}$ +\end_inset + + es de  +\begin_inset Formula $p$ +\end_inset + +-torsión, existe  +\begin_inset Formula $n>0$ +\end_inset + + con  +\begin_inset Formula $\text{ann}_{A}(x_{1})=(p^{n})$ +\end_inset + +, luego  +\begin_inset Formula $\frac{A}{(p^{n})}=\frac{A}{\text{ann}_{A}(x_{1})}\cong(x_{1})=M$ +\end_inset + + por el primer teorema de isomorfía sobre  +\begin_inset Formula $a\mapsto ax_{1}$ +\end_inset + +. +\end_layout + +\begin_layout Itemize +Si  +\begin_inset Formula $k>1$ +\end_inset + +, sea  +\begin_inset Formula $n_{1}>0$ +\end_inset + + mínimo con  +\begin_inset Formula $p^{n_{1}}x_{i}=0$ +\end_inset + + para todo  +\begin_inset Formula $i$ +\end_inset + +, entonces  +\begin_inset Formula $p^{n_{1}}M=0\neq p^{n_{1}-1}M$ +\end_inset + +, y podemos suponer  +\begin_inset Formula $p^{n_{1}-1}x_{1}\neq0$ +\end_inset + +. + Sean ahora  +\begin_inset Formula $Z$ +\end_inset + + un pseudocomplemento de  +\begin_inset Formula $(x_{1})$ +\end_inset + + en  +\begin_inset Formula $M$ +\end_inset + + y  +\begin_inset Formula $f:(x_{1})\hookrightarrow M\overset{\pi}{\twoheadrightarrow}\frac{M}{Z}$ +\end_inset + + un monomorfismo esencial,  +\begin_inset Formula $p^{n_{1}}\frac{M}{Z}=\{\overline{p^{n_{1}}m}\}_{m\in\mathbb{Z}}=0$ +\end_inset + + y  +\begin_inset Formula $p^{n_{1}-1}f(x_{1})=f(p^{n_{1}-1}x_{1})\neq0$ +\end_inset + +. +  +\end_layout + +\begin_deeper +\begin_layout Standard +Supongamos  +\begin_inset Formula $(y_{1}\coloneqq f(x_{1}))\subsetneq\frac{M}{Z}$ +\end_inset + +. + Sean  +\begin_inset Formula $\xi\in M\setminus(y_{1})$ +\end_inset + + y  +\begin_inset Formula $k\coloneqq\min\{i\in\mathbb{N}^{*}\mid p^{i}\xi\in(y_{1})\}$ +\end_inset + +, que existe porque  +\begin_inset Formula $p^{n_{1}}\xi=0\in(y_{1})$ +\end_inset + +, entonces  +\begin_inset Formula $p^{k}\xi\in(y_{1})$ +\end_inset + + y  +\begin_inset Formula $p^{k-1}\xi\notin(y_{1})$ +\end_inset + +, luego  +\begin_inset Formula $z\coloneqq p^{k-1}\xi\in M\setminus(y_{1})$ +\end_inset + + cumple  +\begin_inset Formula $pz\in(y_{1})$ +\end_inset + + y existe  +\begin_inset Formula $a\in A$ +\end_inset + + con  +\begin_inset Formula $pz=ay_{1}$ +\end_inset + +. + En la factorización  +\begin_inset Formula $a\eqqcolon p^{t}b$ +\end_inset + + con  +\begin_inset Formula $t\in\mathbb{N}$ +\end_inset + + y  +\begin_inset Formula $p\nmid b$ +\end_inset + +, se tiene  +\begin_inset Formula $t>0$ +\end_inset + +. + En efecto, si no lo fuera sería  +\begin_inset Formula $pz=bx$ +\end_inset + + con  +\begin_inset Formula $b$ +\end_inset + + y  +\begin_inset Formula $p$ +\end_inset + + coprimos, pero como  +\begin_inset Formula $p^{n_{1}}\frac{M}{Z}=0$ +\end_inset + +,  +\begin_inset Formula $\frac{M}{Z}$ +\end_inset + + se puede ver como un  +\begin_inset Formula $\frac{A}{(p^{n_{1}})}$ +\end_inset + +-módulo y entonces  +\begin_inset Formula $\overline{b}=b+(p^{n_{1}})$ +\end_inset + + es unidad de  +\begin_inset Formula $\frac{A}{(p^{n_{1}})}$ +\end_inset + + y  +\begin_inset Formula $(\overline{y_{1}})=(\overline{by_{1}})$ +\end_inset + +, y por la correspondencia,  +\begin_inset Formula $(y_{1})=(by_{1})$ +\end_inset + +, con lo que existe  +\begin_inset Formula $a$ +\end_inset + + tal que  +\begin_inset Formula $aby_{1}=y_{1}$ +\end_inset + + y como  +\begin_inset Formula $p^{n-1}y_{1}=p^{n-1}aby_{1}\neq0$ +\end_inset + + es  +\begin_inset Formula $p^{n}z=p^{n-1}by_{1}\neq0$ +\end_inset + +, pero  +\begin_inset Formula $p^{n}M=0\#$ +\end_inset + +. + Por tanto  +\begin_inset Formula $t>0$ +\end_inset + +, luego  +\begin_inset Formula $pz=p^{t}by_{1}$ +\end_inset + + y  +\begin_inset Formula $p(z-p^{t-1}by_{1})=0$ +\end_inset + +. + Sea entonces  +\begin_inset Formula $y'\coloneqq z-p^{t-1}by_{1}$ +\end_inset + +,  +\begin_inset Formula $y'\notin(y_{1})$ +\end_inset + + porque  +\begin_inset Formula $z\notin(y_{1})$ +\end_inset + + y  +\begin_inset Formula $py'=0$ +\end_inset + +, pero entonces  +\begin_inset Formula $\frac{A}{(p)}\to(y')$ +\end_inset + + dado por  +\begin_inset Formula $a+(p)\mapsto ay'$ +\end_inset + + es un isomorfismo de  +\begin_inset Formula $A$ +\end_inset + +-módulos y los únicos submódulos de  +\begin_inset Formula $(y')$ +\end_inset + + son 0 e  +\begin_inset Formula $(y')$ +\end_inset + +, pero  +\begin_inset Formula $(y_{1})$ +\end_inset + + es esencial por ser la imagen de un monomorfismo esencial, luego  +\begin_inset Formula $(y_{1})\cap(y')\neq0$ +\end_inset + + y por tanto  +\begin_inset Formula $(y_{1})\cap(y')=(y')$ +\end_inset + + e  +\begin_inset Formula $(y')\subseteq(y_{1})$ +\end_inset + +, pero  +\begin_inset Formula $y'\notin(y_{1})\#$ +\end_inset + +. + Por tanto  +\begin_inset Formula $\frac{M}{Z}=(y_{1})$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Con esto  +\begin_inset Formula $f$ +\end_inset + + es un isomorfismo y  +\begin_inset Formula $M=(x_{1})\oplus Z\cong\frac{A}{(p^{n_{1}})}\oplus Z$ +\end_inset + +, pero entonces  +\begin_inset Formula $Z\cong\frac{(x_{1})\oplus Z}{(x_{1})}=\frac{M}{(x_{1})}$ +\end_inset + +, que es un  +\begin_inset Formula $A$ +\end_inset + +-módulo generado por  +\begin_inset Formula $\{\overline{x_{2}},\dots,\overline{x_{k}}\}$ +\end_inset + +, y por hipótesis de inducción,  +\begin_inset Formula $Z\cong\frac{A}{(p^{n_{2}})}\oplus\dots\oplus\frac{A}{(p^{n_{r}})}$ +\end_inset + + con  +\begin_inset Formula $n_{2}\geq\dots\geq n_{r}>0$ +\end_inset + + y se tiene  +\begin_inset Formula $n_{2}=\min\{s\in\mathbb{N}^{*}\mid p^{s}Z=0\}$ +\end_inset + +, pero  +\begin_inset Formula $p^{n_{1}}Z\subseteq p^{n_{1}}M=0$ +\end_inset + +, luego  +\begin_inset Formula $n_{1}\geq n_{2}$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Standard +Para la unicidad, si  +\begin_inset Formula $M\cong\frac{A}{(p^{n_{1}})}\oplus\dots\oplus\frac{A}{(p^{n_{r}})}\cong\frac{A}{(p^{m_{1}})}\oplus\dots\oplus\frac{A}{(p^{m_{s}})}$ +\end_inset + + con  +\begin_inset Formula $r,s>0$ +\end_inset + +,  +\begin_inset Formula $0<n_{1}\leq\dots\leq n_{r}$ +\end_inset + + y  +\begin_inset Formula $0<m_{1}\leq\dots\leq m_{s}$ +\end_inset + +,  +\begin_inset Formula $M\cong\frac{A}{(p^{n_{1}})}\times\dots\times\frac{A}{(p^{n_{r}})}$ +\end_inset + + y  +\begin_inset Formula $\frac{M}{pM}\cong\bigoplus_{i=1}^{r}\frac{A}{(p)}\cong\left(\frac{A}{(p)}\right)^{r}$ +\end_inset + +, y análogamente  +\begin_inset Formula $\frac{M}{pM}\cong\left(\frac{A}{(p)}\right)^{s}$ +\end_inset + +, pero como  +\begin_inset Formula $(p)$ +\end_inset + + es maximal,  +\begin_inset Formula $\frac{A}{(p)}$ +\end_inset + + es un cuerpo y los isomorfismos son entre  +\begin_inset Formula $\frac{A}{(p)}$ +\end_inset + +-espacios vectoriales, luego  +\begin_inset Formula $r=s$ +\end_inset + + por la unicidad de la dimensión entre espacios vectoriales. + Entonces  +\begin_inset Formula $n_{1}$ +\end_inset + + es el mínimo  +\begin_inset Formula $j>0$ +\end_inset + + tal que  +\begin_inset Formula $p^{j}M$ +\end_inset + + admite una descomposición en menos de  +\begin_inset Formula $r$ +\end_inset + + sumandos y  +\begin_inset Formula $m_{1}$ +\end_inset + + también, luego  +\begin_inset Formula $n_{1}=m_{1}$ +\end_inset + +. + Por inducción en  +\begin_inset Formula $r$ +\end_inset + +: +\end_layout + +\begin_layout Itemize +Si  +\begin_inset Formula $r=1$ +\end_inset + + hemos terminado. +\end_layout + +\begin_layout Itemize +Si  +\begin_inset Formula $r>1$ +\end_inset + +,  +\begin_inset Formula $p^{n_{1}}M\cong\bigoplus_{i\geq2}\frac{(p^{n_{1}})}{(p^{n_{i}})}\cong\bigoplus_{i}\frac{A}{(p^{n_{i}-n_{1}})}$ +\end_inset + + y del mismo modo  +\begin_inset Formula $p^{n_{1}}M\cong\bigoplus_{i\geq2}\frac{A}{(p^{m_{i}-n_{1}})}$ +\end_inset + +, y tomando el mínimo  +\begin_inset Formula $t$ +\end_inset + + con  +\begin_inset Formula $n_{t}>n_{1}$ +\end_inset + + y el mínimo  +\begin_inset Formula $t'$ +\end_inset + + con  +\begin_inset Formula $n_{t'}>n_{1}$ +\end_inset + +, por hipótesis de inducción,  +\begin_inset Formula $(n_{i}-n_{1})_{i\geq t}=(m_{i}-m_{1})_{i\geq t'}$ +\end_inset + +, con lo que  +\begin_inset Formula $t=t'$ +\end_inset + + y hay exactamente  +\begin_inset Formula $t-1$ +\end_inset + + apariciones de  +\begin_inset Formula $\frac{A}{(p^{n_{1}})}$ +\end_inset + + y de  +\begin_inset Formula $\frac{A}{(p^{m_{1}})}$ +\end_inset + +, pero  +\begin_inset Formula $n_{1}=m_{1}$ +\end_inset + +, luego al final cada  +\begin_inset Formula $n_{i}=m_{i}$ +\end_inset + +. +\end_layout + +\begin_layout Section +Módulos finitamente generados sobre un DIP +\end_layout + +\begin_layout Standard +Como  +\series bold +teorema +\series default +, si  +\begin_inset