diff options
Diffstat (limited to 'ac')
| -rw-r--r-- | ac/n.lyx | 177 | ||||
| -rw-r--r-- | ac/n1.lyx | 1989 |
2 files changed, 2166 insertions, 0 deletions
diff --git a/ac/n.lyx b/ac/n.lyx new file mode 100644 index 0000000..cfda71e --- /dev/null +++ b/ac/n.lyx @@ -0,0 +1,177 @@ +#LyX 2.3 created this file. For more info see http://www.lyx.org/ +\lyxformat 544 +\begin_document +\begin_header +\save_transient_properties true +\origin unavailable +\textclass book +\begin_preamble +\input{../defs} +\usepackage[x11names, svgnames, rgb]{xcolor} +%\usepackage[utf8]{inputenc} +\usepackage{tikz} +\usetikzlibrary{snakes,arrows,shapes} +\end_preamble +\use_default_options true +\begin_modules +algorithm2e +\end_modules +\maintain_unincluded_children false +\language spanish +\language_package default +\inputencoding auto +\fontencoding global +\font_roman "default" "default" +\font_sans "default" "default" +\font_typewriter "default" "default" +\font_math "auto" "auto" +\font_default_family default +\use_non_tex_fonts false +\font_sc false +\font_osf false +\font_sf_scale 100 100 +\font_tt_scale 100 100 +\use_microtype false +\use_dash_ligatures true +\graphics default +\default_output_format default +\output_sync 0 +\bibtex_command default +\index_command default +\paperfontsize 10 +\spacing single +\use_hyperref false +\papersize a5paper +\use_geometry true +\use_package amsmath 1 +\use_package amssymb 1 +\use_package cancel 1 +\use_package esint 1 +\use_package mathdots 1 +\use_package mathtools 1 +\use_package mhchem 1 +\use_package stackrel 1 +\use_package stmaryrd 1 +\use_package undertilde 1 +\cite_engine basic +\cite_engine_type default +\biblio_style plain +\use_bibtopic false +\use_indices false +\paperorientation portrait +\suppress_date false +\justification true +\use_refstyle 1 +\use_minted 0 +\index Index +\shortcut idx +\color #008000 +\end_index +\leftmargin 0.2cm +\topmargin 0.7cm +\rightmargin 0.2cm +\bottommargin 0.7cm +\secnumdepth 3 +\tocdepth 3 +\paragraph_separation indent +\paragraph_indentation default +\is_math_indent 0 +\math_numbering_side default +\quotes_style swiss +\dynamic_quotes 0 +\papercolumns 1 +\papersides 1 +\paperpagestyle empty +\listings_params "basicstyle={\ttfamily}" +\tracking_changes false +\output_changes false +\html_math_output 0 +\html_css_as_file 0 +\html_be_strict false +\end_header + +\begin_body + +\begin_layout Title +Álgebra conmutativa +\end_layout + +\begin_layout Date +\begin_inset Note Note +status open + +\begin_layout Plain Layout + +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +def +\backslash +cryear{2022} +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset CommandInset include +LatexCommand input +filename "../license.lyx" + +\end_inset + + +\end_layout + +\begin_layout Standard +Bibliografía: +\end_layout + +\begin_layout Itemize +Alberto del Valle Robles. + +\emph on +Álgebra Conmutativa Curso 2021–2022, Apuntes de Clase +\emph default +. + Cuarto curso del Grado en Matemáticas. + Departamento de Matemáticas, Universidad de Murcia. + Basado en apuntes previos de José Luis García Hernández. +\backslash + +\end_layout + +\begin_layout Itemize +Clases de Manuel Saorín Castaño. +\end_layout + +\begin_layout Chapter +Anillos conmutativos +\end_layout + +\begin_layout Standard +\begin_inset CommandInset include +LatexCommand input +filename "n1.lyx" + +\end_inset + + +\end_layout + +\end_body +\end_document diff --git a/ac/n1.lyx b/ac/n1.lyx new file mode 100644 index 0000000..1f8cc1c --- /dev/null +++ b/ac/n1.lyx @@ -0,0 +1,1989 @@ +#LyX 2.3 created this file. For more info see http://www.lyx.org/ +\lyxformat 544 +\begin_document +\begin_header +\save_transient_properties true +\origin unavailable +\textclass book +\begin_preamble +\input{../defs} +\end_preamble +\use_default_options true +\maintain_unincluded_children false +\language spanish +\language_package default +\inputencoding auto +\fontencoding global +\font_roman "default" "default" +\font_sans "default" "default" +\font_typewriter "default" "default" +\font_math "auto" "auto" +\font_default_family default +\use_non_tex_fonts