diff options
Diffstat (limited to 'af/n4.lyx')
| -rw-r--r-- | af/n4.lyx | 6992 |
1 files changed, 6992 insertions, 0 deletions
diff --git a/af/n4.lyx b/af/n4.lyx new file mode 100644 index 0000000..95113e8 --- /dev/null +++ b/af/n4.lyx @@ -0,0 +1,6992 @@ +#LyX 2.3 created this file. For more info see http://www.lyx.org/ +\lyxformat 544 +\begin_document +\begin_header +\save_transient_properties true +\origin unavailable +\textclass book +\begin_preamble +\input{../defs} +\usepackage{commath} +\end_preamble +\use_default_options true +\maintain_unincluded_children false +\language spanish +\language_package default +\inputencoding auto +\fontencoding global +\font_roman "default" "default" +\font_sans "default" "default" +\font_typewriter "default" "default" +\font_math "auto" "auto" +\font_default_family default +\use_non_tex_fonts false +\font_sc false +\font_osf false +\font_sf_scale 100 100 +\font_tt_scale 100 100 +\use_microtype false +\use_dash_ligatures true +\graphics default +\default_output_format default +\output_sync 0 +\bibtex_command default +\index_command default +\paperfontsize default +\spacing single +\use_hyperref false +\papersize default +\use_geometry false +\use_package amsmath 1 +\use_package amssymb 1 +\use_package cancel 1 +\use_package esint 1 +\use_package mathdots 1 +\use_package mathtools 1 +\use_package mhchem 1 +\use_package stackrel 1 +\use_package stmaryrd 1 +\use_package undertilde 1 +\cite_engine basic +\cite_engine_type default +\biblio_style plain +\use_bibtopic false +\use_indices false +\paperorientation portrait +\suppress_date false +\justification true +\use_refstyle 1 +\use_minted 0 +\index Index +\shortcut idx +\color #008000 +\end_index +\secnumdepth 3 +\tocdepth 3 +\paragraph_separation indent +\paragraph_indentation default +\is_math_indent 0 +\math_numbering_side default +\quotes_style french +\dynamic_quotes 0 +\papercolumns 1 +\papersides 1 +\paperpagestyle default +\tracking_changes false +\output_changes false +\html_math_output 0 +\html_css_as_file 0 +\html_be_strict false +\end_header + +\begin_body + +\begin_layout Standard +Los +\series bold +principios fundamentales del análisis funcional +\series default + son el teorema de Hahn-Banach, el teorema de la acotación uniforme y el + teorema de la gráfica cerrada. +\end_layout + +\begin_layout Section +Teorema de Hahn-Banach +\end_layout + +\begin_layout Standard + +\series bold +Teorema de Tychonoff: +\series default + Si +\begin_inset Formula $(X_{i})_{i\in I}$ +\end_inset + + son espacios topológicos compactos, +\begin_inset Formula $\prod_{i\in I}X_{i}$ +\end_inset + + es compacto con la topología producto. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard + +\series bold +Teorema de extensión de Hann-Banach: +\series default + Sean +\begin_inset Formula $Y\leq_{\mathbb{K}}X$ +\end_inset + +, +\begin_inset Formula $p:X\to\mathbb{R}$ +\end_inset + + subaditiva y positivamente homogénea y +\begin_inset Formula $f:Y\to\mathbb{K}$ +\end_inset + + lineal con +\begin_inset Formula $f\leq p|_{Y}$ +\end_inset + +, +\begin_inset Formula $f$ +\end_inset + + se extiende a +\begin_inset Formula $\hat{f}:X\to\mathbb{R}$ +\end_inset + + lineal con +\begin_inset Formula $\hat{f}\leq p$ +\end_inset + +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\series bold +Demostración +\series default + para +\begin_inset Formula $Y$ +\end_inset + + de codimensión 1 +\series bold +: +\series default + Sea +\begin_inset Formula $x_{0}\in X\setminus Y$ +\end_inset + +, entonces +\begin_inset Formula $X=Y\oplus\text{span}\{x_{0}\}$ +\end_inset + + y toda extensión lineal +\begin_inset Formula $\hat{f}:X\to\mathbb{R}$ +\end_inset + + se escribe como +\begin_inset Formula $\hat{f}(y+ax_{0})=f(y)+a\hat{f}(x_{0})$ +\end_inset + + para cada +\begin_inset Formula $y+ax_{0}\in X$ +\end_inset + + con +\begin_inset Formula $y\in Y$ +\end_inset + + y +\begin_inset Formula $a\in\mathbb{R}$ +\end_inset + +, y queremos ver que existe +\begin_inset Formula $\alpha\in\mathbb{R}$ +\end_inset + + tal que si +\begin_inset Formula $\hat{f}(x_{0})=\alpha$ +\end_inset + + entonces +\begin_inset Formula $\hat{f}\leq p$ +\end_inset + +. + Para +\begin_inset Formula $a=0$ +\end_inset + + esto siempre se cumple; para +\begin_inset Formula $a>0$ +\end_inset + + +\begin_inset Formula +\begin{multline*} +\forall y\in Y,\hat{f}(y+ax_{0})=f(y)+a\alpha\leq p(y+ax_{0})\iff\forall y\in Y,f\left(\frac{y}{a}\right)+\alpha\leq p\left(\frac{y}{a}+x_{0}\right)\iff\\ +\iff\forall z\in Y,\alpha\leq-f(z)+p(z+x_{0}), +\end{multline*} + +\end_inset + +y para +\begin_inset Formula $a<0$ +\end_inset + +, +\begin_inset Formula +\begin{multline*} +\forall y\in Y,\hat{f}(y+ax_{0})=f(y)+a\alpha\leq p(y+ax_{0})\iff\forall y\in Y,f\left(-\frac{y}{a}\right)-\alpha\leq p\left(-\frac{y}{a}-x_{0}\right)\iff\\ +\iff\forall w\in Y,\alpha\geq f(w)-p(w-x_{0}), +\end{multline*} + +\end_inset + +con lo que la condición equivale a que +\begin_inset Formula $\forall z,w\in Y,f(w)-p(w-x_{0})\leq\alpha\leq-f(z)+p(z+x_{0})$ +\end_inset + +, pero siempre existe tal +\begin_inset Formula $\alpha$ +\end_inset + + ya que, para +\begin_inset Formula $z,w\in Y$ +\end_inset + +, +\begin_inset Formula +\[ +f(z)+f(w)=f(z+w)\leq p(z+w)=p(z+x_{0}+w-x_{0})\leq p(z+x_{0})+p(w-x_{0}). +\] + +\end_inset + + +\end_layout + +\begin_layout Standard +El teorema de Tychonoff equivale al axioma de elección y es estrictamente + más fuerte que el teorema de Tychonoff para espacios compactos separados, + el cual implica el teorema de extensión de Hann-Banach. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard + +\series bold +Teorema de Hann-Banach ( +\begin_inset Formula $\mathbb{R}$ +\end_inset + +) y Sobczyk ( +\begin_inset Formula $\mathbb{C}$ +\end_inset + +): +\series default + Sean +\begin_inset Formula $Y\leq_{\mathbb{K}}X$ +\end_inset + +, +\begin_inset Formula $p:X\to\mathbb{K}$ +\end_inset + + una seminorma y +\begin_inset Formula $f:Y\to\mathbb{K}$ +\end_inset + + lineal con +\begin_inset Formula $|f|\leq p|_{Y}$ +\end_inset + +, +\begin_inset Formula $f$ +\end_inset + + se extiende a una +\begin_inset Formula $\hat{f}:X\to\mathbb{K}$ +\end_inset + + lineal con +\begin_inset Formula $|\hat{f}|\leq p$ +\end_inset + +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Como +\series bold +teorema +\series default +, si +\begin_inset Formula $(X,\Vert\cdot\Vert)$ +\end_inset + + es un +\begin_inset Formula $\mathbb{K}$ +\end_inset + +-espacio normado e +\begin_inset Formula $Y\leq X$ +\end_inset + +, toda +\begin_inset Formula $f\in Y^{*}$ +\end_inset + + se extiende a una +\begin_inset Formula $\hat{f}\in X^{*}$ +\end_inset + + con +\begin_inset Formula $\Vert\hat{f}\Vert=\Vert f\Vert$ +\end_inset + +. + +\series bold +Demostración: +\series default + +\begin_inset Formula $p:X\to\mathbb{R}$ +\end_inset + + dada por +\begin_inset Formula $p(x)\coloneqq\Vert f\Vert\Vert x\Vert$ +\end_inset + + es subaditiva y positivamente homogénea con +\begin_inset Formula $|f(x)|\leq\Vert f\Vert\Vert x\Vert=p(x)$ +\end_inset + +, luego +\begin_inset Formula $f$ +\end_inset + + se extiende a +\begin_inset Formula $\hat{f}:X\to\mathbb{R}$ +\end_inset + + lineal con +\begin_inset Formula $|\hat{f}|\leq p$ +\end_inset + + y, para +\begin_inset Formula $x\in S_{X}$ +\end_inset + +, +\begin_inset Formula $\Vert\hat{f}(x)\Vert\leq\Vert f\Vert$ +\end_inset + +, de modo que +\begin_inset Formula $\Vert f\Vert\leq\Vert\hat{f}\Vert\leq\Vert f\Vert$ +\end_inset + +. +\end_layout + +\begin_layout Standard +El +\series bold +teorema de Hann-Banach +\series default + es el anterior cuando +\begin_inset Formula $X$ +\end_inset + + es real y separable. + +\series bold +Demostración +\series default + sin usar cosas de esta sección no probadas +\series bold +: +\series default + Sean +\begin_inset Formula $\{x_{n}\}_{n\in\mathbb{N}}$ +\end_inset + + denso en +\begin_inset Formula $X$ +\end_inset + + y, para +\begin_inset Formula $n\in\mathbb{N}$ +\end_inset + +, +\begin_inset Formula $X_{n}\coloneqq\text{span}\{Y\cup\{x_{k}\}_{k\in\mathbb{N}_{n}}\}$ +\end_inset + +, o +\begin_inset Formula $X_{n}=X_{n+1}$ +\end_inset + + o es un subespacio de +\begin_inset Formula $X_{n+1}$ +\end_inset + + de codimensión 1, y por inducción en lo anterior para +\begin_inset Formula $n\in\mathbb{N}$ +\end_inset + + existe +\begin_inset Formula $f_{n}\in X_{n}^{*}$ +\end_inset + + con +\begin_inset Formula $\Vert f_{n}\Vert=\Vert f\Vert$ +\end_inset + + y +\begin_inset Formula $f_{n}=f_{n+1}|_{X_{n}^{*}}$ +\end_inset + +, de modo que si +\begin_inset Formula $Z\coloneqq\bigcup_{n}X_{n}$ +\end_inset + +, existe +\begin_inset Formula $F\in Z^{*}$ +\end_inset + + con +\begin_inset Formula $f=F|_{Y}$ +\end_inset + + y +\begin_inset Formula $\Vert F\Vert=\Vert f\Vert$ +\end_inset + +, pero para +\begin_inset Formula $y\in X$ +\end_inset + + existe +\begin_inset Formula $\{z_{n}\}_{n}\subseteq Z$ +\end_inset + + convergente a +\begin_inset Formula $y$ +\end_inset + + y, por continuidad de +\begin_inset Formula $F$ +\end_inset + +, existe +\begin_inset Formula $\hat{f}(y)\coloneqq\lim_{n}F(y_{n})$ +\end_inset + +, con +\begin_inset Formula $\hat{f}(y)$ +\end_inset + + independiente de la sucesión elegida, con lo que podemos definir +\begin_inset Formula $\hat{f}:X\to\mathbb{R}$ +\end_inset + + de esta forma y claramente es lineal y continua con +\begin_inset Formula $\Vert\hat{f}\Vert=\Vert F\Vert=\Vert f\Vert$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Sea entonces +\begin_inset Formula $(X,\Vert\cdot\Vert)$ +\end_inset + + un +\begin_inset Formula $\mathbb{K}$ +\end_inset + +-espacio normado: +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\forall x\in X\setminus0,\exists f\in X^{*}:(\Vert f\Vert=1\land f(x)=\Vert x\Vert)$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\forall x\in X,\Vert x\Vert=\max_{f\in B_{X^{*}}}|f(x)|$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +Para +\begin_inset Formula $Y\leq X$ +\end_inset + + y +\begin_inset Formula $x\in X$ +\end_inset + + con +\begin_inset Formula $\delta\coloneqq d(x,Y)>0$ +\end_inset + +, +\begin_inset Formula $\exists f\in X^{*}:(f(Y)=0\land f(x)=1\land\Vert f\Vert=\delta^{-1})$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula +\[ +\forall Y\leq X,\overline{Y}=\bigcap_{\begin{subarray}{c} +f\in X^{*}\\ +Y\subseteq\ker f +\end{subarray}}\ker f. +\] + +\end_inset + + +\end_layout + +\begin_layout Enumerate +\begin_inset Formula +\[ +\forall S\subseteq X,\overline{\text{span}S}\coloneqq\bigcap_{\begin{subarray}{c} +f\in X^{*}\\ +S\subseteq\ker f +\end{subarray}}\ker f. +\] + +\end_inset + + +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $S\subseteq X$ +\end_inset + + es total si y sólo si +\begin_inset Formula $\forall f\in X^{*},(f(S)=0\implies f=0)$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $x_{1},\dots,x_{n}\in X$ +\end_inset + + son linealmente independientes, existen +\begin_inset Formula $f_{1},\dots,f_{n}\in X^{*}$ +\end_inset + + con cada +\begin_inset Formula $f_{i}(x_{j})=\delta_{ij}$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +Todo subespacio de +\begin_inset Formula $X$ +\end_inset + + de dimensión finita posee un complementario topológico. +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $Y\leq X$ +\end_inset + +, la +\series bold +restricción +\series default + +\begin_inset Formula $\psi:X^{*}\to Y^{*}$ +\end_inset + +, +\begin_inset Formula $f\mapsto f|_{Y}$ +\end_inset + +, es lineal, continua, suprayectiva y abierta. +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $Y\leq X$ +\end_inset + + y +\begin_inset Formula $X^{*}$ +\end_inset + + es separable, +\begin_inset Formula $Y^{*}$ +\end_inset + + también. +\end_layout + +\begin_layout Subsection +Versión geométrica +\end_layout + +\begin_layout Standard +Como +\series bold +teorema +\series default +, sean +\begin_inset Formula $E$ +\end_inset + + un e.l.c. + y +\begin_inset Formula $F\leq E$ +\end_inset + +, toda +\begin_inset Formula $u\in F'$ +\end_inset + + se extiende a una +\begin_inset Formula $f\in E'$ +\end_inset + +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Así +\begin_inset Formula $E$ +\end_inset + + es un e.l.c.: +\end_layout + +\begin_layout Enumerate +Para +\begin_inset Formula $F\leq E$ +\end_inset + +, la restricción +\begin_inset Formula $E'\to F'$ +\end_inset + +, +\begin_inset Formula $f\mapsto f|_{F}$ +\end_inset + +, es suprayectiva. +\end_layout + +\begin_layout Enumerate +Para +\begin_inset Formula $x\in E\setminus0$ +\end_inset + + existe +\begin_inset Formula $f\in E'$ +\end_inset + + con +\begin_inset Formula $f(x)\neq0$ +\end_inset + +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $\{x_{1},\dots,x_{n}\}\subseteq E$ +\end_inset + + linealmente independiente, existen +\begin_inset Formula $f_{1},\dots,f_{n}\in E'$ +\end_inset + + con cada +\begin_inset Formula $f_{i}(x_{j})=\delta_{ij}$ +\end_inset + +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Si +\begin_inset Formula $E$ +\end_inset + + es un +\begin_inset Formula $\mathbb{R}$ +\end_inset + +-e.v.t., +\begin_inset Formula $f\in E'\setminus0$ +\end_inset + + y +\begin_inset Formula $A\subseteq E$ +\end_inset + + es un abierto convexo no vacío, +\begin_inset Formula $f(A)\subseteq\mathbb{R}$ +\end_inset + + es un intervalo abierto. + +\series bold +Demostración: +\series default + Si fuera +\begin_inset Formula $f(A)=\{p\}$ +\end_inset + + para cierto +\begin_inset Formula $p\in\mathbb{R}$ +\end_inset + +, entonces +\begin_inset Formula $A\subseteq\ker(f-p)$ +\end_inset + +, pero como +\begin_inset Formula $f\neq0$ +\end_inset + +, +\begin_inset Formula $\ker(f-p)<E$ +\end_inset + + y por tanto tiene interior vacío, luego +\begin_inset Formula $A=\emptyset\#$ +\end_inset + +. + Para ver que es un intervalo, sean +\begin_inset Formula $x,y\in A$ +\end_inset + + con +\begin_inset Formula $f(x)<f(y)$ +\end_inset + +, por convexidad, si +\begin_inset Formula $\psi:\mathbb{R}\to E$ +\end_inset + + viene dada por +\begin_inset Formula $\psi(t)\coloneqq(1-t)x+ty$ +\end_inset + +, +\begin_inset Formula $\psi([0,1])\subseteq A$ +\end_inset + +, pero +\begin_inset Formula $\psi$ +\end_inset + + es continua y por tanto también lo es +\begin_inset Formula $f\circ\psi:\mathbb{R}\to\mathbb{R}$ +\end_inset + +, y para +\begin_inset Formula $z\in[f(x),f(y)]$ +\end_inset + +, por el teorema de Bolzano existe +\begin_inset Formula $t\in[0,1]$ +\end_inset + + con +\begin_inset Formula $z=f(\psi(t))\in f(A)$ +\end_inset + +. + Ahora bien, como +\begin_inset Formula $A$ +\end_inset + + es abierto, +\begin_inset Formula $A-x$ +\end_inset + + es entorno del 0 y por tanto absorbente, y dada la función lineal +\begin_inset Formula $\phi(t)\coloneqq\psi(t)-x=t(y-x)$ +\end_inset + +, existe +\begin_inset Formula $\rho_{0}>0$ +\end_inset + + tal que, para +\begin_inset Formula $\rho>\rho_{0}$ +\end_inset + +, +\begin_inset Formula $\phi(-1)\in\rho(A-x)$ +\end_inset + +, luego +\begin_inset Formula $\phi(-\frac{1}{\rho}),\phi(\frac{2}{\rho})\in A-x$ +\end_inset + + y +\begin_inset Formula $\psi((-\frac{1}{\rho},1))=\phi((-\frac{1}{\rho},1))+x\subseteq A$ +\end_inset + + y, como +\begin_inset Formula $f\circ\psi:\mathbb{R}\to\mathbb{R}$ +\end_inset + + es afín no degenerada y por tanto un homeomorfismo, +\begin_inset Formula $f(\psi((-\frac{1}{\rho},1)))\subseteq f(A)$ +\end_inset + + es un entorno abierto de +\begin_inset Formula $x$ +\end_inset + +, pero análogamente hay un entorno abierto de +\begin_inset Formula $y$ +\end_inset + +, y como +\begin_inset Formula $f(A)$ +\end_inset + + tiene al menos dos puntos distintos, queda que +\begin_inset Formula $f(A)$ +\end_inset + + es abierta. +\end_layout + +\begin_layout Standard +\begin_inset Formula $\psi([0,1])\subseteq A$ +\end_inset + + y +\begin_inset Formula $\psi|_{[0,1]}:[0,1]\to\psi([0,1])$ +\end_inset + + es un homeomorfismo, luego +\begin_inset Formula $f\circ\psi:[0,1]\to\mathbb{R}$ +\end_inset + + es continua y, para +\begin_inset Formula $z\in(f(x),f(y))$ +\end_inset + +, por el teorema de Bolzano existe +\begin_inset Formula $t\in[0,1]$ +\end_inset + + con +\begin_inset Formula $z=f(\psi(t))\in f(A)$ +\end_inset + +. + Como +\begin_inset Formula $A$ +\end_inset + + es abierto, +\begin_inset Formula $A-x$ +\end_inset + + es un entorno del 0, luego es absorbente y existe +\begin_inset Formula $\rho_{0}>0$ +\end_inset + + tal que, para +\begin_inset Formula $\rho>\rho_{0}$ +\end_inset + +, +\begin_inset Formula $\psi(-1)\in\rho(A-x)$ +\end_inset + +, con lo que +\begin_inset Formula $\psi(-\frac{1}{\rho})\in A$ +\end_inset + +, de modo que +\begin_inset Formula $(-\frac{1}{\rho_{0}},1)\subseteq A$ +\end_inset + + +\end_layout + +\begin_layout Standard +Si +\begin_inset Formula $E$ +\end_inset + + es un espacio vectorial, un +\series bold +hiperplano +\series default + de +\begin_inset Formula $E$ +\end_inset + + es un subespacio propio de +\begin_inset Formula $E$ +\end_inset + + y una +\series bold +variedad afín +\series default + de +\begin_inset Formula $E$ +\end_inset + + es un conjunto +\begin_inset Formula $x_{0}+F$ +\end_inset + + con +\begin_inset Formula $x_{0}\in E$ +\end_inset + + y +\begin_inset Formula $F\leq E$ +\end_inset + +, que se llama +\series bold +hiperplano afín +\series default + de +\begin_inset Formula $E$ +\end_inset + + si +\begin_inset Formula $F$ +\end_inset + + es un hiperplano de +\begin_inset Formula $E$ +\end_inset + +. + Si +\begin_inset Formula $E$ +\end_inset + + es un e.v.t., +\begin_inset Formula $M\subseteq E$ +\end_inset + + es un hiperplano afín si y sólo si existen +\begin_inset Formula $f:E\to\mathbb{K}$ +\end_inset + + lineal y +\begin_inset Formula $a\in\mathbb{K}$ +\end_inset + + con +\begin_inset Formula $M=\{x\in X\mid f(x)=a\}$ +\end_inset + +, y entonces +\begin_inset Formula $M$ +\end_inset + + es cerrado si y sólo si +\begin_inset Formula $f$ +\end_inset + + es continua. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard + +\series bold +Teorema de Mazur: +\series default + Sean +\begin_inset Formula $E$ +\end_inset + + un e.v.t., +\begin_inset Formula $M\subseteq E$ +\end_inset + + una variedad afín y +\begin_inset Formula $A\subseteq E$ +\end_inset + + un abierto convexo no vacío disjunto de +\begin_inset Formula $M$ +\end_inset + +, existe un hiperplano afín cerrado de +\begin_inset Formula $E$ +\end_inset + + disjunto de +\begin_inset Formula $A$ +\end_inset + + que contiene a +\begin_inset Formula $M$ +\end_inset + +. + +\series bold +Demostración: +\series default + Podemos suponer por traslación que +\begin_inset Formula $0\in A$ +\end_inset + +, de modo que +\begin_inset Formula $A$ +\end_inset + + es absorbente y tiene asociado un funcional de Minkowski +\begin_inset Formula $p$ +\end_inset + + tal que +\begin_inset Formula $A=\{x\in E\mid p(x)<1\}$ +\end_inset + + y, como +\begin_inset Formula $A$ +\end_inset + + es abierto, +\begin_inset Formula $p$ +\end_inset + + es continua. + Sean entonces +\begin_inset Formula $x_{0}\in E$ +\end_inset + + y +\begin_inset Formula $F\leq E$ +\end_inset + + con +\begin_inset Formula $M=x_{0}+F$ +\end_inset + +, +\begin_inset Formula $x_{0}\notin F$ +\end_inset + + ya que de serlo sería +\begin_inset Formula $M=F\ni0$ +\end_inset + +, luego +\begin_inset Formula $F\cap\text{span}\{x_{0}\}=0$ +\end_inset + + y podemos definir +\begin_inset Formula $u:F\oplus\text{span}\{x_{0}\}\to\mathbb{K}$ +\end_inset + + como +\begin_inset Formula $u(y+\lambda x_{0})\coloneqq\lambda$ +\end_inset + + para +\begin_inset Formula $y\in F$ +\end_inset + + y +\begin_inset Formula $\lambda\in\mathbb{K}$ +\end_inset + +, que es lineal. + Ahora bien, para +\begin_inset Formula $\lambda\neq0$ +\end_inset + + es +\begin_inset Formula $|u(y+\lambda x_{0})|=|\lambda|\leq|\lambda|p(\tfrac{y}{\lambda}+x_{0})\leq p(y+\lambda x_{0})$ +\end_inset + +, donde en la primera desigualdad usamos que +\begin_inset Formula $\frac{y}{\lambda}+x_{0}\in M\subseteq A^{\complement}$ +\end_inset + + y por tanto +\begin_inset Formula $p(\frac{y}{\lambda}+x_{0})\geq1$ +\end_inset + +, y para +\begin_inset Formula $\lambda=0$ +\end_inset + +, +\begin_inset Formula $|u(y)|=0\leq p(y)$ +\end_inset + +, de modo que +\begin_inset Formula $|u|\leq p|_{F\oplus\text{span}\{x_{0}\}}$ +\end_inset + + y, por el teorema de Sobczyk, +\begin_inset Formula $u$ +\end_inset + + se extiende a una +\begin_inset Formula $f:E\to\mathbb{K}$ +\end_inset + + lineal con +\begin_inset Formula $|f|\leq p$ +\end_inset + +, con lo que +\begin_inset Formula $f$ +\end_inset + + es continua y, si +\begin_inset Formula $H\coloneqq\{x\in E\mid f(x)=1\}$ +\end_inset + +, +\begin_inset Formula $f(E)=1$ +\end_inset + + y por tanto +\begin_inset Formula $E\subseteq H$ +\end_inset + + y, para +\begin_inset Formula $x\in H$ +\end_inset + +, +\begin_inset Formula $f(x)=1\leq p(x)$ +\end_inset + + y por tanto +\begin_inset Formula $x\notin A$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Sean +\begin_inset Formula $E$ +\end_inset + + un +\begin_inset Formula $\mathbb{R}$ +\end_inset + +-e.v.t., +\begin_inset Formula $f\in E'$ +\end_inset + + y +\begin_inset Formula $\alpha\in\mathbb{R}$ +\end_inset + +, llamamos +\series bold +semiespacios abiertos +\series default + determinados por +\begin_inset Formula $f$ +\end_inset + + y +\begin_inset Formula $\alpha$ +\end_inset + + a +\begin_inset Formula $\{x\in E\mid f(x)<\alpha\}$ +\end_inset + + y +\begin_inset Formula $\{x\in E\mid f(x)>\alpha\}$ +\end_inset + +, y +\series bold +semiespacios cerrados +\series default + determinados por +\begin_inset Formula $f$ +\end_inset + + y +\begin_inset Formula $\alpha$ +\end_inset + + a +\begin_inset Formula $\{x\in E\mid f(x)\leq\alpha\}$ +\end_inset + + y +\begin_inset Formula $\{x\in E\mid f(x)\geq\alpha\}$ +\end_inset + +, y +\begin_inset Formula $H\coloneqq\{x\in E\mid f(x)=\alpha\}$ +\end_inset + + +\series bold +separa +\series default + +\begin_inset Formula $A,B\subseteq E$ +\end_inset + + si cada uno está en un semiespacio cerrado distinto de +\begin_inset Formula $f$ +\end_inset + + y +\begin_inset Formula $\alpha$ +\end_inset + +, en cuyo caso +\begin_inset Formula $A$ +\end_inset + + y +\begin_inset Formula $B$ +\end_inset + + están +\series bold +separados +\series default +, y +\series bold +separa estrictamente +\series default + +\begin_inset Formula $A$ +\end_inset + + y +\begin_inset Formula $B$ +\end_inset + + si cada uno está en un semiespacio abierto distinto de +\begin_inset Formula $f$ +\end_inset + + y +\begin_inset Formula $\alpha$ +\end_inset + +, en cuyo caso +\begin_inset Formula $A$ +\end_inset + + y +\begin_inset Formula $B$ +\end_inset + + están estrictamente separados. +\end_layout + +\begin_layout Standard + +\series bold +Teoremas de separación: +\end_layout + +\begin_layout Enumerate +En un +\begin_inset Formula $\mathbb{R}$ +\end_inset + +-e.v.t. + todo par de abiertos convexos disjuntos no vacíos está separado. +\end_layout + +\begin_deeper +\begin_layout Standard +Sean +\begin_inset Formula $E$ +\end_inset + + el +\begin_inset Formula $\mathbb{R}$ +\end_inset + +-e.v.t. + y +\begin_inset Formula $A,B\subseteq E$ +\end_inset + + tales conjuntos, +\begin_inset Formula $A-B$ +\end_inset + + es un abierto no vacío que no contiene al 0, con lo que el teorema de Mizur + nos da un hiperplano cerrado +\begin_inset Formula $H=\{x\in E\mid f(x)=\beta\}$ +\end_inset + +, con +\begin_inset Formula $f\in E'$ +\end_inset + + y +\begin_inset Formula $\beta\in\mathbb{R}$ +\end_inset + +, que contiene al 0 y es disjunto de +\begin_inset Formula $A-B$ +\end_inset + +. + +\begin_inset Formula $f(A-B)\subseteq\mathbb{R}$ +\end_inset + + es convexo. + Como +\begin_inset Formula $\beta=f(0)=0$ +\end_inset + +, +\begin_inset Formula $0\notin f(A-B)$ +\end_inset + +, pero +\begin_inset Formula $f(A-B)$ +\end_inset + + es un intervalo, luego +\begin_inset Formula $f(A-B)\subseteq\mathbb{R}^{+}$ +\end_inset + + o +\begin_inset Formula $f(A-B)\subseteq\mathbb{R}^{-}$ +\end_inset + +. + Si, por ejemplo, +\begin_inset Formula $f(A-B)\subseteq\mathbb{R}^{-}$ +\end_inset + +, para +\begin_inset Formula $a\in A$ +\end_inset + + y +\begin_inset Formula $b\in B$ +\end_inset + +, +\begin_inset Formula $f(a)<f(b)$ +\end_inset + +, luego existe +\begin_inset Formula $\alpha\in[\sup_{a\in A}f(a),\inf_{b\in B}f(b)]$ +\end_inset + +, y como +\begin_inset Formula $f(A)$ +\end_inset + + y +\begin_inset Formula $f(B)$ +\end_inset + + son intervalos abiertos, para +\begin_inset Formula $a\in A$ +\end_inset + + y +\begin_inset Formula $b\in B$ +\end_inset + +, +\begin_inset Formula $f(a)<\alpha<f(b)$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Enumerate +Si +\begin_inset Formula $E$ +\end_inset + + es un +\begin_inset Formula $\mathbb{R}$ +\end_inset + +-e.l.c. + y +\begin_inset Formula $K,F\subseteq E$ +\end_inset + + son convexos disjuntos no vacíos con +\begin_inset Formula $K$ +\end_inset + + compacto y +\begin_inset Formula $F$ +\end_inset + + cerrado, existen +\begin_inset Formula $f\in E'$ +\end_inset + +, +\begin_inset Formula $\alpha\in\mathbb{R}$ +\end_inset + + y +\begin_inset Formula $\varepsilon>0$ +\end_inset + + con +\begin_inset Formula $f(y)\leq\alpha-\varepsilon<\alpha<f(z)$ +\end_inset + + para todo +\begin_inset Formula $y\in K$ +\end_inset + + y +\begin_inset Formula $z\in F$ +\end_inset + + y tales que +\begin_inset Formula $f|_{K}$ +\end_inset + + alcanza +\begin_inset Formula $\alpha-\varepsilon$ +\end_inset + +, y en particular +\begin_inset Formula $K$ +\end_inset + + y +\begin_inset Formula $F$ +\end_inset + + están estrictamente separados. +\end_layout + +\begin_deeper +\begin_layout Standard +Como +\begin_inset Formula $K-F$ +\end_inset + + es cerrado y no contiene al 0, +\begin_inset Formula $E\setminus(K-F)\in{\cal E}(0)$ +\end_inset + +, luego existe +\begin_inset Formula $W\in{\cal E}(0)$ +\end_inset + + con +\begin_inset Formula $W+W\subseteq E\setminus(K-F)$ +\end_inset + + que podemos tomar absolutamente conexo y, si +\begin_inset Formula $k\in K$ +\end_inset + +, +\begin_inset Formula $f\in F$ +\end_inset + + y +\begin_inset Formula $u,v\in W$ +\end_inset + +, +\begin_inset Formula $k-f\in K-F$ +\end_inset + + y +\begin_inset Formula $u-v\in W+W\subseteq E\setminus(K-F)$ +\end_inset + +, luego +\begin_inset Formula $k-f\neq u-v$ +\end_inset + + y +\begin_inset Formula $k+v\neq f+u$ +\end_inset + +, y +\begin_inset Formula $K+W$ +\end_inset + + y +\begin_inset Formula $F+W$ +\end_inset + + son abiertos disjuntos. + Es fácil ver que la suma de conexos es conexa, luego +\begin_inset Formula $K+W$ +\end_inset + + y +\begin_inset Formula $F+W$ +\end_inset + + son conexos y, por el primer teorema de separación, existen +\begin_inset Formula $f\in E'$ +\end_inset + + y +\begin_inset Formula $\alpha\in\mathbb{R}$ +\end_inset + + con +\begin_inset Formula $f(k)<\alpha<f(z)$ +\end_inset + + para +\begin_inset Formula $k\in K$ +\end_inset + + y +\begin_inset Formula $z\in F$ +\end_inset + +, pero como +\begin_inset Formula $f(K)$ +\end_inset + + es compacto, +\begin_inset Formula $\max f(K)<\alpha$ +\end_inset + + y basta tomar +\begin_inset Formula $\varepsilon\coloneqq\alpha-\max f(K)$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Standard +Con esto, si +\begin_inset Formula $E$ +\end_inset + + es un +\begin_inset Formula $\mathbb{K}$ +\end_inset + +-e.l.c. + y +\begin_inset Formula $K,F\subseteq E$ +\end_inset + + son convexos disjuntos, +\begin_inset Formula $A$ +\end_inset + + es compacto, +\begin_inset Formula $B$ +\end_inset + + es cerrado y uno de los dos es absolutamente convexo, existe +\begin_inset Formula $u\in E'$ +\end_inset + + tal que +\begin_inset Formula $\sup_{x\in A}|u(x)|<\inf_{y\in B}|u(y)|$ +\end_inset + +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Si +\begin_inset Formula $E$ +\end_inset + + es un e.l.c. + y +\begin_inset Formula $A\subseteq E$ +\end_inset + +, +\begin_inset Formula $\overline{\text{co}(A)}$ +\end_inset + + es la intersección de todos los semiespacios cerrados de +\begin_inset Formula $E$ +\end_inset + + que contienen a +\begin_inset Formula $A$ +\end_inset + +, y en particular todo conjunto convexo y cerrado es la intersección de + los semiespacios cerrados que lo contienen. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Así, si +\begin_inset Formula $E$ +\end_inset + + es un espacio vectorial con topologías +\begin_inset Formula ${\cal S}$ +\end_inset + + y +\begin_inset Formula ${\cal T}$ +\end_inset + + localmente convexas Hausdorff y +\begin_inset Formula $(E,{\cal S})'=(E,{\cal T})'$ +\end_inset + +, +\begin_inset Formula $(E,{\cal S})$ +\end_inset + + y +\begin_inset Formula $(E,{\cal T})$ +\end_inset + + tienen los mismos convexos cerrados. + Si +\begin_inset Formula $E$ +\end_inset + + es un e.l.c. + entonces +\begin_inset Formula $(E,{\cal T})'=(E,\sigma(E,E'))'$ +\end_inset + +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Si +\begin_inset Formula $E$ +\end_inset + + es un e.l.c.: +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $F\leq E$ +\end_inset + +, +\begin_inset Formula $\overline{F}=\{x\in E\mid\forall f\in E',(f|_{F}=0\implies f(x)=0)\}$ +\end_inset + +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $S\subseteq E$ +\end_inset + + es total si y sólo si +\begin_inset Formula $\{f\in E'\mid f|_{S}=0\}=0$ +\end_inset + +. +\end_layout + +\begin_layout Subsection +Normas convexas +\end_layout + +\begin_layout Standard +Llamamos +\series bold +bidual +\series default + del espacio normado +\begin_inset Formula $(X,\Vert\cdot\Vert)$ +\end_inset + + al dual del dual de +\begin_inset Formula $X$ +\end_inset + +, +\begin_inset Formula $X^{**}$ +\end_inset + +, con la norma dual, que es un espacio de Banach. +\end_layout + +\begin_layout Standard +La función +\begin_inset Formula $\hat{}:X\to X^{**}$ +\end_inset + + dada por +\begin_inset Formula $\hat{x}(f)\coloneqq f(x)$ +\end_inset + + es una isometría, con lo que +\begin_inset Formula $\overline{\text{Im}\hat{}}$ +\end_inset + + es un modelo para la compleción de +\begin_inset Formula $X$ +\end_inset + + identificando cada +\begin_inset Formula $x$ +\end_inset + + con +\begin_inset Formula $\hat{x}$ +\end_inset + +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Sean +\begin_inset Formula $Y\leq X$ +\end_inset + + cerrado, +\begin_inset Formula $Q:X\to\frac{X}{Y}$ +\end_inset + + la aplicación cociente e +\begin_inset Formula $Y'\coloneqq\{f\in X^{*}\mid f(Y)=0\}$ +\end_inset + +: +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\alpha:\frac{X^{*}}{Y'}\to Y^{*}$ +\end_inset + + dada por +\begin_inset Formula $\alpha(\overline{f})\coloneqq f|_{Y}$ +\end_inset + + es un isomorfismo isométrico. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\beta:\left(\frac{X}{Y}\right)^{*}\to Y'$ +\end_inset + + dada por +\begin_inset Formula $\beta(\overline{g})\coloneqq g\circ Q$ +\end_inset + + es un isomorfismo isométrico. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Una norma +\begin_inset Formula $\Vert\cdot\Vert$ +\end_inset + + en +\begin_inset Formula $X$ +\end_inset + + es +\series bold +estrictamente convexa +\series default + si +\begin_inset Formula $\forall x,y\in S_{X},\left(x\neq y\implies\left\Vert \frac{x+y}{2}\right\Vert <1\right)$ +\end_inset + +. + +\series bold +Teorema de Taylor-Foguel: +\series default + Si +\begin_inset Formula $X$ +\end_inset + + es un espacio normado, +\begin_inset Formula $X^{*}$ +\end_inset + + es estrictamente convexo si y sólo si para +\begin_inset Formula $Y\leq X$ +\end_inset + + e +\begin_inset Formula $f\in Y^{*}$ +\end_inset + + existe una única extensión +\begin_inset Formula $\hat{f}\in X^{*}$ +\end_inset + + de +\begin_inset Formula $f$ +\end_inset + + con +\begin_inset Formula $\Vert\hat{f}\Vert=\Vert f\Vert$ +\end_inset + +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Para +\begin_inset Formula $p\in(1,\infty)$ +\end_inset + + y +\begin_inset Formula $n\in\mathbb{N}$ +\end_inset + +, en +\begin_inset Formula $(\mathbb{K}^{n},\Vert\cdot\Vert_{p})$ +\end_inset + + y +\begin_inset Formula $(\ell^{p},\Vert\cdot\Vert_{p})$ +\end_inset + + las normas duales son estrictamente convexas, mientras que esto no ocurre + cuando +\begin_inset Formula $p=1$ +\end_inset + + o +\begin_inset Formula $p=\infty$ +\end_inset + +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Las extensiones de Hann-Banach pueden ser infinitas; por ejemplo, si +\begin_inset Formula $Y$ +\end_inset + + es el subespacio de +\begin_inset Formula $({\cal C}([0,1]),\Vert\cdot\Vert_{\infty})$ +\end_inset + + de las funciones constantes y +\begin_inset Formula $g\in Y^{*}$ +\end_inset + + viene dada por +\begin_inset Formula $g(y)\coloneqq y(0)$ +\end_inset + +, para +\begin_inset Formula $t\in[0,1]$ +\end_inset + +, +\begin_inset Formula $f_{t}\in X^{*}$ +\end_inset + + dada por +\begin_inset Formula $f_{t}(x)\coloneqq x(t)$ +\end_inset + + es una extensión lineal de +\begin_inset Formula $g$ +\end_inset + + que conserva la norma. +\end_layout + +\begin_layout Subsection +Límites de Banach +\end_layout + +\begin_layout Standard +Como +\series bold +teorema +\series default +, si +\begin_inset Formula $c$ +\end_inset + + es el espacio de las sucesiones convergentes, existe +\begin_inset Formula $L\in(\ell^{\infty})^{*}$ +\end_inset + + con +\begin_inset Formula $\Vert L\Vert=1$ +\end_inset + + y +\begin_inset Formula $L(x)=\lim_{n}x_{n}$ +\end_inset + + para +\begin_inset Formula $x\in c$ +\end_inset + + tal que, para +\begin_inset Formula $x\in X$ +\end_inset + +, +\begin_inset Formula $L(x)=L((x_{2},x_{3},\dots,x_{n},\dots))$ +\end_inset + + y, si cada +\begin_inset Formula $x_{n}\geq0$ +\end_inset + +, +\begin_inset Formula $L(x)\geq0$ +\end_inset + +. +\end_layout + +\begin_layout Subsection +Espacios vectoriales ordenados +\end_layout + +\begin_layout Standard +Un +\series bold +espacio vectorial ordenado +\series default + es un conjunto preordenado +\begin_inset Formula $(X,\apprle)$ +\end_inset + + donde +\begin_inset Formula $X$ +\end_inset + + es un +\begin_inset Formula $\mathbb{R}$ +\end_inset + +-espacio vectorial y, para +\begin_inset Formula $\alpha\in\mathbb{R}^{\geq0}$ +\end_inset + + y +\begin_inset Formula $x,y,z\in X$ +\end_inset + + con +\begin_inset Formula $x\leq y$ +\end_inset + +, +\begin_inset Formula $x+z\leq y+z$ +\end_inset + + y +\begin_inset Formula $\alpha x\leq\alpha y$ +\end_inset + +. + Un +\series bold +cono +\series default + en un +\begin_inset Formula $\mathbb{R}$ +\end_inset + +-espacio vectorial +\begin_inset Formula $X$ +\end_inset + + es un +\begin_inset Formula $P\subseteq X$ +\end_inset + + tal que, para +\begin_inset Formula $\alpha\in\mathbb{R}^{\geq0}$ +\end_inset + + y +\begin_inset Formula $x,y\in P$ +\end_inset + +, +\begin_inset Formula $x+y\in P$ +\end_inset + +, +\begin_inset Formula $\alpha x\in P$ +\end_inset + + y +\begin_inset Formula $P\cap(-P)=0$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Si +\begin_inset Formula $(X,\apprle)$ +\end_inset + + es un espacio vectorial ordenado, +\begin_inset Formula $\{x\in X\mid x\geq0\}$ +\end_inset + + es un cono si y sólo si +\begin_inset Formula $\apprle$ +\end_inset + + es antisimétrica, y si +\begin_inset Formula $P\subseteq_{\mathbb{R}}X$ +\end_inset + + es un cono, +\begin_inset Formula $x\leq y\iff y-x\in P$ +\end_inset + + define un orden parcial en +\begin_inset Formula $P$ +\end_inset + + tal que +\begin_inset Formula $(X,\leq)$ +\end_inset + + es un espacio vectorial ordenado. +\end_layout + +\begin_layout Standard +Si +\begin_inset Formula $(X,\apprle)$ +\end_inset + + es un espacio vectorial ordenado, +\begin_inset Formula $A\subseteq X$ +\end_inset + + es +\series bold +cofinal +\series default + si +\begin_inset Formula $\forall x\geq0,\exists a\in A:a\apprge x$ +\end_inset + +, y +\begin_inset Formula $e\in X$ +\end_inset + + es +\series bold +unidad de orden +\series default + si +\begin_inset Formula $\forall x\in X,\exists n\in\mathbb{N}:-ne\apprle x\apprle ne$ +\end_inset + +, en cuyo caso +\begin_inset Formula $\{ne\}_{n\in\mathbb{N}}$ +\end_inset + + es cofinal. +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $K$ +\end_inset + + es un espacio compacto, en el espacio vectorial ordenado +\begin_inset Formula $(C(K),\leq)$ +\end_inset + + de funciones continuas +\begin_inset Formula $K\to\mathbb{R}$ +\end_inset + + con el orden +\begin_inset Formula $f\leq g\iff\forall x\in K,f(x)\leq f(x)$ +\end_inset + +, todas las funciones que no se anulan son unidades de orden. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $(C(\mathbb{R}),\leq)$ +\end_inset + + no tiene unidades de orden. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Si +\begin_inset Formula $(X,\apprle)$ +\end_inset + + e +\begin_inset Formula $(Y,\lessapprox)$ +\end_inset + + son espacios vectoriales ordenados, +\begin_inset Formula $T:X\to Y$ +\end_inset + + lineal es +\series bold +positiva +\series default + si +\begin_inset Formula $\forall x\apprge0,Tx\gtrapprox0$ +\end_inset + +. + Como +\series bold +teorema +\series default +, si +\begin_inset Formula $(X,\apprle)$ +\end_inset + + es un espacio vectorial ordenado, +\begin_inset Formula $Y\leq X$ +\end_inset + + cofinal y +\begin_inset Formula $f:Y\to\mathbb{R}$ +\end_inset + + lineal positiva, +\begin_inset Formula $f$ +\end_inset + + se extiende a una +\begin_inset Formula $\hat{f}:X\to\mathbb{R}$ +\end_inset + + lineal positiva. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Con esto, si +\begin_inset Formula $e$ +\end_inset + + es una unidad de orden de +\begin_inset Formula $(X,\leq)$ +\end_inset + + e +\begin_inset Formula $Y\leq X$ +\end_inset + + con +\begin_inset Formula $e\in Y$ +\end_inset + +, toda función lineal positiva +\begin_inset Formula $Y\to\mathbb{R}$ +\end_inset + + se extiende a una función +\begin_inset Formula $X\to\mathbb{R}$ +\end_inset + + lineal positiva. +\end_layout + +\begin_layout Section +Propiedad de extensión +\end_layout + +\begin_layout Standard + +\series bold +Teorema de Helly: +\series default + En +\begin_inset Formula $\mathbb{R}^{n}$ +\end_inset + +, la intersección de +\begin_inset Formula $m>n$ +\end_inset + + conjuntos convexos es no vacía si y sólo si la intersección de cada +\begin_inset Formula $n+1$ +\end_inset + + de ellos es no vacía. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Dados un +\begin_inset Formula $\mathbb{K}$ +\end_inset + +-espacio normado +\begin_inset Formula $X$ +\end_inset + + y familias +\begin_inset Formula $\{x_{i}\}_{i\in I}\subseteq X$ +\end_inset + + y +\begin_inset Formula $\{r_{i}\}_{i\in I}\subseteq\mathbb{R}^{+}$ +\end_inset + +, la familia de bolas cerradas +\begin_inset Formula $(\overline{B(x_{i},r_{i})})_{i\in I}$ +\end_inset + + tiene la +\series bold +propiedad de intersección débil +\series default + si +\begin_inset Formula $\forall f\in B_{X^{*}},\bigcap_{i\in I}B(f(x_{i}),r_{i})\neq\emptyset$ +\end_inset + +, si y sólo si para +\begin_inset Formula $J\subseteq I$ +\end_inset + + finito y +\begin_inset Formula $\{a_{j}\}_{j\in J}\subseteq\mathbb{K}$ +\end_inset + + con +\begin_inset Formula $\sum_{j\in J}a_{j}=0$ +\end_inset + + es +\begin_inset Formula +\[ +\left\Vert \sum_{j\in J}a_{j}x_{j}\right\Vert \leq\sum_{j\in J}|a_{j}|r_{j}. +\] + +\end_inset + + +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $\mathbb{K}=\mathbb{R}$ +\end_inset + +, esto equivale a que las bolas se corten dos a dos. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $\mathbb{K}=\mathbb{C}$ +\end_inset + +, la segunda definición se puede restringir sólo a los +\begin_inset Formula $J\subseteq I$ +\end_inset + + con +\begin_inset Formula $|J|=3$ +\end_inset + +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Un +\begin_inset Formula $\mathbb{K}$ +\end_inset + +-espacio normado +\begin_inset Formula $(X,\Vert\cdot\Vert)$ +\end_inset + + cumple: +\end_layout + +\begin_layout Enumerate +La +\series bold +propiedad de extensión +\series default +, si para cada +\begin_inset Formula $\mathbb{K}$ +\end_inset + +-espacio normado +\begin_inset Formula $Y$ +\end_inset + +, +\begin_inset Formula $Y_{0}\leq Y$ +\end_inset + + y +\begin_inset Formula $T_{0}\in{\cal L}(Y_{0},X)$ +\end_inset + +, +\begin_inset Formula $T_{0}$ +\end_inset + + se extiende a una +\begin_inset Formula $T\in{\cal L}(Y,X)$ +\end_inset + + con +\begin_inset Formula $\Vert T\Vert=\Vert T_{0}\Vert$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +La +\series bold +propiedad de extensión +\begin_inset Quotes cld +\end_inset + +inmediata +\begin_inset Quotes crd +\end_inset + + +\series default +, si cumple la de extensión pero considerando sólo el caso en que +\begin_inset Formula $Y_{0}$ +\end_inset + + es de codimensión 1 en +\begin_inset Formula $Y$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +La +\series bold +propiedad de intersección +\series default + si toda familia de bolas cerradas de +\begin_inset Formula $X$ +\end_inset + + que cumple la propiedad de intersección débil tiene intersección no vacía. +\end_layout + +\begin_layout Enumerate +La +\series bold +propiedad de intersección binaria +\series default + si toda familia de bolas cerradas de +\begin_inset Formula $X$ +\end_inset + + que se cortan dos a dos tiene intersección no vacía. +\end_layout + +\begin_layout Enumerate +La +\series bold +propiedad de proyección +\series default + si para todo +\begin_inset Formula $\mathbb{K}$ +\end_inset + +-espacio normado que contiene a +\begin_inset Formula $X$ +\end_inset + + como subespacio existe +\begin_inset Formula $P\in{\cal L}(Y,X)$ +\end_inset + + con +\begin_inset Formula $\Vert P\Vert=1$ +\end_inset + + suprayectiva e idempotente, que llamamos una +\series bold +proyección +\series default + de +\begin_inset Formula $Y$ +\end_inset + + sobre +\begin_inset Formula $X$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset Formula $X$ +\end_inset + + cumple la propiedad de extensión si y sólo si cumple la propiedad de extensión + inmediata, en cuyo caso +\begin_inset Formula $X$ +\end_inset + + es de Banach. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Un espacio compacto +\begin_inset Formula $K$ +\end_inset + + es +\series bold +stoniano +\series default + si la clausura de cada abierto de +\begin_inset Formula $K$ +\end_inset + + es un abierto. + +\end_layout + +\begin_layout Standard +Dado un +\begin_inset Formula $\mathbb{K}$ +\end_inset + +-espacio de Banach +\begin_inset Formula $(X,\Vert\cdot\Vert)$ +\end_inset + +: +\end_layout + +\begin_layout Enumerate +Las propiedades de extensión, intersección y proyección son equivalentes. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate + +\series bold +Teorema de Nachbin-Goodner-Kelly-Hasumi: +\series default + Estas propiedades equivalen a que +\begin_inset Formula $(X,\Vert\cdot\Vert)$ +\end_inset + + sea isométricamente isomorfo a +\begin_inset Formula $({\cal C}(K,\mathbb{K}),\Vert\cdot\Vert_{\infty})$ +\end_inset + + para algún compacto stoniano +\begin_inset Formula $K$ +\end_inset + +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $\mathbb{K}=\mathbb{R}$ +\end_inset + +, estas equivalen a la propiedad de intersección binaria. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $\mathbb{K}=\mathbb{C}$ +\end_inset + +, estas equivalen a la propiedad de intersección pero limitando las subfamilias + de las familias de bolas a que sean de cardinal 3. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Section +Teorema de la acotación uniforme +\end_layout + +\begin_layout Standard +Sea +\begin_inset Formula $X$ +\end_inset + + un espacio topológico, +\begin_inset Formula $S\subseteq X$ +\end_inset + + es +\series bold +denso en ninguna parte +\series default + o +\series bold +raro +\series default + si su clausura tiene interior vacío, +\begin_inset Formula $\mathring{\overline{S}}=\emptyset$ +\end_inset + +, +\series bold +de primera categoría +\series default + si es unión numerable de conjuntos raros, +\series bold +de segunda categoría +\series default + en otro caso y +\series bold + +\begin_inset Formula $G_{\delta}$ +\end_inset + + +\series default + si es intersección numerable de abiertos. + +\begin_inset Formula $T$ +\end_inset + + es de segunda categoría en sí mismo si y sólo si la intersección numerable + de abiertos densos en no vacía. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Un espacio topológico es +\series bold +de Baire +\series default + si la intersección numerable de abiertos densos es densa, en cuyo caso + es de segunda categoría en sí mismo. + +\series bold +Teorema de Baire: +\series default + Todo espacio métrico completo es de Baire. + +\series bold +Demostración: +\series default + Sean +\begin_inset Formula $(X,d)$ +\end_inset + + un espacio métrico, +\begin_inset Formula $(G_{n})_{n}$ +\end_inset + + una sucesión de abiertos densos y +\begin_inset Formula $V\subseteq M$ +\end_inset + + abierto arbitrario, queremos definir una sucesión de bolas +\begin_inset Formula $(\overline{B(x_{n},r_{n})})_{n}$ +\end_inset + + cada una contenida en +\begin_inset Formula $V\cap G_{n}\cap\overline{B(x_{n-1},r_{n-1})}$ +\end_inset + + y con +\begin_inset Formula $r_{n}<\frac{1}{2^{n}}$ +\end_inset + +. + Como +\begin_inset Formula $G_{0}$ +\end_inset + + es denso, +\begin_inset Formula $V\cap G_{0}\neq\emptyset$ +\end_inset + + y existen +\begin_inset Formula $x_{0}\in M$ +\end_inset + + y +\begin_inset Formula $r_{0}\in(0,1)$ +\end_inset + + con +\begin_inset Formula $\overline{B(x_{0},r_{0})}\subseteq V\cap G_{0}$ +\end_inset + +, y para +\begin_inset Formula $n>0$ +\end_inset + +, como +\begin_inset Formula $G_{n}$ +\end_inset + + es denso, por inducción existen +\begin_inset Formula $x_{n}\in M$ +\end_inset + + y +\begin_inset Formula $r_{n}\in(0,\frac{1}{2^{n}})$ +\end_inset + + con +\begin_inset Formula $\overline{B(x_{n},r_{n})}\subseteq V\cap B(x_{n-1},r_{n-1})\cap G_{n}$ +\end_inset + +. + Entonces +\begin_inset Formula $(x_{n})_{n}$ +\end_inset + + es de Cauchy por ser +\begin_inset Formula $x_{m}\in B(x_{n},r_{n})$ +\end_inset + + para +\begin_inset Formula $m\geq n$ +\end_inset + + y +\begin_inset Formula $\lim_{n}r_{n}=0$ +\end_inset + +, luego existe +\begin_inset Formula $L\coloneqq\lim_{n}x_{n}\in V\cap\bigcap_{n}G_{n}$ +\end_inset + + y +\begin_inset Formula $\bigcap_{n}G_{n}$ +\end_inset + + es denso. +\end_layout + +\begin_layout Standard +Si +\begin_inset Formula $(X,d)$ +\end_inset + + no es completo esto no se cumple; por ejemplo, en +\begin_inset Formula $\mathbb{Q}$ +\end_inset + + con la métrica inducida por la de +\begin_inset Formula $\mathbb{R}$ +\end_inset + +, para cada +\begin_inset Formula $q\in\mathbb{Q}$ +\end_inset + +, +\begin_inset Formula $\mathbb{Q}\setminus\{q\}$ +\end_inset + + es denso, pero la intersección numerable +\begin_inset Formula $\bigcap_{q\in\mathbb{Q}}\mathbb{Q}\setminus\{q\}=\emptyset$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Con esto, si +\begin_inset Formula $X$ +\end_inset + + es de Banach, su dimensión algebraica es finita o no numerable. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard + +\series bold +Teorema de la acotación uniforme: +\series default + Sean +\begin_inset Formula $X$ +\end_inset + + e +\begin_inset Formula $Y$ +\end_inset + + espacios normados, +\begin_inset Formula $\{A_{i}\}_{i\in I}\subseteq{\cal L}(X,Y)$ +\end_inset + + y +\begin_inset Formula $B\coloneqq\{x\in X\mid\sup_{i\in I}\Vert A_{i}(x)\Vert<\infty\}$ +\end_inset + +: +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $B$ +\end_inset + + es de segunda categoría, +\begin_inset Formula $\sup_{i\in I}\Vert A_{i}\Vert<\infty$ +\end_inset + + y +\begin_inset Formula $B=\emptyset$ +\end_inset + +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $X$ +\end_inset + + es de Banach, bien +\begin_inset Formula $\sup_{i\in I}\Vert A_{i}\Vert<\infty$ +\end_inset + + o +\begin_inset Formula $B^{\complement}$ +\end_inset + + es +\begin_inset Formula $G_{\delta}$ +\end_inset + + denso en +\begin_inset Formula $X$ +\end_inset + +, de modo que o +\begin_inset Formula $\sup_{i\in I}\Vert A_{i}\Vert<\infty$ +\end_inset + + o +\begin_inset Formula $B$ +\end_inset + + es de primera categoría en +\begin_inset Formula $X$ +\end_inset + +, pero no ambas. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +La completitud es necesaria para la segunda parte del teorema, pues +\begin_inset Formula $\{f_{n}\}_{n}\subseteq(c_{00},\Vert\cdot\Vert_{\infty})^{*}$ +\end_inset + + dada por +\begin_inset Formula $f_{n}(x)\coloneqq\sum_{i=1}^{n}x_{i}$ +\end_inset + + es puntualmente acotada pero cada +\begin_inset Formula $\Vert f_{n}\Vert=n$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Si +\begin_inset Formula $X$ +\end_inset + + es un espacio de Banach, +\begin_inset Formula $Y$ +\end_inset + + un espacio completo y +\begin_inset Formula $\{T_{n}\}_{n}\subseteq{\cal L}(X,Y)$ +\end_inset + + tal que para +\begin_inset Formula $x\in X$ +\end_inset + + existe +\begin_inset Formula $T(x)\coloneqq\lim_{n}T_{n}(x)$ +\end_inset + +: +\end_layout + +\begin_layout Enumerate + +\series bold +Teorema de Banach-Steinhaus: +\series default + +\begin_inset Formula $T$ +\end_inset + + es lineal y continua con +\begin_inset Formula +\[ +\Vert T\Vert\leq\liminf_{n}\Vert T_{n}\Vert\leq\sup_{n}\Vert T_{n}\Vert<\infty. +\] + +\end_inset + + +\end_layout + +\begin_deeper +\begin_layout Standard +Es lineal por serlo el límite. + +\begin_inset Formula $(T_{n}x)_{n}$ +\end_inset + + es acotada para +\begin_inset Formula $x\in X$ +\end_inset + + y, por el teorema de la acotación uniforme, +\begin_inset Formula $\sup_{n}\Vert T_{n}\Vert<\infty$ +\end_inset + +, y si +\begin_inset Formula $x\in B_{X}$ +\end_inset + +, +\begin_inset Formula $\Vert Tx\Vert=\lim_{n}\Vert T_{n}x\Vert\leq\liminf_{n}\Vert T_{n}\Vert\leq\sup_{n}\Vert T_{n}\Vert$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Enumerate +\begin_inset Formula $(T_{n})_{n}$ +\end_inset + + converge uniformemente a +\begin_inset Formula $T$ +\end_inset + + en los subconjuntos compactos de +\begin_inset Formula $X$ +\end_inset + +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Sean +\begin_inset Formula $X$ +\end_inset + + e +\begin_inset Formula $Y$ +\end_inset + + espacios normados: +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $A\subseteq X$ +\end_inset + + es acotado si y sólo si para +\begin_inset Formula $f\in X^{*}$ +\end_inset + +, +\begin_inset Formula $f(A)$ +\end_inset + + es acotado. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $X$ +\end_inset + + es de Banach, +\begin_inset Formula $A\subseteq X^{*}$ +\end_inset + + es acotado si y sólo si +\begin_inset Formula $\{f(x)\}_{f\in A}$ +\end_inset + + es acotado. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $T:X\to Y$ +\end_inset + + es lineal, +\begin_inset Formula $T$ +\end_inset + + es continua si y sólo si +\begin_inset Formula $\forall g\in Y^{*},g\circ T\in X^{*}$ +\end_inset + +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Subsection +Funciones holomorfas vectoriales +\end_layout + +\begin_layout Standard +Sean +\begin_inset Formula $\Omega\subseteq\mathbb{C}$ +\end_inset + + abierto y +\begin_inset Formula $(_{\mathbb{C}}X,\Vert\cdot\Vert)$ +\end_inset + + de Banach, +\begin_inset Formula $f:\Omega\to X$ +\end_inset + + es +\series bold +débilmente holomorfa +\series default + en +\begin_inset Formula $\Omega$ +\end_inset + + si para +\begin_inset Formula $g\in X^{*}$ +\end_inset + +, +\begin_inset Formula $g\circ f:\Omega\to\mathbb{C}$ +\end_inset + + es holomorfa, y es +\series bold +holomorfa +\series default + en +\begin_inset Formula $\Omega$ +\end_inset + + si +\begin_inset Formula +\[ +\forall a\in\Omega,\exists f'(a)\coloneqq\lim_{z\to a}\frac{f(z)-f(a)}{z-a}. +\] + +\end_inset + + +\series bold +Teorema de Dunford: +\series default + +\begin_inset Formula $f$ +\end_inset + + es holomorfa si y sólo si es débilmente holomorfa. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard + +\series bold +Teorema de Liouville: +\series default + Si +\begin_inset Formula $(_{\mathbb{C}}X,\Vert\cdot\Vert)$ +\end_inset + + es de Banach y +\begin_inset Formula $f:\mathbb{C}\to X$ +\end_inset + + es holomorfa con +\begin_inset Formula $g\circ f$ +\end_inset + + acotada para cada +\begin_inset Formula $g\in X^{*}$ +\end_inset + +, entonces +\begin_inset Formula $f$ +\end_inset + + es constante. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +begin{reminder}{FVC} +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Toda curva +\begin_inset Formula $\gamma:[a,b]\to\mathbb{C}^{*}$ +\end_inset + + tiene argumentos continuos, y si +\begin_inset Formula $\theta$ +\end_inset + + y +\begin_inset Formula $\theta'$ +\end_inset + + son argumentos continuos de +\begin_inset Formula $\gamma$ +\end_inset + +, entonces +\begin_inset Formula $\theta(b)-\theta(a)=\theta'(b)-\theta'(a)$ +\end_inset + +. + [...] Sean +\begin_inset Formula $\gamma:[a,b]\to\mathbb{C}$ +\end_inset + + una curva, +\begin_inset Formula $z\notin\gamma^{*}$ +\end_inset + +[ +\begin_inset Formula $\coloneqq\text{Im}\gamma$ +\end_inset + +] y +\begin_inset Formula $\theta$ +\end_inset + + un argumento de +\begin_inset Formula $\gamma-z$ +\end_inset + +, llamamos [...] +\series bold +índice +\series default + de +\begin_inset Formula $\gamma$ +\end_inset + + respecto de +\begin_inset Formula $z$ +\end_inset + + a +\begin_inset Formula +\[ +\text{Ind}_{\gamma}(z):=\frac{\theta(b)-\theta(a)}{2\pi}. +\] + +\end_inset + +[...] Una +\series bold +cadena +\series default + es una expresión de la forma +\begin_inset Formula $\Gamma\coloneqq m_{1}\gamma_{1}+\dots+m_{q}\gamma_{q}$ +\end_inset + + donde los +\begin_inset Formula $m_{i}$ +\end_inset + + son enteros y los +\begin_inset Formula $\gamma_{i}$ +\end_inset + + son caminos. + Llamamos +\series bold +soporte +\series default + de +\begin_inset Formula $\Gamma$ +\end_inset + + a +\begin_inset Formula $\Gamma^{*}\coloneqq\bigcup_{k}\gamma_{k}^{*}$ +\end_inset + + [...]. + Un +\series bold +ciclo +\series default + es una cadena formada por caminos cerrados, y llamamos +\series bold +índice +\series default + de +\begin_inset Formula $z\notin\Gamma^{*}$ +\end_inset + + respecto al ciclo +\begin_inset Formula $\Gamma$ +\end_inset + + a +\begin_inset Formula $\text{Ind}_{\Gamma}(z)\coloneqq\sum_{k}m_{k}\text{Ind}_{\gamma_{k}}(z)$ +\end_inset + +. + [...] Dado un abierto +\begin_inset Formula $\Omega$ +\end_inset + +, un ciclo +\begin_inset Formula $\Gamma$ +\end_inset + + en +\begin_inset Formula $\Omega$ +\end_inset + + es +\series bold +nulhomólogo +\series default + respecto de +\begin_inset Formula $\Omega$ +\end_inset + + si +\begin_inset Formula $\forall z\in\mathbb{C}\setminus\Omega,\text{Ind}_{\Gamma}(z)=0$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +end{reminder} +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Como +\series bold +teorema +\series default +, sean +\begin_inset Formula $\Omega\subseteq\mathbb{C}$ +\end_inset + + abierto, +\begin_inset Formula $_{\mathbb{C}}X$ +\end_inset + + de Banach y +\begin_inset Formula $f:\Omega\to X$ +\end_inset + + holomorfa: +\end_layout + +\begin_layout Enumerate + +\series bold +Teorema de Cauchy: +\series default + Sea +\begin_inset Formula $\Gamma$ +\end_inset + + un ciclo +\begin_inset Formula $\Omega$ +\end_inset + +-nulhomólogo, +\begin_inset Formula +\[ +\int_{\Gamma}f=0. +\] + +\end_inset + + +\end_layout + +\begin_layout Enumerate + +\series bold +Fórmula de Cauchy: +\series default + Para +\begin_inset Formula $z\in\mathbb{C}\setminus\text{Im}\Gamma$ +\end_inset + +, +\begin_inset Formula +\[ +f(z)\text{Ind}_{\Gamma}(z)=\frac{1}{2\pi\text{i}}\int_{\Gamma}\frac{f(w)}{w-z}\dif w. +\] + +\end_inset + + +\end_layout + +\begin_layout Enumerate +Para +\begin_inset Formula $a\in\Omega$ +\end_inset + +, existe +\begin_inset Formula $ $ +\end_inset + + +\end_layout + +\begin_layout Enumerate +Para +\begin_inset Formula $a\in\Omega$ +\end_inset + +, si +\begin_inset Formula $\Gamma:[0,2\pi]\to\mathbb{C}$ +\end_inset + + viene dado por +\begin_inset Formula $\Gamma(\theta)=a+\rho\text{e}^{\text{i}\theta}$ +\end_inset + + y, para +\begin_inset Formula $n\in\mathbb{N}$ +\end_inset + +, +\begin_inset Formula +\[ +a_{n}\coloneqq\frac{f^{(n)}(a)}{n!