Formula $_{A}M\neq0$ +\end_inset + + es finitamente generado, existen un único  +\begin_inset Formula $r\in\mathbb{N}$ +\end_inset + +, el  +\series bold +rango libre de torsión +\series default + de  +\begin_inset Formula $M$ +\end_inset + +, y una familia  +\begin_inset Formula $p_{1}^{n_{11}},\dots,p_{1}^{n_{1r_{1}}},\dots,p_{k}^{n_{k1}},\dots p_{k}^{n_{kr_{k}}}$ +\end_inset + + de  +\series bold +divisores elementales +\series default + de  +\begin_inset Formula $M$ +\end_inset + +, única salvo asociados y orden de los  +\begin_inset Formula $p_{i}$ +\end_inset + +, con los  +\begin_inset Formula $p_{i}$ +\end_inset + + irreducibles no asociados dos a dos y  +\begin_inset Formula $0<n_{i1}\leq\dots\leq n_{ir_{i}}$ +\end_inset + + para cada  +\begin_inset Formula $i$ +\end_inset + +, de forma que  +\begin_inset Formula  +\[ +M\cong A^{r}\oplus\bigoplus_{i=1}^{k}\bigoplus_{j=1}^{r_{i}}\frac{A}{(p_{i}^{n_{ij}})}, +\] + +\end_inset + +lo que llamamos la  +\series bold +descomposición indescomponible +\series default + de  +\begin_inset Formula $M$ +\end_inset + +. +  +\series bold +Demostración: +\series default +  +\begin_inset Formula $M\cong t(M)\oplus\frac{M}{t(M)}$ +\end_inset + + con  +\begin_inset Formula $\frac{M}{t(M)}$ +\end_inset + + libre de rango finito  +\begin_inset Formula $r$ +\end_inset + +, con lo que  +\begin_inset Formula $M\cong A^{r}\oplus t(M)$ +\end_inset + +. + Ahora bien, existen irreducibles distintos  +\begin_inset Formula $p_{1},\dots,p_{k}\in{\cal P}$ +\end_inset + + con  +\begin_inset Formula $t(M)=M(p_{1})\oplus\dots\oplus M(p_{k})$ +\end_inset + + y cada  +\begin_inset Formula $M(p_{i})\neq0$ +\end_inset + +, pero como cada  +\begin_inset Formula $M(p_{i})$ +\end_inset + + es finitamente generado de  +\begin_inset Formula $p_{i}$ +\end_inset + +-torsión existen  +\begin_inset Formula $0<n_{i1}\leq\dots\leq n_{ir_{i}}$ +\end_inset + + con  +\begin_inset Formula $M(p_{i})\cong\bigoplus_{j=1}^{r_{i}}\frac{A}{(p_{i}^{n_{ij}})}$ +\end_inset + +. + Para la unicidad, si hay otra descomposición  +\begin_inset Formula $M\cong A^{s}\oplus\bigoplus_{i=1}^{l}\bigoplus_{j=1}^{s_{i}}\frac{A}{(q_{i}^{m_{ij}})}$ +\end_inset + + de la misma forma, donde podemos suponer que los  +\begin_inset Formula $q_{i}\in{\cal P}$ +\end_inset + +, la parte libre de torsión de la suma es isomorfa a  +\begin_inset Formula $A^{s}$ +\end_inset + + y por tanto  +\begin_inset Formula $\frac{M}{t(M)}\cong A^{s}$ +\end_inset + +, y la parte de torsión isomorfa al sumando derecho y a  +\begin_inset Formula $t(M)=M(p_{1})\oplus\dots\oplus M(p_{k})=M(q_{1})\oplus\dots\oplus M(q_{l})$ +\end_inset + +, luego por unicidad queda  +\begin_inset Formula $\{p_{1},\dots,p_{k}\}=\{q_{1},\dots,q_{l}\}$ +\end_inset + +,  +\begin_inset Formula $k=l$ +\end_inset + + y, reordenando, cada  +\begin_inset Formula $p_{i}=q_{i}$ +\end_inset + +.Entonces, como cada  +\begin_inset Formula $M(p_{i})$ +\end_inset + + es de  +\begin_inset Formula $p_{i}$ +\end_inset + +-torsión, por la proposición anterior es  +\begin_inset Formula $(n_{i1},\dots,n_{ir_{i}})=(m_{i1},\dots,m_{ir_{i}})$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Si  +\begin_inset Formula $_{A}M$ +\end_inset + + es finitamente generado, existe una descomposición  +\begin_inset Formula $M=L\oplus\bigoplus_{i=1}^{k}\bigoplus_{j=1}^{r_{i}}M_{ij}$ +\end_inset + + como suma directa interna con  +\begin_inset Formula $L$ +\end_inset + + libre de rango igual al rango libre de torsión de  +\begin_inset Formula $M$ +\end_inset + + y cada  +\begin_inset Formula $M_{ij}\cong\frac{A}{(p_{i}^{n_{ij}})}$ +\end_inset + +, siendo los  +\begin_inset Formula $p_{i}^{n_{ij}}$ +\end_inset + + los divisores elementales de  +\begin_inset Formula $M$ +\end_inset + +. + En efecto, por el teorema hay un isomorfismo  +\begin_inset Formula $\phi:A^{r}\oplus\bigoplus_{i=1}^{k}\bigoplus_{j=1}^{r_{i}}\frac{A}{(p_{i}^{n_{ij}})}\to M$ +\end_inset + + y basta tomar  +\begin_inset Formula $L\coloneqq\phi(A^{r})$ +\end_inset + + y  +\begin_inset Formula $M_{ij}\coloneqq\phi(\frac{A}{(p_{i}^{n_{ij}})})$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Como  +\series bold +teorema +\series default +, si  +\begin_inset Formula $_{A}M\neq0$ +\end_inset + + es finitamente generado, existe un único  +\begin_inset Formula $r\in\mathbb{N}^{*}$ +\end_inset + + y una única secuencia  +\begin_inset Formula $d_{1},\dots,d_{t}\in A\setminus(A^{*}\cup\{0\})$ +\end_inset + + de  +\series bold +factores invariantes +\series default + de  +\begin_inset Formula $M$ +\end_inset + +, única salvo asociados, tal que  +\begin_inset Formula $d_{1}\mid\dots\mid d_{t}$ +\end_inset + + y  +\begin_inset Formula  +\[ +M\cong A^{r}\oplus\bigoplus_{j=1}^{t}\frac{A}{(d_{j})}, +\] + +\end_inset + +y de hecho  +\begin_inset Formula $r$ +\end_inset + + es el rango libre de torsión de  +\begin_inset Formula $A$ +\end_inset + + y si  +\begin_inset Formula $(p_{i}^{n_{ij}})_{1\leq i\leq k}^{1\leq j\leq r_{i}}$ +\end_inset + + son los divisores elementales de  +\begin_inset Formula $M$ +\end_inset + +,  +\begin_inset Formula $t\coloneqq\max_{i}r_{i}$ +\end_inset + + y cada  +\begin_inset Formula $d_{j}=\prod_{i}p_{i}^{n_{i,r_{i}-t+j}}$ +\end_inset + +, tomando  +\begin_inset Formula $n_{ij}\coloneqq0$ +\end_inset + + para  +\begin_inset Formula $j<0$ +\end_inset + +. +  +\series bold +Demostración: +\series default + Claramente  +\begin_inset Formula $d_{1}\mid\dots\mid d_{t}$ +\end_inset + + y, como  +\begin_inset Formula $\frac{A}{(d_{j})}\cong\bigoplus_{i}\frac{A}{(p_{i}^{n_{i,r_{i}-t+j}})}$ +\end_inset + +,  +\begin_inset Formula $\bigoplus_{j=1}^{t}\frac{A}{(d_{j})}\cong\bigoplus_{i=1}^{k}\bigoplus_{j=1}^{r_{i}}\frac{A}{(p_{i}^{n_{ij}})}$ +\end_inset + +. + Para la unicidad, la de  +\begin_inset Formula $r$ +\end_inset + + es como en el teorema anterior, y para la del sumando derecho queremos + ver que toda descomposición  +\begin_inset Formula $t(M)\cong\bigoplus_{j=1}^{u}\frac{A}{(\delta_{j})}$ +\end_inset + + con los  +\begin_inset Formula $\delta_{j}\notin A^{*}\cup\{0\}$ +\end_inset + + y  +\begin_inset Formula $\delta_{1}\mid\dots\mid\delta_{u}$ +\end_inset + + cumple  +\begin_inset Formula $t=u$ +\end_inset + + y  +\begin_inset Formula $\frac{A}{(\delta_{j})}\cong\frac{A}{(d_{j})}$ +\end_inset + +, y entonces  +\begin_inset Formula $\delta_{j}$ +\end_inset + + y  +\begin_inset Formula $d_{j}$ +\end_inset + + serán asociados. + Cada  +\begin_inset Formula $\delta_{k}$ +\end_inset + + debe ser suma de submódulos de los  +\begin_inset Formula $\frac{A}{(p_{i}^{n_{ij}})}$ +\end_inset + +, pero estos submódulos son de la forma  +\begin_inset Formula $\frac{A}{(p_{i}^{z})}$ +\end_inset + + para ciertos  +\begin_inset Formula $z$ +\end_inset + +, por lo que finalmente  +\begin_inset Formula $\delta_{j}$ +\end_inset + + debe ser de la forma  +\begin_inset Formula $p_{1}^{m_{1j}}\cdots p_{k}^{m_{kj}}$ +\end_inset + + para ciertos  +\begin_inset Formula $m_{kj}$ +\end_inset + +, y claramente para cada  +\begin_inset Formula $i$ +\end_inset + + es  +\begin_inset Formula $0\leq m_{i1}\leq\dots\leq m_{iu}$ +\end_inset + +. + Por el teorema chino de los restos,  +\begin_inset Formula $\frac{A}{(\delta_{j})}\cong\bigoplus_{i=1}^{k}\frac{A}{(p_{i}^{m_{ij}})}$ +\end_inset + + y por tanto  +\begin_inset Formula $t(M)\cong\bigoplus_{i,j}\frac{A}{(p_{i}^{m_{ij}})}$ +\end_inset + +, lo que tras eliminar los sumandos nulos y reordenar debe coincidir con + la descomposición indescomponible de  +\begin_inset Formula $t(M)$ +\end_inset + +, lo que junto a que  +\begin_inset Formula $0\leq m_{i1}\leq\dots\leq m_{iu}$ +\end_inset + + determina los  +\begin_inset Formula $m_{ij}$ +\end_inset + + y por tanto los  +\begin_inset Formula $\delta_{j}$ +\end_inset + + salvo asociados. +\end_layout + +\begin_layout Standard +Así, si  +\begin_inset Formula $_{A}M\neq0$ +\end_inset + + es finitamente generado, se puede expresar como suma directa interna de + la forma  +\begin_inset Formula $L\oplus\bigoplus_{i=1}^{t}M_{i}$ +\end_inset + + con  +\begin_inset Formula $L$ +\end_inset + + libre de rango igual al rango libre de torsión de  +\begin_inset Formula $M$ +\end_inset + + y cada  +\begin_inset Formula $M_{i}\cong\frac{A}{(d_{i})}$ +\end_inset + +, siendo los  +\begin_inset Formula $d_{i}$ +\end_inset + + los factores invariantes de  +\begin_inset Formula $M$ +\end_inset + +. +\end_layout + +\begin_layout Standard + +\series bold +Teoremas de estructura de los grupos abelianos finitos: +\series default + Si  +\begin_inset Formula $M$ +\end_inset + + es un grupo abeliano finito: +\end_layout + +\begin_layout