false +\font_sc false +\font_osf false +\font_sf_scale 100 100 +\font_tt_scale 100 100 +\use_microtype false +\use_dash_ligatures true +\graphics default +\default_output_format default +\output_sync 0 +\bibtex_command default +\index_command default +\paperfontsize default +\spacing single +\use_hyperref false +\papersize default +\use_geometry false +\use_package amsmath 1 +\use_package amssymb 1 +\use_package cancel 1 +\use_package esint 1 +\use_package mathdots 1 +\use_package mathtools 1 +\use_package mhchem 1 +\use_package stackrel 1 +\use_package stmaryrd 1 +\use_package undertilde 1 +\cite_engine basic +\cite_engine_type default +\biblio_style plain +\use_bibtopic false +\use_indices false +\paperorientation portrait +\suppress_date false +\justification true +\use_refstyle 1 +\use_minted 0 +\index Index +\shortcut idx +\color #008000 +\end_index +\secnumdepth 3 +\tocdepth 3 +\paragraph_separation indent +\paragraph_indentation default +\is_math_indent 0 +\math_numbering_side default +\quotes_style french +\dynamic_quotes 0 +\papercolumns 1 +\papersides 1 +\paperpagestyle default +\tracking_changes false +\output_changes false +\html_math_output 0 +\html_css_as_file 0 +\html_be_strict false +\end_header + +\begin_body + +\begin_layout Standard +Un +\series bold +grupo abeliano +\series default + es un par +\begin_inset Formula $(A,+)$ +\end_inset + + formada por un conjunto +\begin_inset Formula $A$ +\end_inset + + y una +\series bold +suma +\series default + +\begin_inset Formula $+:A\times A\to A$ +\end_inset + + asociativa, conmutativa, con un elemento neutro +\begin_inset Formula $0\in A$ +\end_inset + + llamado +\series bold +cero +\series default + y en el que cada +\begin_inset Formula $a\in A$ +\end_inset + + posee un simétrico u +\series bold +opuesto +\series default + +\begin_inset Formula $-a$ +\end_inset + +. + Un +\series bold +anillo +\series default + es una terna +\begin_inset Formula $(A,+,\cdot)$ +\end_inset + + formada por un grupo abeliano +\begin_inset Formula $(A,+)$ +\end_inset + + y un +\series bold +producto +\series default + +\begin_inset Formula $\cdot:A\times A\to A$ +\end_inset + + asociativo y distributivo respecto a la suma ( +\begin_inset Formula $(a+b)\cdot c=(a\cdot c)+(b\cdot c)$ +\end_inset + + y +\begin_inset Formula $c\cdot(a+b)=(c\cdot a)+(c\cdot b)$ +\end_inset + +). + +\end_layout + +\begin_layout Standard +Un anillo es +\series bold +conmutativo +\series default + si su producto es conmutativo, y tiene +\series bold +identidad +\series default + si este tiene elemento neutro +\begin_inset Formula $1\in A$ +\end_inset + + llamado +\series bold +uno +\series default +. + Salvo que se indique lo contrario, al hablar de anillos nos referiremos + a anillos conmutativos y con identidad. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\mathbb{Z}$ +\end_inset + +, +\begin_inset Formula $\mathbb{Q}$ +\end_inset + +, +\begin_inset Formula $\mathbb{R}$ +\end_inset + +, +\begin_inset Formula $\mathbb{C}$ +\end_inset + + y +\begin_inset Formula $\mathbb{Z}_{n}$ +\end_inset + + para +\begin_inset Formula $n\in\mathbb{N}$ +\end_inset + + son anillos con la suma y el producto usuales. +\end_layout + +\begin_layout Enumerate +Para +\begin_inset Formula $c\in\mathbb{C}$ +\end_inset + +, +\begin_inset Formula $\mathbb{Z}[c]\coloneqq\left\{ \sum_{n=0}^{\infty}a_{n}c^{n}\right\} _{a\in\mathbb{Z}^{\mathbb{N}}}\subseteq\mathbb{C}$ +\end_inset + + es un anillo con la suma y el producto de complejos, y en particular lo + es +\begin_inset Formula $\mathbb{Z}[\text{i}]\coloneqq\{a+b\text{i}\}_{a,b\in\mathbb{Z}}$ +\end_inset + +, el +\series bold +anillo de los enteros de Gauss +\series default +. +\end_layout + +\begin_layout Enumerate +El conjunto de funciones +\begin_inset Formula $\mathbb{R}\to\mathbb{R}$ +\end_inset + + que se anulan en casi todos los puntos es un anillo conmutativo sin identidad + con la suma y producto de funciones. +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $A_{1},\dots,A_{n}$ +\end_inset + + son anillos, +\begin_inset Formula $\prod_{i=1}^{n}A_{i}$ +\end_inset + + es un anillo con las operaciones