aboutsummaryrefslogtreecommitdiff
path: root/ac
diff options
context:
space:
mode:
Diffstat (limited to 'ac')
-rw-r--r--ac/n1.lyx214
1 files changed, 150 insertions, 64 deletions
diff --git a/ac/n1.lyx b/ac/n1.lyx
index 488d056..1a5253f 100644
--- a/ac/n1.lyx
+++ b/ac/n1.lyx
@@ -3481,32 +3481,28 @@ begin{exinfo}
\end_inset
-Dados un DIP
+Dados un dominio
\begin_inset Formula $A$
\end_inset
- e
-\begin_inset Formula $I,J_{1},J_{2}\trianglelefteq A$
-\end_inset
-
- con
-\begin_inset Formula $I\neq0$
+,
+\begin_inset Formula $a,b\in A$
\end_inset
e
-\begin_inset Formula $IJ_{1}=IJ_{2}$
+\begin_inset Formula $I\trianglelefteq A$
\end_inset
-, entonces
-\begin_inset Formula $J_{1}=J_{2}$
+ no trivial, si
+\begin_inset Formula $I(a)=I(b)$
\end_inset
-.
- Esto no es cierto en general si
-\begin_inset Formula $A$
+ entonces
+\begin_inset Formula $(a)=(b)$
\end_inset
- no es un DIP.
+.
+ Esto no es cierto en general cuando los ideales no son principales.
\begin_inset ERT
status open
@@ -4171,7 +4167,7 @@ Teoremas de isomorfía:
\end_layout
\begin_layout Enumerate
-Para un isomorfismo de anillos
+Para un homomorfismo de anillos
\begin_inset Formula $f:A\to B$
\end_inset
@@ -5101,28 +5097,15 @@ radical de Jacobson
\end_inset
a
-\begin_inset Formula $\text{Jac}(A)\coloneqq\bigcap\text{MaxSpec}(A)$
+\begin_inset Formula $\text{Jac}(A)\coloneqq\bigcap\text{MaxSpec}(A)=\{a\in A:1+(a)\subseteq A^{*}\}$
\end_inset
.
-\end_layout
-
-\begin_layout Enumerate
-\begin_inset Formula $\forall a\in A,(1+(a)\subseteq A^{*}\implies a\in\text{Jac}(A))$
-\end_inset
-
-, y en particular
-\begin_inset Formula $\text{Nil}(A)\subseteq\text{Jac}(A)$
-\end_inset
-
-.
-\end_layout
-
-\begin_layout Enumerate
+
\begin_inset Formula $\text{Jac}(A)$
\end_inset
- no contiene elementos idempotentes no nulos.
+ no contiene idempotentes no nulos.
\end_layout
\begin_layout Standard
@@ -5173,7 +5156,6 @@ anillo local
\end_inset
.
-
\end_layout
\begin_layout Standard
@@ -5251,6 +5233,142 @@ Si
\end_layout
\begin_layout Standard
+Dados anillos locales
+\begin_inset Formula $A_{1},\dots,A_{n}$
+\end_inset
+
+, los idempotentes de
+\begin_inset Formula $A_{1}\times\dots\times A_{n}$
+\end_inset
+
+ son las
+\begin_inset Formula $n$
+\end_inset
+
+-uplas
+\begin_inset Formula $(e_{1},\dots,e_{n})$
+\end_inset
+
+ con cada
+\begin_inset Formula $e_{i}\in\{0,1\}$
+\end_inset
+
+.
+ Para
+\begin_inset Formula $n\geq2$
+\end_inset
+
+ con factorización prima
+\begin_inset Formula $p_{1}^{m_{1}}\cdots p_{t}^{m_{t}}$
+\end_inset
+
+ (con los
+\begin_inset Formula $p_{i}$
+\end_inset
+
+ distintos y los
+\begin_inset Formula $t_{i}\geq1$
+\end_inset
+
+),
+\begin_inset Formula $\mathbb{Z}_{n}$
+\end_inset
+
+ tiene
+\begin_inset Formula $2^{t}$
+\end_inset
+
+ idempotentes dados por los sistemas de ecuaciones diofánticas
+\begin_inset Formula
+\[
+\left\{ \begin{array}{rl}
+e_{I} & \equiv0\mod\left(q\coloneqq\prod_{i\in I}p_{i}^{m_{i}}\right),\\
+e_{I} & \equiv1\mod\left(r\coloneqq\prod_{i\notin I}p_{i}^{m_{i}}\right),
+\end{array}\right.
+\]
+
+\end_inset
+
+para
+\begin_inset Formula $I\subseteq\{1,\dots,t\}$
+\end_inset
+
+.
+ En concreto existen
+\begin_inset Formula $s,t\in\mathbb{Z}$
+\end_inset
+
+ con
+\begin_inset Formula $x=1+qt=rs$
+\end_inset
+
+, de modo que
+\begin_inset Formula $rs-qt=1$
+\end_inset
+
+ y, como
+\begin_inset Formula $q$
+\end_inset
+
+ y
+\begin_inset Formula $r$
+\end_inset
+
+ son coprimos, se pueden obtener
+\begin_inset Formula $s$
+\end_inset
+
+ y
+\begin_inset Formula $t$
+\end_inset
+
+ con una identidad de Bézout.
+ Para obtener una identidad de Bézout:
+\end_layout
+
+\begin_layout Enumerate
+Se calcula el máximo común divisor por el algoritmo de Euclides, haciendo
+
+\begin_inset Formula $q_{0}\coloneqq q$
+\end_inset
+
+,
+\begin_inset Formula $q_{1}\coloneqq r$
+\end_inset
+
+ y la recurrencia
+\begin_inset Formula $q_{i-1}=r_{i}q_{i}+q_{i+1}$
+\end_inset
+
+, con
+\begin_inset Formula $r_{i},q_{i+1}\in\mathbb{Z}$
+\end_inset
+
+ y
+\begin_inset Formula $0\leq q_{i+1}<q_{i}$
+\end_inset
+
+, hasta llegar a un
+\begin_inset Formula $q_{n}=1$
+\end_inset
+
+.
+\end_layout
+
+\begin_layout Enumerate
+Se va despejando hacia atrás, haciendo
+\begin_inset Formula
+\begin{multline*}
+1=q_{n}=q_{n-2}-r_{n-1}q_{n-1}=q_{n-2}-r_{n-1}(q_{n-3}-r_{n-2}q_{n-2})=\\
+=-r_{n-1}q_{n-3}+(1+r_{n-1}r_{n-2})q_{n-2}=\dots=q_{0}t+q_{1}s.
+\end{multline*}
+
+\end_inset
+
+
+\end_layout
+
+\begin_layout Standard
\begin_inset Formula $I\trianglelefteq A$
\end_inset
@@ -6247,22 +6365,6 @@ radical
\end_layout
\begin_layout Standard
-\begin_inset ERT
-status open
-
-\begin_layout Plain Layout
-
-
-\backslash
-begin{samepage}
-\end_layout
-
-\end_inset
-
-
-\end_layout
-
-\begin_layout Standard
Propiedades:
\end_layout
@@ -6338,22 +6440,6 @@ Sea
\end_deeper
\begin_layout Standard
-\begin_inset ERT
-status open
-
-\begin_layout Plain Layout
-
-
-\backslash
-end{samepage}
-\end_layout
-
-\end_inset
-
-
-\end_layout
-
-\begin_layout Standard
Un
\series bold
subconjunto multiplicativo