Enumerate +Existen números primos  +\begin_inset Formula $1<p_{1}<\dots<p_{k}$ +\end_inset + + y enteros  +\begin_inset Formula $0<n_{i1}\leq\dots\leq n_{ir_{i}}$ +\end_inset + + para  +\begin_inset Formula $i\in\{1,\dots,k\}$ +\end_inset + +, únicos, con  +\begin_inset Formula $M\cong\bigoplus_{i=1}^{k}\bigoplus_{j=1}^{r_{i}}\mathbb{Z}_{p_{i}^{n_{ij}}}$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +Existen enteros  +\begin_inset Formula $1<d_{1}\mid\dots\mid d_{t}$ +\end_inset + + únicos con  +\begin_inset Formula $M\cong\bigoplus_{j=1}^{t}\mathbb{Z}_{d_{j}}$ +\end_inset + +. +\end_layout + +\begin_layout Standard + +\series bold +Teoremas de clasificación de endomorfismos de espacios vectoriales: +\series default + Sean  +\begin_inset Formula $V$ +\end_inset + + un  +\begin_inset Formula $K$ +\end_inset + +-espacio vectorial de dimensión finita y  +\begin_inset Formula $f:V\to V$ +\end_inset + + un  +\begin_inset Formula $K$ +\end_inset + +-endomorfismo: +\end_layout + +\begin_layout Enumerate +Existen  +\begin_inset Formula $p_{1},\dots,p_{k}\in K[X]$ +\end_inset + + mónicos irreducibles distintos y  +\begin_inset Formula $n_{ij}\in\mathbb{N}^{*}$ +\end_inset + + para  +\begin_inset Formula $i\in\{1,\dots,k\}$ +\end_inset + + y  +\begin_inset Formula $j\in\{1,\dots,r_{i}\}$ +\end_inset + +, unívocamente determinados, y vectores  +\begin_inset Formula $v_{ij}\in V$ +\end_inset + +, tales que  +\begin_inset Formula $\bigoplus_{i=1}^{k}\bigoplus_{j=1}^{r_{i}}K\{f^{s}(v_{ij})\}_{s\geq0}$ +\end_inset + + es una descomposición de  +\begin_inset Formula $V$ +\end_inset + + en suma directa interna de subespacios vectoriales  +\begin_inset Formula $f$ +\end_inset + +-invariantes y cada  +\begin_inset Formula $p_{i}(f)^{n_{ij}}(v_{ij})=0\neq p_{i}(f)^{n_{ij}-1}(v_{ij})$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Standard +Sean  +\begin_inset Formula $M$ +\end_inset + + el  +\begin_inset Formula $K[X]$ +\end_inset + +-módulo asociado a  +\begin_inset Formula $(V,f)$ +\end_inset + +,  +\begin_inset Formula $W\leq V$ +\end_inset + + y  +\begin_inset Formula $N$ +\end_inset + + el  +\begin_inset Formula $K[X]$ +\end_inset + +-submódulo de  +\begin_inset Formula $M$ +\end_inset + + asociado a  +\begin_inset Formula $(W,f|_{W})$ +\end_inset + +, basta ver que  +\begin_inset Formula $N\cong\frac{K[X]}{(p_{i}^{n_{ij}})}$ +\end_inset + + si y sólo si existe  +\begin_inset Formula $v\in V$ +\end_inset + + tal que  +\begin_inset Formula $W=K\{f^{s}(v)_{s\geq0}\}$ +\end_inset + + y  +\begin_inset Formula $p_{i}(f)^{n_{ij}}(v)=0\neq p_{i}(f)^{n_{ij}-1}(v)$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\implies]$ +\end_inset + + +\end_layout + +\end_inset + +Sean  +\begin_inset Formula $\phi:\frac{K[X]}{(p_{i}^{n_{ij}})}\to N$ +\end_inset + + el isomorfismo y  +\begin_inset Formula $v\coloneqq\phi(\overline{1})$ +\end_inset + +,  +\begin_inset Formula $p_{i}^{n_{ij}}\overline{1}=0$ +\end_inset + + y por tanto  +\begin_inset Formula $0=p_{i}^{n_{ij}}\phi(\overline{1})=p_{i}^{n_{ij}}v=p_{i}(f)^{n_{ij}}(v)$ +\end_inset + + por la definición del  +\begin_inset Formula $K[X]$ +\end_inset + +-módulo, pero  +\begin_inset Formula $p_{i}^{n_{ij}-1}\overline{1}\neq0$ +\end_inset + + y por tanto  +\begin_inset Formula $p_{i}(f)^{n_{ij}-1}(v_{ij})\neq0$ +\end_inset + +. + Finalmente, como  +\begin_inset Formula $\frac{K[X]}{(p_{i}^{n_{ij}})}=K\{\overline{1},X\overline{1},\dots,X^{s}\overline{1},\dots\}$ +\end_inset + +,  +\begin_inset Formula $M=K\{f^{s}(v)\}_{s\geq0}$ +\end_inset + + ya que  +\begin_inset Formula $\phi(X^{s}\overline{1})=X^{s}\phi(\overline{1})=f^{s}(v)$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\impliedby]$ +\end_inset + + +\end_layout + +\end_inset + +Por la hipótesis y la definición de  +\begin_inset Formula $N$ +\end_inset + +,  +\begin_inset Formula $N=(v)$ +\end_inset + +, pero  +\begin_inset Formula $v$ +\end_inset + + es anulado por  +\begin_inset Formula $p_{i}(f)^{n_{ij}}$ +\end_inset + + y por tanto hay un epimorfismo  +\begin_inset Formula $\psi:\frac{K[X]}{(p_{i}^{n_{ij}})}\twoheadrightarrow K[X]v=N$ +\end_inset + + con  +\begin_inset Formula $\ker\psi\trianglelefteq\frac{K[X]}{(p_{i}^{n_{ij}})}$ +\end_inset + +, pero los únicos ideales de  +\begin_inset Formula $\frac{K[X]}{(p_{i}^{n_{ij}})}$ +\end_inset + + son  +\begin_inset Formula $(\overline{p_{i}}^{k})$ +\end_inset + + con  +\begin_inset Formula $k\in\{0,\dots,n_{ij}\}$ +\end_inset + +, y como  +\begin_inset Formula $p_{i}(f)^{n_{ij}-1}(v)\neq0$ +\end_inset + +,  +\begin_inset Formula $\overline{p_{i}}^{n_{ij}-1}\notin\ker\psi$ +\end_inset + +, con lo que  +\begin_inset Formula $\ker\psi=0$ +\end_inset + + y  +\begin_inset Formula $\psi$ +\end_inset + + es un isomorfismo. +\end_layout + +\end_deeper +\begin_layout Enumerate +Existen polinomios mónicos no constantes  +\begin_inset Formula $d_{1}\mid\dots\mid d_{t}$ +\end_inset + + unívocamente determinados y vectores  +\begin_inset Formula $v_{j}\in V$ +\end_inset + + tales que  +\begin_inset Formula $\bigoplus_{i=1}^{t}\text{span}\{f^{s}(v_{j})\}_{s\in\mathbb{N}_{\text{gr}(d_{j})}}$ +\end_inset + + es una descomposición de  +\begin_inset Formula $V$ +\end_inset + + en subespacios  +\begin_inset Formula $f$ +\end_inset + +-invariantes y cada  +\begin_inset Formula $d_{j}(f)(v_{j})=0$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Standard +Sean  +\begin_inset Formula $M$ +\end_inset + + el  +\begin_inset Formula $K[X]$ +\end_inset + +-módulo asociado a  +\begin_inset Formula $(V,f)$ +\end_inset + +,  +\begin_inset Formula $W\leq V$ +\end_inset + + y  +\begin_inset Formula $N$ +\end_inset + + el  +\begin_inset Formula $K[X]$ +\end_inset + +-submódulo de  +\begin_inset Formula $M$ +\end_inset + + asociado a  +\begin_inset Formula $(W,f|_{W})$ +\end_inset + +, basta ver que  +\begin_inset Formula $N\cong\frac{K[X]}{(d_{j})}$ +\end_inset + + si y sólo si existe  +\begin_inset Formula $v\in V$ +\end_inset + + tal que  +\begin_inset Formula $\{f^{s}(v)\}{}_{s\in\mathbb{N}_{\text{gr}(d_{j})}}$ +\end_inset + + es base de  +\begin_inset Formula $W$ +\end_inset + + como  +\begin_inset Formula $K$ +\end_inset + +-espacio vectorial y  +\begin_inset Formula $d_{j}(f)(v)=0$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\implies]$ +\end_inset + + +\end_layout + +\end_inset + +Sean  +\begin_inset Formula $\phi:\frac{K[X]}{(p_{i}^{n_{ij}})}\to N$ +\end_inset + + el isomorfismo y  +\begin_inset Formula $v\coloneqq\phi(\overline{1})$ +\end_inset + +,  +\begin_inset Formula $d_{j}\overline{1}=0$ +\end_inset + + y por tanto  +\begin_inset Formula $0=d_{j}\phi(\overline{1})=d_{j}v=d_{j}(f)(v)$ +\end_inset + +, y como  +\begin_inset Formula $\frac{K[X]}{(d_{j})}=K\{\overline{1},X\overline{1},\dots,X^{\text{gr}d_{j}-1}\overline{1}\}$ +\end_inset + + con  +\begin_inset Formula $(X^{s}\overline{1})_{s\in\mathbb{N}_{\text{gr}(d_{j})}}$ +\end_inset + + linealmente independiente,  +\begin_inset Formula $N=K\{f^{s}(v)\}_{s\in\mathbb{N}_{\text{gr}(d_{j})}}$ +\end_inset + + con  +\begin_inset Formula $(f^{s}(v))_{s\in\mathbb{N}_{\text{gr}(d_{j})}}$ +\end_inset + + linealmente independiente. +\end_layout + +\begin_layout Enumerate +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\impliedby]$ +\end_inset + + +\end_layout + +\end_inset + + +\begin_inset Formula $v$ +\end_inset + + es anulado por  +\begin_inset Formula $p_{i}(f)^{n_{ij}}$ +\end_inset + + y por tanto hay un epimorfismo  +\begin_inset Formula $\psi:\frac{K[X]}{(d_{j})}\twoheadrightarrow K[X]v=K\{f^{s}(v)\}_{s\in\mathbb{N}}=K\{f^{s}(v)\}_{s\in\mathbb{N}_{\text{gr}(d_{j})}}=N$ +\end_inset + +, pero si  +\begin_inset Formula $p\in K[X]$ +\end_inset + + con  +\begin_inset Formula $\text{gr}p<\text{gr}d_{j}$ +\end_inset + + cumple  +\begin_inset Formula $\psi(\overline{p})=p(f)(v)=\sum_{i}p_{i}f^{i}(v)=0$ +\end_inset + +, como los  +\begin_inset Formula $f^{i}(v)$ +\end_inset + + son linealmente independiente, cada  +\begin_inset Formula $p_{i}=0$ +\end_inset + + y  +\begin_inset Formula $p=0$ +\end_inset + +, y como cada elemento de  +\begin_inset Formula $\frac{K[X]}{(d_{j})}$ +\end_inset + + tiene un representante de grado menor que el de  +\begin_inset Formula $d_{j}$ +\end_inset + +,  +\begin_inset Formula $\ker\psi=0$ +\end_inset + + y  +\begin_inset Formula $\psi$ +\end_inset + + es un isomorfismo. +\end_layout + +\end_deeper +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +begin{reminder}{GyA} +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Un grupo cíclico  +\begin_inset Formula $\langle a\rangle_{n}$ +\end_inset + + es indescomponible si y sólo si tiene orden