componente a componente, el +\series bold +anillo producto +\series default + de +\begin_inset Formula $A_{1},\dots,A_{n}$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +Dado un anillo +\begin_inset Formula $A\llbracket X\rrbracket\coloneqq A^{\mathbb{N}}$ +\end_inset + + es un anillo con la suma componente a componente y el producto +\begin_inset Formula $a\cdot b\coloneqq(\sum_{k=0}^{n}a_{k}b_{n-k})_{n}$ +\end_inset + +, el +\series bold +anillo de las series de potencias +\series default + sobre +\begin_inset Formula $A$ +\end_inset + +, y un +\begin_inset Formula $a\in A$ +\end_inset + + se suele escribir con la notación +\begin_inset Formula $\sum_{n}a_{n}X^{n}$ +\end_inset + +. +\end_layout + +\begin_layout Standard +El producto tiene precedencia sobre la suma, y escribimos +\begin_inset Formula $a-b\coloneqq a+(-b)$ +\end_inset + + y +\begin_inset Formula $ab\coloneqq a\cdot b$ +\end_inset + +. + Si +\begin_inset Formula $A$ +\end_inset + + es un anillo y +\begin_inset Formula $a\in A$ +\end_inset + +, definimos +\begin_inset Formula $0a=0$ +\end_inset + +, +\begin_inset Formula $a^{0}=1$ +\end_inset + + y, para +\begin_inset Formula $n\in\mathbb{N}$ +\end_inset + +, +\begin_inset Formula $(n+1)a\coloneqq na+a$ +\end_inset + + y +\begin_inset Formula $a^{n+1}\coloneqq a^{n}a$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Dados un anillo +\begin_inset Formula $A$ +\end_inset + + y +\begin_inset Formula $a,b,c\in A$ +\end_inset + +: +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $a0=0$ +\end_inset + +. +\begin_inset Note Comment +status open + +\begin_layout Plain Layout +\begin_inset Formula $a0+0=a0=a(0+0)=a0+a0\implies0=a0.$ +\end_inset + + +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $-(-a)=a$ +\end_inset + +. +\begin_inset Note Comment +status open + +\begin_layout Plain Layout +\begin_inset Formula $x=-(-a)\implies0=x+(-a)\implies a=x+(-a)+a=x.$ +\end_inset + + +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $a-b=c\iff b+c=a$ +\end_inset + +. +\begin_inset Note Comment +status open + +\begin_layout Itemize +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\implies]$ +\end_inset + + +\end_layout + +\end_inset + + +\begin_inset Formula $a-b=c\implies a=a-b+b=c+b=b+c$ +\end_inset + +. +\end_layout + +\begin_layout Itemize +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\impliedby]$ +\end_inset + + +\end_layout + +\end_inset + + +\begin_inset Formula $b+c=a\implies c=-b+b+c=-b+a=a-b$ +\end_inset + +. +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $(a-b)c=ac-bc$ +\end_inset + +. +\begin_inset Note Comment +status open + +\begin_layout Plain Layout +\begin_inset Formula $(a-b)c+bc=ac-bc+bc=ac\implies ac-bc=(a-b)c.$ +\end_inset + + +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $(-a)b=-(ab)$ +\end_inset + +. +\begin_inset Note Comment +status open + +\begin_layout Plain Layout +\begin_inset Formula $(-a)b=(0-a)b=0b-ab=0-ab=-ab.$ +\end_inset + + +\end_layout + +\end_inset + + +\begin_inset Note Note +status open + +\begin_layout Plain Layout +Anillo trivial si y solo si +\begin_inset Formula $1=0$ +\end_inset + +, salvo isomorfismo. +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Dados dos anillos +\begin_inset Formula $A$ +\end_inset + + y +\begin_inset Formula $B$ +\end_inset + +, un +\series bold +homomorfismo de anillos +\series default + es una +\begin_inset Formula $f:A\to B$ +\end_inset + + tal que +\begin_inset Formula $f(1)=1$ +\end_inset + + y, para +\begin_inset Formula $x,y\in A$ +\end_inset + +, +\begin_inset Formula $f(x+y)=f(x)+f(y)$ +\end_inset + + y +\begin_inset Formula $f(xy)=f(x)f(y)$ +\end_inset + +. + Entonces +\begin_inset Formula $f(0)=0$ +\end_inset + + +\begin_inset Note Comment +status open + +\begin_layout Plain Layout +, pues +\begin_inset Formula $f(0)+f(0)=f(0+0)=f(0)=f(0)+0$ +\end_inset + +, +\end_layout + +\end_inset + + y +\begin_inset Formula $\forall a\in A,f(-a)=-f(a)$ +\end_inset + + +\begin_inset Note Comment +status open + +\begin_layout Plain Layout +, pues +\begin_inset Formula $f(-a)+f(a)=f(-a+a)=f(0)=0$ +\end_inset + + +\end_layout + +\end_inset + +. + Un homomorfismo +\begin_inset Formula $f:A\to B$ +\end_inset + + es inyectivo si y sólo si +\begin_inset Formula $\ker f=0$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\implies]$ +\end_inset + + +\end_layout + +\end_inset + +Obvio. +\end_layout + +\begin_layout Enumerate +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\impliedby]$ +\end_inset + + +\end_layout + +\end_inset + + +\begin_inset Formula $f(a)=f(b)\implies0=f(a)-f(b)=f(a-b)\implies a-b=0\implies a=b$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Un +\series bold +isomorfismo de anillos +\series default + es un homomorfismo biyectivo, y entonces su inversa es un homomorfismo. + En efecto, sea +\begin_inset Formula $f:A\to B$ +\end_inset + + un isomorfismo, como +\begin_inset Formula $f(1)=1$ +\end_inset + +, +\begin_inset Formula $f^{-1}(1)=1$ +\end_inset + +; si +\begin_inset Formula $b,b'\in B$ +\end_inset + +, sean +\begin_inset Formula $a\coloneqq f^{-1}(b)$ +\end_inset + + y +\begin_inset Formula $a'\coloneqq f^{-1}(b')$ +\end_inset + +, entonces +\begin_inset Formula $f(a+a')=f(a)+f(a')=b+b'$ +\end_inset + +, luego +\begin_inset Formula $f^{-1}(b+b')=a+a'=f^{-1}(b)+f^{-1}(b')$ +\end_inset + +, y análogamente +\begin_inset Formula $f^{-1}(bb')=f^{-1}(b)f^{-1}(b')$ +\end_inset + +. + Dos anillos +\begin_inset Formula $A$ +\end_inset + + y +\begin_inset Formula $B$ +\end_inset + + son +\series bold +isomorfos +\series default +, +\begin_inset Formula $A\cong B$ +\end_inset + +, si existe un isomorfismo entre ellos. +\end_layout + +\begin_layout Standard +Llamamos +\series bold +anillo cero +\series default + o +\series bold +trivial +\series default + al único con un solo elemento, o en el que +\begin_inset Formula $1=0$ +\end_inset + +, salvo isomorfismo. + En efecto, todo conjunto unipuntual es un anillo con la suma y producto + definidos de la única forma posible, la única función entre estos anillos + es un isomorfismo y, si el anillo +\begin_inset Formula $A$ +\end_inset + + cumple +\begin_inset Formula $1=0$ +\end_inset + +, para +\begin_inset Formula $a\in A$ +\end_inset + +, +\begin_inset Formula $a=a1=a0=0$ +\end_inset + +. +\end_layout + +\begin_layout Section +Elementos notables +\end_layout + +\begin_layout Standard +Sea +\begin_inset Formula $A$ +\end_inset + + un anillo. + Un +\begin_inset Formula $a\in A$ +\end_inset + + es +\series bold +invertible +\series default + o +\series bold +unidad +\series default + si existe +\begin_inset Formula $b\in A$ +\end_inset + + con +\begin_inset Formula $ab=1$ +\end_inset + +, en cuyo caso +\begin_inset Formula $b$ +\end_inset + + es único, pues +\begin_inset Formula $ac=1\implies b=bac=c$ +\end_inset + +; lo llamamos +\series bold +inverso +\series default + de +\begin_inset Formula $a$ +\end_inset + + o +\begin_inset Formula $a^{-1}$ +\end_inset + +, y +\begin_inset Formula $(a^{-1})^{-1}=a$ +\end_inset + +. + Llamamos +\series bold +grupo de las unidades +\series default + de +\begin_inset Formula $A$ +\end_inset + +, +\begin_inset Formula $U(A)$ +\end_inset + + o +\begin_inset Formula $A^{*}$ +\end_inset + +, al grupo abeliano formado por las unidades de +\begin_inset Formula $A$ +\end_inset + + con el producto. +\end_layout + +\begin_layout Standard +Un +\begin_inset Formula $a\in A$ +\end_inset + + es +\series bold +cancelable +\series default + si +\begin_inset Formula $\forall x,y\in A,(ax=ay\implies x=y)$ +\end_inset + +, si y sólo si no es divisor de cero. + Toda unidad es cancelable, pues podemos cancelar multiplicando por el inverso. + Si +\begin_inset Formula $A$ +\end_inset + + es finito se da el recíproco, pues +\begin_inset Formula $x\mapsto ax$ +\end_inset + + es inyectiva y por tanto suprayectiva y existe +\begin_inset Formula $x$ +\end_inset + + con +\begin_inset Formula $ax=1$ +\end_inset + +. + Para +\begin_inset Formula $A$ +\end_inset + + infinito esto no es cierto en general, pues +\begin_inset Formula $2$ +\end_inset + + es cancelable en +\begin_inset Formula $\mathbb{Z}$ +\end_inset + + pero no es unidad. +\end_layout + +\begin_layout Standard +Un +\begin_inset Formula $a\in A$ +\end_inset + + es +\series bold +divisor de cero +\series default + si existe +\begin_inset Formula $c\in A\setminus\{0\}$ +\end_inset + + con +\begin_inset Formula $ac=0$ +\end_inset + +, si y sólo si no es cancelable. +\end_layout + +\begin_layout Itemize +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\implies]$ +\end_inset + + +\end_layout + +\end_inset + +Si es cancelable, +\begin_inset Formula $ac=0=a0\implies c=0$ +\end_inset + +, luego no es divisor de cero. +\end_layout + +\begin_layout Itemize +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\impliedby]$ +\end_inset + + +\end_layout + +\end_inset + +Sean +\begin_inset Formula $x,y\in A$ +\end_inset + + distintos con +\begin_inset Formula $ax=ay$ +\end_inset + +, entonces +\begin_inset Formula $a(x-y)=0$ +\end_inset + +, pero +\begin_inset Formula $x-y\neq0$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Un +\begin_inset Formula $a\in A$ +\end_inset + + es +\series bold +nilpotente +\series default + si existe +\begin_inset Formula $n\in\mathbb{N}$ +\end_inset + + con +\begin_inset Formula $a^{n}=0$ +\end_inset + +, en cuyo caso es divisor de 0, pues tomando el menor +\begin_inset Formula $n$ +\end_inset + + con +\begin_inset Formula $a^{n}=0$ +\end_inset + +, +\begin_inset Formula $a^{n-1}\neq0$ +\end_inset + + y +\begin_inset Formula $aa^{n-1}=0$ +\end_inset + +. + Llamamos +\begin_inset Formula $\text{Nil}(A)$ +\end_inset + + al conjunto de elementos de +\begin_inset Formula $A$ +\end_inset + + nilpotentes. + El 1 es invertible y no nilpotente, y si +\begin_inset Formula $A$ +\end_inset + + es no trivial, el 0 es nilpotente y no unidad. +\end_layout + +\begin_layout Standard +Un anillo es +\series bold +reducido +\series default + si no tiene elementos nilpotentes distintos de 0, si y sólo si todo elemento + no nulo tiene cuadrado no nulo. +\end_layout + +\begin_layout Itemize +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\implies]$ +\end_inset + + +\end_layout + +\end_inset + +Trivial. +\end_layout + +\begin_layout Itemize +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\impliedby]$ +\end_inset + + +\end_layout + +\end_inset + +Si hubiera +\begin_inset Formula $b\in\text{Nil}(A)\setminus\{0\}$ +\end_inset + +, sea +\begin_inset Formula $n>0$ +\end_inset + + mínimo con +\begin_inset Formula $b^{n}=0$ +\end_inset + +, entonces +\begin_inset Formula $b^{n-1}\neq0$ +\end_inset + + y +\begin_inset Formula $(b^{n-1})^{2}=b^{2n-2}=b^{n}b^{n-2}=0\#$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Un anillo es un +\series bold +dominio +\series default + si no tiene divisores de cero no nulos, si y sólo si todo elemento no nulo + es cancelable, y es un +\series bold +cuerpo +\series default + si todo elemento no nulo es unidad. + Todo cuerpo es dominio y todo dominio es reducido. + Los recíprocos no se cumplen, pues +\begin_inset Formula $\mathbb{Z}$ +\end_inset + + es un dominio que no es un cuerpo y +\begin_inset Formula $\mathbb{Z}_{6}$ +\end_inset + + es un anillo reducido que no es un dominio. +\end_layout + +\begin_layout Standard +Para +\begin_inset Formula $n\geq2$ +\end_inset + +: +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $r\in\mathbb{Z}_{n}$ +\end_inset + + es unidad si y sólo si +\begin_inset Formula $\gcd\{r,n\}=1$ +\end_inset + + en +\begin_inset Formula $\mathbb{Z}$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Enumerate +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\implies]$ +\end_inset + + +\end_layout + +\end_inset + +Si fuera +\begin_inset Formula $d\coloneqq\gcd\{r,n\}>1$ +\end_inset + +, sean +\begin_inset Formula $r',n'\in\mathbb{Z}$ +\end_inset + + con +\begin_inset Formula $r=dr'$ +\end_inset + + y +\begin_inset Formula $n=dn'$ +\end_inset + +, entonces +\begin_inset Formula $n'\not\equiv0\bmod n$ +\end_inset + + pero +\begin_inset Formula $rn'=dr'n'=r'n\equiv0\bmod n$ +\end_inset + +, con lo que +\begin_inset Formula $r$ +\end_inset + + es divisor de 0. +\end_layout + +\begin_layout Enumerate +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\impliedby]$ +\end_inset + + +\end_layout + +\end_inset + +Una identidad de Bézout +\begin_inset Formula $ar+bn=1$ +\end_inset + + se traduce en que +\begin_inset Formula $ar\equiv1\bmod n$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Enumerate +\begin_inset Formula $r\in\mathbb{Z}_{n}$ +\end_inset + + es nilpotente si y sólo si todos los divisores primos de +\begin_inset Formula $n$ +\end_inset + + dividen a +\begin_inset Formula $r$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Enumerate +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\implies]$ +\end_inset + + +\end_layout + +\end_inset + +Sean +\begin_inset Formula $m$ +\end_inset + + con +\begin_inset Formula $r^{m}\equiv0$ +\end_inset + + y +\begin_inset Formula $p$ +\end_inset + + un divisor primo de +\begin_inset Formula $n$ +\end_inset + +, como +\begin_inset Formula $n$ +\end_inset + + divide a +\begin_inset Formula $r^{m}$ +\end_inset + +, +\begin_inset Formula $p$ +\end_inset + + divide a +\begin_inset Formula $r^{m}$ +\end_inset + + y por tanto a +\begin_inset Formula $r$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\impliedby]$ +\end_inset + + +\end_layout + +\end_inset + +Sea +\begin_inset Formula $p_{1}^{k_{1}}\cdots p_{s}^{k_{s}}$ +\end_inset + + la descomposición prima de +\begin_inset Formula $n$ +\end_inset + +, como +\begin_inset Formula $p_{1}\cdots p_{s}$ +\end_inset + + divide a +\begin_inset Formula $r$ +\end_inset + +, si +\begin_inset Formula $m\coloneqq\max\{k_{1},\dots,k_{s}\}$ +\end_inset + +, +\begin_inset Formula $n$ +\end_inset + + divide a +\begin_inset Formula $p_{1}^{m}\cdots p_{s}^{m}$ +\end_inset + + y este a +\begin_inset Formula $r$ +\end_inset + +, luego +\begin_inset Formula $n$ +\end_inset + + divide a +\begin_inset Formula $r^{m}$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Enumerate +\begin_inset Formula $\mathbb{Z}_{n}$ +\end_inset + + es un cuerpo si y sólo si es un dominio, si y sólo si +\begin_inset Formula $n$ +\end_inset + + es primo. +\end_layout + +\begin_deeper +\begin_layout Description +\begin_inset Formula $1\implies2]$ +\end_inset + + Obvio. +\end_layout + +\begin_layout Description +\begin_inset Formula $2\implies3]$ +\end_inset + + Si +\begin_inset Formula $n$ +\end_inset + + no fuera primo, existen +\begin_inset Formula $p,q\in\mathbb{Z}$ +\end_inset + +, +\begin_inset Formula $1<p,q<n$ +\end_inset + +, con +\begin_inset Formula $n=pq$ +\end_inset + +, luego +\begin_inset Formula $p$ +\end_inset + + es divisor de 0 en +\begin_inset Formula $\mathbb{Z}_{n}$ +\end_inset + +. +\end_layout + +\begin_layout Description +\begin_inset Formula $3\implies1]$ +\end_inset + + Para +\begin_inset Formula $r\in\mathbb{Z}_{n}\setminus\{0\}$ +\end_inset + +, +\begin_inset Formula $\gcd\{r,n\}=1$ +\end_inset + + en +\begin_inset Formula $\mathbb{Z}$ +\end_inset + + y por tanto +\begin_inset Formula $r$ +\end_inset + + es unidad. +\end_layout + +\end_deeper +\begin_layout Enumerate +\begin_inset Formula $\mathbb{Z}_{n}$ +\end_inset + + es reducido si y sólo si +\begin_inset Formula $n$ +\end_inset + + es +\series bold +libre de cuadrados +\series default +, es decir, si no tiene divisores cuadrados de primos. +\end_layout + +\begin_deeper +\begin_layout Enumerate +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\implies]$ +\end_inset + + +\end_layout + +\end_inset + +Si no fuera libre de cuadrados, sea +\begin_inset Formula $n=p^{2}q$ +\end_inset + + para ciertos +\begin_inset Formula $p,q\in\mathbb{Z}$ +\end_inset + + con +\begin_inset Formula $p$ +\end_inset + + primo, en +\begin_inset Formula $\mathbb{Z}_{n}$ +\end_inset + + +\begin_inset Formula $pq\neq0$ +\end_inset + + pero +\begin_inset Formula $(pq)^{2}=p^{2}q^{2}=0$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\impliedby]$ +\end_inset + + +\end_layout + +\end_inset + +La descomposición en primos de +\begin_inset Formula $n$ +\end_inset + + es de la forma +\begin_inset Formula $p_{1}\cdots p_{s}$ +\end_inset + + con los +\begin_inset Formula $p_{i}$ +\end_inset + + distintos, y si +\begin_inset Formula $r\in\mathbb{Z}_{n}$ +\end_inset + + cumple +\begin_inset Formula $r^{2}=0$ +\end_inset + + entonces en +\begin_inset Formula $\mathbb{Z}$ +\end_inset + + cada +\begin_inset Formula $p_{i}$ +\end_inset + + divide a +\begin_inset Formula $r^{2}$ +\end_inset + + y por tanto a +\begin_inset Formula $r$ +\end_inset + +, luego +\begin_inset Formula $n$ +\end_inset + + divide a +\begin_inset Formula $r$ +\end_inset + + y +\begin_inset Formula $r=0$ +\end_inset + + en +\begin_inset Formula $\mathbb{Z}_{n}$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Section +Divisibilidad +\end_layout + +\begin_layout Standard +Dados un dominio +\begin_inset Formula $D$ +\end_inset + + y +\begin_inset Formula $a,b\in D$ +\end_inset + +, +\begin_inset Formula $a$ +\end_inset + + +\series bold +divide a +\series default + +\begin_inset Formula $b$ +\end_inset + +, +\begin_inset Formula $a$ +\end_inset + + es +\series bold +divisor +\series default + de +\begin_inset Formula $b$ +\end_inset + + o +\begin_inset Formula $b$ +\end_inset + + es +\series bold +múltiplo +\series default + de +\begin_inset Formula $a$ +\end_inset + +, +\begin_inset Formula $a\mid b$ +\end_inset + +, si existe +\begin_inset Formula $c\in D$ +\end_inset + + con +\begin_inset Formula $ac=b$ +\end_inset + +. + Esta relación es reflexiva y transitiva, y para +\begin_inset Formula $a,b,c,r,s\in D$ +\end_inset + +, si +\begin_inset Formula $a\mid b$ +\end_inset + + y +\begin_inset Formula $a\mid c$ +\end_inset + +, entonces +\begin_inset Formula $a\mid rb+sc$ +\end_inset + +. + Dos elementos +\begin_inset Formula $a$ +\end_inset + + y +\begin_inset Formula $b$ +\end_inset + + son +\series bold +asociados +\series default + si +\begin_inset Formula $a\mid b$ +\end_inset + + y +\begin_inset Formula $b\mid a$ +\end_inset + +, si y sólo si existe +\begin_inset Formula $u\in D^{*}$ +\end_inset + + con +\begin_inset Formula $b=au$ +\end_inset + +. +\end_layout + +\begin_layout Itemize +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\implies]$ +\end_inset + + +\end_layout + +\end_inset + +Si +\begin_inset Formula $b=0$ +\end_inset + +, +\begin_inset Formula $a=0$ +\end_inset + + y tomamos +\begin_inset Formula $u=1$ +\end_inset + +. + En otro caso, sean +\begin_inset Formula $c,d\in D$ +\end_inset + + con +\begin_inset Formula $ac=b$ +\end_inset + + y +\begin_inset Formula $bd=a$ +\end_inset + +, +\begin_inset Formula $b=ac=bdc$ +\end_inset + +, luego +\begin_inset Formula $dc=1$ +\end_inset + + y +\begin_inset Formula $c$ +\end_inset + + es unidad. +\end_layout + +\begin_layout Itemize +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\impliedby]$ +\end_inset + + +\end_layout + +\end_inset + + +\begin_inset Formula $a=bu^{-1}$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Dado un dominio +\begin_inset Formula $D$ +\end_inset + +, +\begin_inset Formula $a\in D\setminus(D^{*}\cup\{0\})$ +\end_inset + + es +\series bold +irreducible +\series default + si para +\begin_inset Formula $b,c\in D$ +\end_inset + + con +\begin_inset Formula $a=bc$ +\end_inset + +, +\begin_inset Formula $b\in D^{*}$ +\end_inset + + o +\begin_inset Formula $c\in D^{*}$ +\end_inset + +. + Un +\series bold +dominio de factorización única +\series default + (DFU) es un dominio +\begin_inset Formula $D$ +\end_inset + + en el que, para +\begin_inset Formula $a\in D\setminus(D^{*}\cup\{0\})$ +\end_inset + +, existen +\begin_inset Formula $b_{1},\dots,b_{n}\in D$ +\end_inset + + irreducibles con +\begin_inset Formula $a=b_{1}\cdots b_{n}$ +\end_inset + +, y si +\begin_inset Formula $c_{1},\dots,c_{m}\in D$ +\end_inset + + son irreducibles con +\begin_inset Formula $a=c_{1}\cdots c_{m}$ +\end_inset + +, entonces +\begin_inset Formula $n=m$ +\end_inset + + y existe una permutación +\begin_inset Formula $\sigma\in{\cal S}_{n}$ +\end_inset + + tal que cada +\begin_inset Formula $b_{i}$ +\end_inset + + es asociado con +\begin_inset Formula $c_{\sigma(i)}$ +\end_inset + +. + Todo cuerpo es un DFU, pues no tiene elementos nulos no invertibles. + También lo son +\begin_inset Formula $\mathbb{Z}$ +\end_inset + + y los anillos de polinomios sobre un DFU. +\end_layout + +\begin_layout Section +Subanillos +\end_layout + +\begin_layout Standard +Dado un anillo +\begin_inset Formula $A$ +\end_inset + +, un +\begin_inset Formula $S\subseteq A$ +\end_inset + + es un +\series bold +subanillo +\series default + de +\begin_inset Formula $A$ +\end_inset + + si es un anillo con las mismas operaciones y el mismo uno que +\begin_inset Formula $A$ +\end_inset + +, si y sólo si es la imagen de un homomorfismo +\begin_inset Formula $B\to A$ +\end_inset + +, si y sólo si +\begin_inset Formula $1\in S$ +\end_inset + + y para +\begin_inset Formula $x,y\in S$ +\end_inset + +, +\begin_inset Formula $x-y,xy\in S$ +\end_inset + +. +\end_layout + +\begin_layout Description +\begin_inset Formula $1\implies2]$ +\end_inset + + Basta tomar el homomorfismo identidad. +\end_layout + +\begin_layout Description +\begin_inset Formula $2\implies3]$ +\end_inset + + Sea +\begin_inset Formula $f:B\to A$ +\end_inset + + el homomorfismo, +\begin_inset Formula $f(1)=1$ +\end_inset + + y, si +\begin_inset Formula $x',y'\in B$ +\end_inset + + cumplen +\begin_inset Formula $x=f(x')$ +\end_inset + + e +\begin_inset Formula $y=f(y')$ +\end_inset + +, +\begin_inset Formula $x-y=f(x'-y')\in S$ +\end_inset + + y +\begin_inset Formula $xy=f(x'y')\in S$ +\end_inset + +. +\end_layout + +\begin_layout Description +\begin_inset Formula $3\implies1]$ +\end_inset + + +\begin_inset Formula $1\in S$ +\end_inset + + y por tanto +\begin_inset Formula $1-1=0\in S$ +\end_inset + +, y para +\begin_inset Formula $a,b\in S$ +\end_inset + +, +\begin_inset Formula $-a=0-a\in S$ +\end_inset + +, +\begin_inset Formula $a+b=a-(-b)\in S$ +\end_inset + + y +\begin_inset Formula $ab\in S$ +\end_inset + +, luego +\begin_inset Formula $S$ +\end_inset + + es cerrado para suma, producto y opuesto. +\end_layout + +\begin_layout Standard +Ejemplos: +\end_layout + +\begin_layout Enumerate +En la cadena +\begin_inset Formula $\mathbb{Z}\subseteq\mathbb{Q}\subseteq\mathbb{R}\subseteq\mathbb{C}$ +\end_inset + +, cada anillo es subanillo de los que lo contienen, como pasa en +\begin_inset Formula $\mathbb{Z}\subseteq\mathbb{Z}[\text{i}]\subseteq\mathbb{C}$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +Dado un anillo +\begin_inset Formula $A$ +\end_inset + +, el +\series bold +anillo +\series default + de los polinomios en +\begin_inset Formula $A$ +\end_inset + +, +\begin_inset Formula $A[x]$ +\end_inset + +, es el subanillo de +\begin_inset Formula $A\llbracket x\rrbracket$ +\end_inset + + formado por las series con una cantidad finita de elementos no nulos, y + +\begin_inset Formula $A$ +\end_inset + + es un subanillo de +\begin_inset Formula $A[x]$ +\end_inset + + identificando +\begin_inset Formula $a\in A$ +\end_inset + + con +\begin_inset Formula $(a,0,\dots,0,\dots)$ +\end_inset + + por isomorfismo. +\end_layout + +\begin_layout Standard +Todo subanillo de un dominio es dominio, y todo subanillo de un anillo reducido + es reducido. + No todo subanillo de un cuerpo es un cuerpo, pues +\begin_inset Formula $\mathbb{Z}$ +\end_inset + + es subanillo del cuerpo +\begin_inset Formula $\mathbb{Q}$ +\end_inset + + pero no es un cuerpo. +\end_layout + +\begin_layout Section +Ideales +\end_layout + +\begin_layout Standard +Un +\begin_inset Formula $I\subseteq A$ +\end_inset + + es un +\series bold +ideal +\series default + de +\begin_inset Formula $A$ +\end_inset + +, +\begin_inset Formula $I\trianglelefteq A$ +\end_inset + +, si es el núcleo de un homomorfismo +\begin_inset Formula $A\to B$ +\end_inset + +, si y sólo si +\begin_inset Formula $0\in I$ +\end_inset + + y, para +\begin_inset Formula $a\in A$ +\end_inset + + y +\begin_inset Formula $x,y\in I$ +\end_inset + +, +\begin_inset Formula $x+y,ax\in I$ +\end_inset + +. +\end_layout + +\begin_layout Itemize +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\implies]$ +\end_inset + + +\end_layout + +\end_inset + +Sean +\begin_inset Formula $f:A\to B$ +\end_inset + + un homomorfismo, +\begin_inset Formula $a\in A$ +\end_inset + + y +\begin_inset Formula $x,y\in\ker f$ +\end_inset + +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +TODO pg. + 14, seguir por 11–13, luego por 15. +\end_layout + +\end_inset + + +\end_layout + +\end_body +\end_document |