potencia de primo. +\end_layout + +\begin_layout Standard +Dado un grupo  +\begin_inset Formula $G$ +\end_inset + +, llamamos  +\series bold +exponente +\series default + o  +\series bold +periodo +\series default + de  +\begin_inset Formula $G$ +\end_inset + +,  +\begin_inset Formula $\text{Exp}(G)$ +\end_inset + +, al menor  +\begin_inset Formula $n\in\mathbb{N}^{*}$ +\end_inset + + tal que  +\begin_inset Formula $\forall g\in G,g^{n}=1$ +\end_inset + +, o a  +\begin_inset Formula $\infty$ +\end_inset + + si este no existe. + [...] +\end_layout + +\begin_layout Standard +Si un grupo es finito tiene periodo finito, y si tiene periodo finito es + periódico. + Los recíprocos no se cumplen. + Todo  +\begin_inset Formula $p$ +\end_inset + +-grupo es periódico, pero no necesariamente finito. + [...] +\end_layout + +\begin_layout Standard +Si  +\begin_inset Formula $A$ +\end_inset + + es un grupo abeliano,  +\begin_inset Formula $B\leq A$ +\end_inset + +,  +\begin_inset Formula $a\in A$ +\end_inset + +,  +\begin_inset Formula $n\in\mathbb{N}$ +\end_inset + + y  +\begin_inset Formula $na=0$ +\end_inset + +, en  +\begin_inset Formula $A/B$ +\end_inset + + es  +\begin_inset Formula $|a+B|\mid|a|$ +\end_inset + +. + En general estos órdenes no coinciden. + [...] +\end_layout + +\begin_layout Standard +Dados dos grupos abelianos finitos  +\begin_inset Formula $A$ +\end_inset + + y  +\begin_inset Formula $B$ +\end_inset + +, una descomposición por suma directa de  +\begin_inset Formula $A$ +\end_inset + + y una de  +\begin_inset Formula $B$ +\end_inset + + son  +\series bold +semejantes +\series default + si existe una biyección entre los subgrupos en la descomposición de  +\begin_inset Formula $A$ +\end_inset + + y la de  +\begin_inset Formula $B$ +\end_inset + + que a cada subgrupo de  +\begin_inset Formula $A$ +\end_inset + + le asocia uno de  +\begin_inset Formula $B$ +\end_inset + + isomorfo. + [...] +\end_layout + +\begin_layout Standard +Dos grupos abelianos finitos son isomorfos si y sólo si tienen descomposiciones + primarias semejantes, si y sólo si tienen descomposiciones invariantes + semejantes, si y sólo si tienen la misma lista de divisores elementales, + si y sólo si tienen la misma lista de factores invariantes. + [...] +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +end{reminder} +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Section +Determinación de descomposiciones de módulos de torsión finitamente generados +\end_layout + +\begin_layout Standard +En esta sección, salvo que se indique lo contrario,  +\begin_inset Formula $M$ +\end_inset + + es un  +\begin_inset Formula $A$ +\end_inset + +-módulo finitamente generado de torsión y  +\begin_inset Formula $\{p_{1},\dots,p_{k}\}\coloneqq\{p\in{\cal P}\mid M(p)\neq0\}$ +\end_inset + + son sus  +\series bold +divisores irreducibles +\series default +. +  +\end_layout + +\begin_layout Standard +Si  +\begin_inset Formula $M\neq0$ +\end_inset + + tiene factores invariantes  +\begin_inset Formula $d_{1}\mid\dots\mid d_{t}$ +\end_inset + +: +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\text{ann}_{A}(M)=(d_{t})$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Enumerate +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\subseteq]$ +\end_inset + + +\end_layout + +\end_inset + +Para  +\begin_inset Formula $a\in\text{ann}_{A}(M)$ +\end_inset + +, como  +\begin_inset Formula $\frac{A}{(d_{t})}$ +\end_inset + + es isomorfo a un sumando directo de  +\begin_inset Formula $M$ +\end_inset + +,  +\begin_inset Formula $a\frac{A}{(d_{t})}=0$ +\end_inset + +, pero  +\begin_inset Formula $a\frac{A}{(d_{t})}=\frac{(a)+(d_{t})}{(d_{t})}=0$ +\end_inset + + y por tanto  +\begin_inset Formula $(a)+(d_{t})\subseteq(d_{t})$ +\end_inset + + y  +\begin_inset Formula $a\in(d_{t})$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\supseteq]$ +\end_inset + + +\end_layout + +\end_inset + + +\begin_inset Formula $M\cong\bigoplus_{j=1}^{t}\frac{A}{(d_{j})}$ +\end_inset + + y, como cada  +\begin_inset Formula $d_{j}\mid d_{t}$ +\end_inset + +,  +\begin_inset Formula $d_{t}M=0$ +\end_inset + +, luego  +\begin_inset Formula $(d_{t})\subseteq\text{ann}_{A}(M)$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Enumerate +Un  +\begin_inset Formula $p\in{\cal P}$ +\end_inset + + es divisor irreducible de  +\begin_inset Formula $M$ +\end_inset + + si y sólo si lo es de  +\begin_inset Formula $d_{t}$ +\end_inset + +, si y sólo si existe  +\begin_inset Formula $x\in M\setminus\{0\}$ +\end_inset + + con  +\begin_inset Formula $px=0$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Description +\begin_inset Formula $1\iff2]$ +\end_inset + + Si  +\begin_inset Formula $(p_{ij})_{1\leq i\leq k}^{1\leq j\leq r_{i}}$ +\end_inset + + son los divisores elementales de  +\begin_inset Formula $M$ +\end_inset + +,  +\begin_inset Formula $d_{t}=p_{1}^{n_{1r_{1}}}\cdots p_{k}^{n_{kr_{k}}}$ +\end_inset + +, luego los divisores irreducibles son los irreducibles de la factorización + irreducible de  +\begin_inset Formula $d_{t}$ +\end_inset + +. +\end_layout + +\begin_layout Description +\begin_inset Formula $1\implies3]$ +\end_inset + + Si  +\begin_inset Formula $M(p)\neq0$ +\end_inset + +, sea  +\begin_inset Formula $z\in M(p)\setminus\{0\}$ +\end_inset + + con  +\begin_inset Formula $\text{ann}_{A}(z)=(p^{s})$ +\end_inset + + y  +\begin_inset Formula $s$ +\end_inset + + mínimo,  +\begin_inset Formula $s>0$ +\end_inset + + ya que de lo contrario sería  +\begin_inset Formula $(p^{s})=A$ +\end_inset + + y  +\begin_inset Formula $z=1z=0$ +\end_inset + +, y  +\begin_inset Formula $x\coloneqq p^{s-1}z\in M\setminus\{0\}$ +\end_inset + + cumple  +\begin_inset Formula $px=0$ +\end_inset + +. +\end_layout + +\begin_layout Description +\begin_inset Formula $3\implies1]$ +\end_inset + +  +\begin_inset Formula $x\in M(p)\neq0$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Standard +Así, si  +\begin_inset Formula $M$ +\end_inset + + es un grupo abeliano finito, los divisores irreducibles de  +\begin_inset Formula $M$ +\end_inset + + son los  +\begin_inset Formula $p>0$ +\end_inset + + que dividen a  +\begin_inset Formula $|M|$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Sean  +\begin_inset Formula $V\in_{K}\text{Vect}$ +\end_inset + + de dimensión finita y  +\begin_inset Formula $f\in\text{End}_{K}(V)$ +\end_inset + + con polinomio característico  +\begin_inset Formula $\varphi\in K[X]$ +\end_inset + +: +\end_layout + +\begin_layout Enumerate + +\series bold +Teorema de Cayley-Hamilton: +\series default +  +\begin_inset Formula $\varphi_{f}(f)=0$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Standard +Sean  +\begin_inset Formula $C\in{\cal M}_{n}(K)$ +\end_inset + + la matriz asociada a  +\begin_inset Formula $f$ +\end_inset + + bajo cualquier base de  +\begin_inset Formula $V$ +\end_inset + + e  +\begin_inset Formula $I\coloneqq I_{n}$ +\end_inset + +, queremos ver que  +\begin_inset Formula $\varphi=\det(XI-C)$ +\end_inset + + cumple  +\begin_inset Formula $\sum_{i=0}^{n}\varphi_{i}C^{i}=0$ +\end_inset + +. + Por la prueba de la fórmula de la matriz inversa, para toda matriz  +\begin_inset Formula $A$ +\end_inset + + es  +\begin_inset Formula $A\cdot\text{adj}(A)^{\intercal}=|A|I$ +\end_inset + +, por lo que viendo  +\begin_inset Formula $XI-C\in{\cal M}_{n}(K[X])$ +\end_inset + + es  +\begin_inset Formula $(XI-C)\text{adj}(XI-C)^{\intercal}=\varphi I$ +\end_inset + +. + Como las entradas de  +\begin_inset Formula $\text{adj}(XI-C)^{\intercal}$ +\end_inset + + son polinomios de grado máximo  +\begin_inset Formula $n-1$ +\end_inset + +, podemos escribir  +\begin_inset Formula $\text{adj}(XI-C)^{t}\eqqcolon\sum_{i=0}^{n-1}B_{i}X^{i}$ +\end_inset + + con cada  +\begin_inset Formula $B_{i}\in{\cal M}_{n}(K)$ +\end_inset + + y entonces  +\begin_inset Formula $(XI-C)\sum_{i=0}^{n-1}B_{i}X^{i}=\sum_{i=0}^{n}\varphi_{i}I$ +\end_inset + +. + Viendo esta igualdad en  +\begin_inset Formula ${\cal M}_{n}(K)[X]$ +\end_inset + +, igualando coeficientes, +\begin_inset Formula  +\begin{align*} +B_{n-1} & =\varphi_{n}I, & B_{n-2}-CB_{n-1} & =\varphi_{n-1}I, &  & \cdots, & B_{0}-B_{1}C & =\varphi_{1}I, & -B_{0}C & =\varphi_{0}I, +\end{align*} + +\end_inset + +y multiplicando la primera igualdad por  +\begin_inset Formula $C^{n}$ +\end_inset + +, la segunda por  +\begin_inset Formula $C^{n-1}$ +\end_inset + +, etc., +\begin_inset Formula  +\begin{align*} +C^{n}B_{n-1} & =\varphi_{n}I, & C^{n-1}B_{n-2}-C^{n}B_{n-1} & =\varphi_{n-1}I, &  & \dots, +\end{align*} + +\end_inset + + +\end_layout + +\end_deeper +\end_body +\end_document | 