}=\frac{1}{2\pi\text{i}}\int_{\Gamma}\frac{f(w)}{(w-a)^{n+1}}\dif w\in X, +\] + +\end_inset + +existe +\begin_inset Formula $\rho>0$ +\end_inset + + con +\begin_inset Formula $\overline{B(a,\rho)}\subseteq\Omega$ +\end_inset + + tal que +\begin_inset Formula $f(z)=\sum_{n}a_{n}(z-a)^{n}$ +\end_inset + +, y la serie converge uniforme y absolutamente en compactos de +\begin_inset Formula $B(a,\rho)$ +\end_inset + +. +\end_layout + +\begin_layout Subsection +Métodos de sumabilidad +\end_layout + +\begin_layout Standard +Si +\begin_inset Formula $A\in\mathbb{K}^{\mathbb{N}\times\mathbb{N}}$ +\end_inset + +, la sucesión +\begin_inset Formula $(x_{m})_{m}$ +\end_inset + + en +\begin_inset Formula $\mathbb{K}$ +\end_inset + + es +\series bold + +\begin_inset Formula $A$ +\end_inset + +-convergente +\series default + a +\begin_inset Formula $z\in\mathbb{K}$ +\end_inset + + si para +\begin_inset Formula $n\in\mathbb{N}$ +\end_inset + +, +\begin_inset Formula $\sum_{m}A_{nm}x_{m}$ +\end_inset + + converge a un cierto +\begin_inset Formula $y_{n}$ +\end_inset + + e +\begin_inset Formula $(y_{n})_{n}$ +\end_inset + + converge a +\begin_inset Formula $z$ +\end_inset + +, y +\begin_inset Formula $A$ +\end_inset + + es un +\series bold +método de sumabilidad permanente +\series default + si para +\begin_inset Formula $\{x_{m}\}_{m}\subseteq\mathbb{K}$ +\end_inset + + convergente, +\begin_inset Formula $(\sum_{m}A_{nm}x_{m})_{n}$ +\end_inset + + es convergente y +\begin_inset Formula $\lim_{n}y_{n}=\lim_{m}x_{m}$ +\end_inset + +. +\end_layout + +\begin_layout Standard +La +\series bold +sucesión de medias de Césaro +\series default + de una sucesión +\begin_inset Formula $(x_{n})_{n}$ +\end_inset + + es +\begin_inset Formula +\[ +\left(\frac{x_{1}+\dots+x_{n}}{n}\right)_{n}, +\] + +\end_inset + +y +\begin_inset Formula $(x_{n})_{n}$ +\end_inset + + es +\series bold +convergente Césaro +\series default + si su sucesión de medias de Césaro converge. + Toda sucesión convergente es convergente Césaro, pero el recíproco no se + cumple. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Así, la +\series bold +matriz de Césaro +\series default +, +\begin_inset Formula +\[ +\left(\frac{1}{i}\chi_{\{j\leq i\}}\right)_{i,j\geq1}=\begin{pmatrix}1\\ +\frac{1}{2} & \frac{1}{2}\\ +\frac{1}{3} & \frac{1}{3} & \frac{1}{3}\\ +\vdots & \vdots & \vdots & \ddots +\end{pmatrix}\in\mathbb{K}^{\mathbb{N}\times\mathbb{N}}, +\] + +\end_inset + +es un método de sumabilidad permanente. +\end_layout + +\begin_layout Standard + +\series bold +Teorema de Toeplitsz: +\series default + +\begin_inset Formula $A\in\mathbb{K}^{\mathbb{N}\times\mathbb{N}}$ +\end_inset + + es un método de sumabilidad permanente si y sólo si +\begin_inset Formula $\sup_{n}\sum_{m}|A_{nm}|<\infty$ +\end_inset + +, +\begin_inset Formula $\forall m\in\mathbb{N},\lim_{n}A_{nm}=0$ +\end_inset + + y +\begin_inset Formula $\lim_{n}\sum_{m}A_{nm}=1$ +\end_inset + +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Subsection +Convergencia puntual de series de Fourier de funciones continuas +\end_layout + +\begin_layout Standard +Sean +\begin_inset Formula $X\coloneqq\{f\in{\cal C}([-\pi,\pi])\mid f(\pi)=f(-\pi)\}$ +\end_inset + +; para +\begin_inset Formula $k\in\mathbb{Z}$ +\end_inset + + y +\begin_inset Formula $f\in L^{2}([-\pi,\pi])$ +\end_inset + +, +\begin_inset Formula +\[ +\hat{f}(k)\coloneqq\sum_{k=-n}^{n}\frac{1}{2\pi}\int_{-\pi}^{\pi}f(t)\text{e}^{-\text{i}kt}\dif t +\] + +\end_inset + +el +\begin_inset Formula $k$ +\end_inset + +-ésimo coeficiente de Fourier de +\begin_inset Formula $f$ +\end_inset + + y, para +\begin_inset Formula $n\in\mathbb{N}$ +\end_inset + +, +\begin_inset Formula $s_{n}:L^{2}([-\pi,\pi])\to\mathbb{R}$ +\end_inset + + dada por +\begin_inset Formula +\[ +s_{n}(f)(x)\coloneqq\sum_{k=-n}^{n}\hat{f}(k)\text{e}^{\text{i}kx}, +\] + +\end_inset + +entonces: +\end_layout + +\begin_layout Enumerate +Como +\series bold +teorema +\series default +, existe +\begin_inset Formula $F$ +\end_inset + + +\begin_inset Formula $G_{\delta}$ +\end_inset + + denso en +\begin_inset Formula $X$ +\end_inset + + tal que para +\begin_inset Formula $f\in F$ +\end_inset + +, +\begin_inset Formula $\{x\in[-\pi,\pi]\mid\sup_{n}|s_{n}(f)(x)|\}$ +\end_inset + + es +\begin_inset Formula $G_{\delta}$ +\end_inset + + no numerable y denso en +\begin_inset Formula $[-\pi,\pi]$ +\end_inset + +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +Para +\begin_inset Formula $f\in X$ +\end_inset + + de clase +\begin_inset Formula ${\cal C}^{1}$ +\end_inset + + y +\begin_inset Formula $x\in[-\pi,\pi]$ +\end_inset + +, +\begin_inset Formula $\lim_{n}s_{n}(f)(x)=f(x)$ +\end_inset + +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +Para todo +\begin_inset Formula $f\in L^{2}([-\pi,\pi])$ +\end_inset + + y casi todo +\begin_inset Formula $x\in[-\pi,\pi]$ +\end_inset + +, +\begin_inset Formula $\lim_{n}s_{n}(f)(x)=f(x)$ +\end_inset + +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Section +Teorema de la aplicación abierta +\end_layout + +\begin_layout Standard +Si +\begin_inset Formula $X$ +\end_inset + + es un espacio normado, +\begin_inset Formula $A\subseteq X$ +\end_inset + + es +\series bold +CS-compacto +\series default + si para +\begin_inset Formula $\{x_{n}\}_{n}\subseteq A$ +\end_inset + + y +\begin_inset Formula $\{\lambda_{n}\}_{n}\subseteq[0,1]$ +\end_inset + + con +\begin_inset Formula $\sum_{n}\lambda_{n}=1$ +\end_inset + +, +\begin_inset Formula $\sum_{n}\lambda_{n}x_{n}$ +\end_inset + + converge a un punto de +\begin_inset Formula $A$ +\end_inset + +, y es +\series bold +CS-cerrado +\series default + si para +\begin_inset Formula $\{x_{n}\}_{n}\subseteq A$ +\end_inset + + y +\begin_inset Formula $\{\lambda_{n}\}_{n}\subseteq[0,1]$ +\end_inset + + con +\begin_inset Formula $\sum_{n}\lambda_{n}=1$ +\end_inset + +, si +\begin_inset Formula $\sum_{n}\lambda_{n}x_{n}$ +\end_inset + + converge, lo hace un punto de +\begin_inset Formula $A$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Si +\begin_inset Formula $X$ +\end_inset + + es un espacio normado: +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $X$ +\end_inset + + es de Banach, +\begin_inset Formula $B_{X}$ +\end_inset + + es CS-compacta. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +Todo cerrado convexo es CS-cerrado. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +Todo CS-compacto es CS-cerrado y acotado, y el recíproco se cumple si +\begin_inset Formula $X$ +\end_inset + + es de Banach. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $A\subseteq X$ +\end_inset + + es CS-cerrado, +\begin_inset Formula $\mathring{A}=\mathring{\overline{A}}$ +\end_inset + +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Sean +\begin_inset Formula $X$ +\end_inset + + e +\begin_inset Formula $Y$ +\end_inset + + espacios normados y +\begin_inset Formula $T\in{\cal L}(X,Y)$ +\end_inset + +, si +\begin_inset Formula $A\subseteq X$ +\end_inset + + es CS-compacto, +\begin_inset Formula $T(A)$ +\end_inset + + también. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard + +\series bold +Teorema de la aplicación abierta: +\series default + Sean +\begin_inset Formula $X$ +\end_inset + + un +\begin_inset Formula $\mathbb{K}$ +\end_inset + +-espacio de Banach, +\begin_inset Formula $Y$ +\end_inset + + un +\begin_inset Formula $\mathbb{K}$ +\end_inset + +-espacio normado y +\begin_inset Formula $T\in{\cal L}(X,Y)$ +\end_inset + +, si +\begin_inset Formula $\text{Im}T$ +\end_inset + + es de segunda categoría en +\begin_inset Formula $Y$ +\end_inset + +, +\begin_inset Formula $T$ +\end_inset + + es suprayectiva y abierta e +\begin_inset Formula $Y$ +\end_inset + + es un espacio de Banach. + +\series bold +Demostración: +\series default + Como +\begin_inset Formula $B_{X}$ +\end_inset + + es CS-compacto, +\begin_inset Formula $T(B_{X})$ +\end_inset + + también y por tanto es CS-cerrado, y si fuera raro, como el producto por + un +\begin_inset Formula $n>0$ +\end_inset + + es un homeomorfismo, +\begin_inset Formula $nT(B_{X})$ +\end_inset + + sería raro y +\begin_inset Formula $T(X)=T(\bigcup_{n\in\mathbb{N}^{*}}nB_{X})=\bigcup_{n\in\mathbb{N}^{*}}nT(B_{X})$ +\end_inset + + sería de primera categoría +\begin_inset Formula $\#$ +\end_inset + +, por lo que +\begin_inset Formula $\mathring{\overbrace{T(B_{X})}}=\mathring{\overline{T(B_{X})}}\neq\emptyset$ +\end_inset + + y existen +\begin_inset Formula $y_{0}\in Y$ +\end_inset + + y +\begin_inset Formula $r>0$ +\end_inset + + con +\begin_inset Formula $B(y_{0},r)\subseteq T(B_{X})$ +\end_inset + +, pero una bola cerrada en el origen es simétrica y +\begin_inset Formula $T$ +\end_inset + + conserva simetrías, luego +\begin_inset Formula $B(-y_{0},r)\subseteq T(B_{X})$ +\end_inset + + y +\begin_inset Formula $B(0,r)\subseteq\frac{1}{2}B_{Y}(-y_{0},r)+\frac{1}{2}B_{Y}(y_{0},r)\subseteq\frac{1}{2}T(B_{X})+\frac{1}{2}T(B_{X})\subseteq T(B_{X})$ +\end_inset + +. + Así, si +\begin_inset Formula $A\subseteq X$ +\end_inset + + es abierto, para +\begin_inset Formula $x\in X$ +\end_inset + + existe +\begin_inset Formula $\delta>0$ +\end_inset + + con +\begin_inset Formula $\overline{B(x,\delta)}=x+\delta B_{X}\subseteq A$ +\end_inset + + y +\begin_inset Formula $B(Tx,\delta r)=Tx+\delta B(0,r)\subseteq Tx+\delta T(B_{X})=T(x+\delta B_{X})\subseteq T(A)$ +\end_inset + +, por lo que +\begin_inset Formula $T$ +\end_inset + + es abierta, y para +\begin_inset Formula $y\in Y$ +\end_inset + +, +\begin_inset Formula $y\in B(0,2\Vert y\Vert)=\frac{2\Vert y\Vert}{r}B(0,r)\subseteq T(\frac{2}{r}\Vert y\Vert B_{X})\subseteq T(X)$ +\end_inset + + y +\begin_inset Formula $T$ +\end_inset + + es suprayectiva. + Finalmente, sea +\begin_inset Formula $\{y_{n}\}_{n}\subseteq Y$ +\end_inset + + con +\begin_inset Formula $\sum_{n}\Vert y_{n}\Vert<\infty$ +\end_inset + +, existe +\begin_inset Formula $\{x_{n}\}_{n}\subseteq X$ +\end_inset + + con cada +\begin_inset Formula $Tx_{n}=y_{n}$ +\end_inset + + y +\begin_inset Formula $\Vert x_{n}\Vert\leq\frac{2}{r}\Vert y_{n}\Vert$ +\end_inset + +, con lo que +\begin_inset Formula $\sum_{n}\Vert x_{n}\Vert<\infty$ +\end_inset + + y, por ser +\begin_inset Formula $X$ +\end_inset + + completo, existe +\begin_inset Formula $x'\coloneqq\sum_{n}x_{n}$ +\end_inset + +, y por la continuidad de +\begin_inset Formula $T$ +\end_inset + +, +\begin_inset Formula $Tx'=\sum_{n}y_{n}$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Entonces, si +\begin_inset Formula $X$ +\end_inset + + e +\begin_inset Formula $Y$ +\end_inset + + son de Banach, +\begin_inset Formula $T\in{\cal L}(X,Y)$ +\end_inset + + es suprayectiva si y sólo si es abierta. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Para esto último hace falta que +\begin_inset Formula $Y$ +\end_inset + + sea completo; la identidad +\begin_inset Formula $I\in{\cal L}({\cal C}^{1}([0,1]),|\cdot|),({\cal C}^{1}([0,1]),\Vert\cdot\Vert_{\infty}))$ +\end_inset + + con +\begin_inset Formula $|x|\coloneqq\Vert x\Vert_{\infty}+\Vert x'\Vert_{\infty}$ +\end_inset + +, el dominio es completo e +\begin_inset Formula $I$ +\end_inset + + es suprayectiva pero no abierta. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +También hace falta que +\begin_inset Formula $X$ +\end_inset + + sea completo; si +\begin_inset Formula $(e_{i})_{i\in I}$ +\end_inset + + es una base algebraica no numerable de +\begin_inset Formula $\ell^{p}$ +\end_inset + + y +\begin_inset Formula $X$ +\end_inset + + es +\begin_inset Formula $\ell^{p}$ +\end_inset + + con la norma +\begin_inset Formula $\left|\sum_{i}a_{i}e_{i}\right|\coloneqq\sum_{i}|a_{i}|$ +\end_inset + +, donde la suma es finita, la identidad +\begin_inset Formula $I\in{\cal L}(X,\ell^{p})$ +\end_inset + + es suprayectiva pero no abierta. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard + +\series bold +Teorema del homomorfismo de Banach: +\series default + Sean +\begin_inset Formula $X$ +\end_inset + + un espacio de Banach e +\begin_inset Formula $Y$ +\end_inset + + un espacio normado, +\begin_inset Formula $T\in{\cal L}(X,Y)$ +\end_inset + + es un +\series bold +homomorfismo topológico +\series default + si la restricción a la imagen +\begin_inset Formula $T:X\to\text{Im}T$ +\end_inset + + es abierta, si y sólo si +\begin_inset Formula $\text{Im}T$ +\end_inset + + es completo. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +begin{reminder}{TS} +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset Formula ${\cal T}$ +\end_inset + + y +\begin_inset Formula ${\cal T}'$ +\end_inset + + son +\series bold +comparables +\series default + si +\begin_inset Formula ${\cal T}\subseteq{\cal T}'$ +\end_inset + + o +\begin_inset Formula ${\cal T}'\subseteq{\cal T}$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +end{reminder} +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $X$ +\end_inset + + e +\begin_inset Formula $Y$ +\end_inset + + son espacios de Banach y +\begin_inset Formula $T:X\to Y$ +\end_inset + + es un isomorfismo algebraico continuo o abierto, +\begin_inset Formula $T$ +\end_inset + + es un isomorfismo topológico. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +Dos normas completas en +\begin_inset Formula $X$ +\end_inset + + que definen topologías comparables son equivalentes. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +Si un espacio de Banach +\begin_inset Formula $X$ +\end_inset + + es suma directa interna +\begin_inset Formula $M\oplus N$ +\end_inset + + con +\begin_inset Formula $M$ +\end_inset + + y +\begin_inset Formula $N$ +\end_inset + + cerrados, entonces +\begin_inset Formula $X$ +\end_inset + + es suma directa topológica de +\begin_inset Formula $M$ +\end_inset + + y +\begin_inset Formula $N$ +\end_inset + +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Subsection +Técnica de perturbaciones +\end_layout + +\begin_layout Standard +El problema de Cauchy +\begin_inset Formula +\[ +\left\{ \begin{array}{rl} +a_{n}(t)x^{(n)}(t)+\dots+a_{1}(t)\dot{x}(t)+a_{0}x(t) & =y(t),\\ +x(a),\dot{x}(a),\dots,x^{(n-1)}(a) & =0 +\end{array}\right. +\] + +\end_inset + +con +\begin_inset Formula $a_{i},y\in{\cal C}([a,b])$ +\end_inset + + tiene solución única +\begin_inset Formula $x\in{\cal C}^{(n)}([a,b])$ +\end_inset + + y sus soluciones dependen continuamente del término independiente. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Section +Teorema de la gráfica cerrada +\end_layout + +\begin_layout Standard +Una función +\begin_inset Formula $f:X\to Y$ +\end_inset + + entre espacios topológicos Hausdorff tiene +\series bold +gráfica cerrada +\series default + si +\begin_inset Formula $\text{Graf}f\coloneqq\{(x,f(x))\}_{x\in X}$ +\end_inset + + es cerrado en +\begin_inset Formula $X\times Y$ +\end_inset + +. + Si +\begin_inset Formula $f$ +\end_inset + + es continua, tiene gráfica cerrada. + El recíproco no es cierto; si +\begin_inset Formula $X$ +\end_inset + + tiene dos topologías Hausdorff +\begin_inset Formula ${\cal T}\prec{\cal S}$ +\end_inset + +, +\begin_inset Formula $1_{X}:(X,{\cal T})\to(X,{\cal S})$ +\end_inset + + no es continua pero tiene gráfica cerrada. +\end_layout + +\begin_layout Standard + +\series bold +Teorema de la gráfica cerrada: +\series default + Sean +\begin_inset Formula $X$ +\end_inset + + e +\begin_inset Formula $Y$ +\end_inset + + espacios de Banach, +\begin_inset Formula $T:X\to Y$ +\end_inset + + lineal es continua si y sólo si tiene gráfica cerrada. + +\series bold +Demostración: +\series default + Como +\begin_inset Formula $x\mapsto(x,Tx)$ +\end_inset + + es lineal, +\begin_inset Formula $\text{Graf}T$ +\end_inset + + es un espacio vectorial, las proyecciones canónicas +\begin_inset Formula $P_{1}:\text{Graf}T\to X$ +\end_inset + + y +\begin_inset Formula $P_{2}:\text{Graf}T\to Y$ +\end_inset + + son lineales y continuas en +\begin_inset Formula $X\times Y$ +\end_inset + + con la topología producto generada por +\begin_inset Formula $\Vert\cdot\Vert_{1}$ +\end_inset + +, y como +\begin_inset Formula $P_{1}$ +\end_inset + + es biyectiva y por tanto un isomorfismo algebraico, si +\begin_inset Formula $\text{Graf}T$ +\end_inset + + es cerrada, es completa al serlo +\begin_inset Formula $X\times Y$ +\end_inset + + y +\begin_inset Formula $P_{1}$ +\end_inset + + es un isomorfismo topológico, con lo que +\begin_inset Formula $T=P_{2}\circ P_{1}^{-1}$ +\end_inset + + es continua. +\end_layout + +\begin_layout Standard +Aquí hace falta que +\begin_inset Formula $X$ +\end_inset + + sea completo; la derivada +\begin_inset Formula $T:({\cal C}^{1}([0,1]),\Vert\cdot\Vert_{\infty})\to({\cal C}([0,1]),\Vert\cdot\Vert_{\infty})$ +\end_inset + + es lineal con gráfica cerrada pero no continua. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +También hace falta que +\begin_inset Formula $Y$ +\end_inset + + sea completo; si +\begin_inset Formula $(e_{i})_{i\in I}$ +\end_inset + + es una base algebraica no numerable de +\begin_inset Formula $\ell^{p}$ +\end_inset + + con cada +\begin_inset Formula $\Vert e_{i}\Vert=1$ +\end_inset + + y +\begin_inset Formula $X$ +\end_inset + + es +\begin_inset Formula $\ell^{p}$ +\end_inset + + con la norma +\begin_inset Formula $\left|\sum_{i}a_{i}e_{i}\right|\coloneqq\sum_{i}|a_{i}|$ +\end_inset + + siendo la suma finita, la identidad +\begin_inset Formula $\ell^{p}\to X$ +\end_inset + + tiene gráfica cerrada pero no es continua. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Subsection +Separación de puntos +\end_layout + +\begin_layout Standard +Un conjunto de funciones +\begin_inset Formula $F\subseteq B^{A}$ +\end_inset + + +\series bold +separa +\series default + los puntos de +\begin_inset Formula $A$ +\end_inset + + si +\begin_inset Formula $\forall x,y\in A,(x\neq y\implies\exists f\in F:f(x)\neq f(y))$ +\end_inset + +. + Si +\begin_inset Formula $X$ +\end_inset + + es de Banach con las normas +\begin_inset Formula $\Vert\cdot\Vert$ +\end_inset + + y +\begin_inset Formula $\Vert\cdot\Vert'$ +\end_inset + + y +\begin_inset Formula $F\subseteq(X,\Vert\cdot\Vert)^{*}\cap(X,\Vert\cdot\Vert')^{*}$ +\end_inset + + separa los puntos de +\begin_inset Formula $X$ +\end_inset + +, entonces +\begin_inset Formula $\Vert\cdot\Vert$ +\end_inset + + y +\begin_inset Formula $\Vert\cdot\Vert'$ +\end_inset + + son equivalentes, y en particular +\begin_inset Formula $(X,\Vert\cdot\Vert)^{*}=(X,\Vert\cdot\Vert')^{*}$ +\end_inset + +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Dos normas completas en el mismo espacio vectorial producen el mismo dual + topológico si y sólo si son equivalentes. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Subsection +Bases de Schauder +\end_layout + +\begin_layout Standard +Una +\series bold +base de Schauder +\series default + en un espacio normado +\begin_inset Formula $(X,\Vert\cdot\Vert)$ +\end_inset + + es una sucesión +\begin_inset Formula $\{x_{n}\}_{n}\subseteq S_{X}$ +\end_inset + + tal que +\begin_inset Formula $\forall x\in X,\exists!\{\lambda_{n}\}_{n}\subseteq\mathbb{K}:x=\sum_{n}\lambda_{n}x_{n}$ +\end_inset + +. + La sucesión +\begin_inset Formula $(e_{n})_{n}$ +\end_inset + + de vectores que valen 1 en la coordenada +\begin_inset Formula $n$ +\end_inset + +-ésima y 0 en el resto es base de Schauder de +\begin_inset Formula $c_{0}$ +\end_inset + + y +\begin_inset Formula $\ell^{p}$ +\end_inset + + para +\begin_inset Formula $p\in[1,\infty)$ +\end_inset + +, y +\begin_inset Formula $({\cal C}([0,1]),\Vert\cdot\Vert_{\infty})$ +\end_inset + + y +\begin_inset Formula $(L^{p}([0,1]),\Vert\cdot\Vert_{p})$ +\end_inset + + también admiten bases de Schauder. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Todo espacio normado con base de Schauder es separable, pero el recíproco + no se cumple. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard + +\series bold +Teorema de las bases de Schauder de Banach: +\series default + Si +\begin_inset Formula $X$ +\end_inset + + es un espacio de Banach con base de Schauder +\begin_inset Formula $(x_{n})_{n}$ +\end_inset + +, las +\series bold +funciones coordenada +\series default + +\begin_inset Formula $f_{n}:X\to\mathbb{K}$ +\end_inset + + dadas por +\begin_inset Formula $f_{n}(\sum_{n}\lambda_{n}x_{n})\coloneqq\lambda_{n}$ +\end_inset + + son continuas, y de hecho existe +\begin_inset Formula $M>0$ +\end_inset + + con +\begin_inset Formula $\Vert f_{n}\Vert\leq M$ +\end_inset + + para cada +\begin_inset Formula $n$ +\end_inset + +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Section +Pares duales +\end_layout + +\begin_layout Standard +Un +\series bold +par dual +\series default + es un par +\begin_inset Formula $\langle F,G\rangle$ +\end_inset + + de +\begin_inset Formula $\mathbb{K}$ +\end_inset + +-espacios vectoriales con una función bilineal +\begin_inset Formula $\langle\cdot,\cdot\rangle:F\times G\to\mathbb{K}$ +\end_inset + + tal que +\begin_inset Formula $\forall y\in G,(\langle\cdot,y\rangle=0\implies y=0)$ +\end_inset + + y +\begin_inset Formula $\forall x\in G,(\langle x,\cdot\rangle=0\implies x=0)$ +\end_inset + +. + Llamamos +\series bold +topología débil de +\begin_inset Formula $F$ +\end_inset + + inducida por +\begin_inset Formula $G$ +\end_inset + + +\series default +, +\begin_inset Formula $\sigma(F,G)$ +\end_inset + +, a la topología más gruesa en +\begin_inset Formula $F$ +\end_inset + + para la que las +\begin_inset Formula $\{\langle\cdot,y\rangle\}_{y\in G}$ +\end_inset + + son continuas, generada por la familia de seminormas +\begin_inset Formula $\{|\langle\cdot,y\rangle|\}_{y\in G}$ +\end_inset + +, y +\series bold +topología débil de +\begin_inset Formula $G$ +\end_inset + + inducida por +\begin_inset Formula $F$ +\end_inset + + +\series default +, +\begin_inset Formula $\sigma(G,F)$ +\end_inset + +, a la topología más gruesa en +\begin_inset Formula $F$ +\end_inset + + para la que las +\begin_inset Formula $\{\langle x,\cdot\rangle\}_{x\in F}$ +\end_inset + + son continuas, generada por la familia de seminormas +\begin_inset Formula $\{|\langle f,\cdot\rangle|\}_{x\in F}$ +\end_inset + +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $E$ +\end_inset + + es un espacio vectorial y +\begin_inset Formula $E^{*}$ +\end_inset + + su dual algebraico, +\begin_inset Formula $\langle E,E^{*}\rangle$ +\end_inset + + es un par dual con la +\series bold +aplicación bilineal natural +\series default + +\begin_inset Formula $\langle x,f\rangle\coloneqq f(x)$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $E$ +\end_inset + + es un e.l.c., +\begin_inset Formula $\langle E,E'\rangle$ +\end_inset + + es un par dual con la aplicación bilineal natural, el +\series bold +par dual canónico +\series default +, y llamamos +\series bold +topología débil de +\begin_inset Formula $E$ +\end_inset + + +\series default + a +\begin_inset Formula $\sigma(E,E')$ +\end_inset + + y +\series bold +topología débil* de +\begin_inset Formula $E'$ +\end_inset + + +\series default + a +\begin_inset Formula $\sigma(E',E)$ +\end_inset + +, que es Hausdorff e inducida por +\begin_inset Formula ${\cal T}_{\text{p}}(E)$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $I$ +\end_inset + + es un conjunto, +\begin_inset Formula $\langle\mathbb{K}^{I},\mathbb{K}^{(I)}\rangle$ +\end_inset + + es un par dual con +\begin_inset Formula $\langle(\lambda_{i})_{i\in I},(\xi_{i})_{i\in I}\rangle=\sum_{i\in I}\lambda_{i}\xi_{i}$ +\end_inset + +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $K$ +\end_inset + + es compacto, +\begin_inset Formula $E\coloneqq(C(K),\Vert\cdot\Vert_{\infty})$ +\end_inset + + y +\begin_inset Formula $F\coloneqq\text{span}\{f\mapsto f(x)\}_{x\in K}\leq(C(K),\Vert\cdot\Vert_{\infty})^{*}$ +\end_inset + +, +\begin_inset Formula $\langle E,F\rangle$ +\end_inset + + es un par dual con la aplicación bilineal natural, y +\begin_inset Formula $\sigma(E,F)={\cal T}_{\text{p}}(K)$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Si +\begin_inset Formula $\langle F,G\rangle$ +\end_inset + + es un par dual, una forma lineal +\begin_inset Formula $f:F\to\mathbb{K}$ +\end_inset + + es +\begin_inset Formula $\sigma(F,G)$ +\end_inset + +-continua si y sólo si existe +\begin_inset Formula $y\in G$ +\end_inset + +, necesariamente único, con +\begin_inset Formula $f=\langle\cdot,y\rangle$ +\end_inset + +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Si +\begin_inset Formula $E$ +\end_inset + + es un e.l.c., +\begin_inset Formula $(E,\sigma(E,E'))'=E'$ +\end_inset + + e, identificando +\begin_inset Formula $x\in E$ +\end_inset + + con +\begin_inset Formula $\hat{x}\in E''$ +\end_inset + + dada por +\begin_inset Formula $\hat{x}(f)\coloneqq f(x)$ +\end_inset + +, +\begin_inset Formula $(E',\sigma(E',E))'=E$ +\end_inset + +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Si +\begin_inset Formula $\langle F,G\rangle$ +\end_inset + + es un par dual con función bilineal +\begin_inset Formula $\langle\cdot,\cdot\rangle$ +\end_inset + + y +\begin_inset Formula $H\leq G$ +\end_inset + +, +\begin_inset Formula $\langle\cdot,\cdot\rangle$ +\end_inset + + induce un par dual en +\begin_inset Formula $\langle F,H\rangle$ +\end_inset + + si y sólo si +\begin_inset Formula $G=\overline{H}$ +\end_inset + + en +\begin_inset Formula $\sigma(G,F)$ +\end_inset + +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Si +\begin_inset Formula $E$ +\end_inset + + es un e.l.c., +\begin_inset Formula $E'$ +\end_inset + + es +\begin_inset Formula $\sigma(E^{*},E)$ +\end_inset + +-denso en el dual algebraico +\begin_inset Formula $E^{*}$ +\end_inset + +, con lo que las formas lineales se aproximan por formas lineales continuas. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Dado un par dual +\begin_inset Formula $\langle F,G\rangle$ +\end_inset + +, llamamos +\series bold +polar +\series default + ( +\series bold +absoluta +\series default +) de +\begin_inset Formula $A\subseteq F$ +\end_inset + + a +\begin_inset Formula $A^{\circ}\coloneqq\{y\in G\mid\sup_{x\in A}|\langle x,y\rangle|\leq1\}$ +\end_inset + + y +\series bold +bipolar +\series default + de +\begin_inset Formula $A$ +\end_inset + + a +\begin_inset Formula $A^{\circ\circ}\subseteq F$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $(X,\Vert\cdot\Vert)$ +\end_inset + + es un espacio normado, +\begin_inset Formula $B_{X}^{\circ}=B_{X^{*}}$ +\end_inset + + y +\begin_inset Formula $B_{X}^{\circ\circ}=B_{X}$ +\end_inset + +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $\langle F,G\rangle$ +\end_inset + + es un par dual y +\begin_inset Formula $M\leq F$ +\end_inset + +, +\begin_inset Formula $M^{\circ}=\{y\in G\mid\langle M,y\rangle=0\}\eqqcolon M^{\bot}$ +\end_inset + +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Sean +\begin_inset Formula $\langle F,G\rangle$ +\end_inset + + un +\begin_inset Formula $\mathbb{K}$ +\end_inset + +-par dual, +\begin_inset Formula $A,B,A_{i}\subseteq F$ +\end_inset + + para +\begin_inset Formula $i\in I$ +\end_inset + + y +\begin_inset Formula $\alpha\in\mathbb{K}^{*}$ +\end_inset + +: +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $A^{\circ}$ +\end_inset + + es absolutamente convexo y cerrado en +\begin_inset Formula $\sigma(G,F)$ +\end_inset + +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $B\subseteq A\implies A^{\circ}\subseteq B^{\circ}$ +\end_inset + +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $(\alpha A)^{\circ}=\alpha^{-1}A^{\circ}$ +\end_inset + +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $A\subseteq A^{\circ\circ}$ +\end_inset + +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $A^{\circ}\subseteq A^{\circ\circ\circ}$ +\end_inset + +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $(\bigcup_{i\in I}A_{i})^{\circ}=\bigcap_{i\in I}A_{i}^{\circ}$ +\end_inset + +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard + +\series bold +Teorema del bipolar: +\series default + Si +\begin_inset Formula $\langle F,G\rangle$ +\end_inset + + es un par dual y +\begin_inset Formula $A\subseteq F$ +\end_inset + +, +\begin_inset Formula $A^{\circ\circ}=\overline{\Gamma(A)}$ +\end_inset + + en +\begin_inset Formula $\sigma(F,G)$ +\end_inset + + (la envoltura absolutamente convexa cerrada). +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Si +\begin_inset Formula $E$ +\end_inset + + es un e.l.c., +\begin_inset Formula $M\subseteq E'$ +\end_inset + + es +\series bold +equicontinuo +\series default + si +\begin_inset Formula $\forall\varepsilon>0,\exists U\in{\cal E}(0_{E}):\forall f\in M,\forall x\in U,|f(x)|<\varepsilon$ +\end_inset + +, y una +\series bold +familia fundamental de equicontinuos +\series default + es un +\begin_inset Formula ${\cal E}\subseteq{\cal P}(E')$ +\end_inset + + con los elementos equicontinuos tal que para +\begin_inset Formula $M\subseteq E'$ +\end_inset + + equicontinuo existe +\begin_inset Formula $N\in{\cal E}$ +\end_inset + + que contiene a +\begin_inset Formula $M$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Si +\begin_inset Formula $(E,{\cal T})$ +\end_inset + + es un e.l.c.: +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $U\in{\cal E}(0)$ +\end_inset + +, +\begin_inset Formula $U^{\circ}\subseteq E'$ +\end_inset + + es equicontinuo, y si +\begin_inset Formula $M\subseteq E'$ +\end_inset + + es equicontinuo, +\begin_inset Formula $M^{\circ}\in{\cal E}(0)$ +\end_inset + +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula ${\cal U}$ +\end_inset + + es base de entornos de 0 en +\begin_inset Formula $E$ +\end_inset + +, +\begin_inset Formula $\{U^{\circ}\}_{U\in{\cal U}}$ +\end_inset + + es una familia fundamental de equicontinuos. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula ${\cal E}$ +\end_inset + + es una familia fundamental de equicontinuos, +\begin_inset Formula $\{M^{\circ}\}_{M\in{\cal E}}$ +\end_inset + + es una base de entornos de 0. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +\begin_inset Formula ${\cal T}$ +\end_inset + + es la topología de convergencia uniforme sobre los equicontinuos de +\begin_inset Formula $E'$ +\end_inset + +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Sean +\begin_inset Formula $\langle F,G\rangle$ +\end_inset + + un par dual y +\begin_inset Formula ${\cal S}\subseteq{\cal P}(G)$ +\end_inset + + una familia de subconjuntos +\begin_inset Formula $\sigma(F,G)$ +\end_inset + +-cerrados absolutamente convexos, en +\begin_inset Formula $\sigma(F,G)$ +\end_inset + +, +\begin_inset Formula +\[ +\left(\bigcap{\cal S}\right)^{\circ}=\overline{\Gamma\left(\bigcup_{S\in{\cal S}}S^{\circ}\right)}. +\] + +\end_inset + + +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard + +\series bold +Teorema de Alaoglu-Bourbaki: +\series default + Si +\begin_inset Formula $E$ +\end_inset + + es un e.l.c., todo equicontinuo +\begin_inset Formula $H$ +\end_inset + + de +\begin_inset Formula $E'$ +\end_inset + + es relativamente compacto en +\begin_inset Formula $\sigma(E',E)$ +\end_inset + +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Así, si +\begin_inset Formula $(X,\Vert\cdot\Vert)$ +\end_inset + + es un espacio normado, +\begin_inset Formula $B_{X^{*}}$ +\end_inset + + es compacta en +\begin_inset Formula $\sigma(X^{*},X)$ +\end_inset + +. +\end_layout + +\begin_layout Standard + +\series bold +Lema de aproximación: +\series default + Sean +\begin_inset Formula $E$ +\end_inset + + es un e.l.c., +\begin_inset Formula $S\subseteq E$ +\end_inset + + cerrado y absolutamente convexo y +\begin_inset Formula $f:E\to\mathbb{K}$ +\end_inset + + lineal, +\begin_inset Formula $f|_{S}$ +\end_inset + + es continua si y sólo si +\begin_inset Formula $\forall\varepsilon>0,\exists g\in E':\sup_{x\in S}|g(x)-f(x)|<\varepsilon$ +\end_inset + +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard + +\series bold +Teorema de completitud de Grothendieck: +\series default + Sean +\begin_inset Formula $E$ +\end_inset + + un e.l.c. + y +\begin_inset Formula ${\cal E}$ +\end_inset + + el conjunto de los equicontinuos de +\begin_inset Formula $E'$ +\end_inset + +, +\begin_inset Formula $\hat{E}\coloneqq\{x\in(E')^{*}\mid\forall M\in{\cal E},x|_{M}\text{ continuo en }\sigma(E',E)\}$ +\end_inset + + con la topología de convergencia uniforme sobre +\begin_inset Formula ${\cal E}$ +\end_inset + + es un modelo para la compleción de +\begin_inset Formula $E$ +\end_inset + +, es decir, +\begin_inset Formula $E$ +\end_inset + + es denso en +\begin_inset Formula $\hat{E}$ +\end_inset + + y +\begin_inset Formula $\hat{E}$ +\end_inset + + es completo. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Así: +\end_layout + +\begin_layout Enumerate +Un e.l.c. + +\begin_inset Formula $E$ +\end_inset + + es completo si y sólo si toda +\begin_inset Formula $y:E'\to\mathbb{K}$ +\end_inset + + lineal +\begin_inset Formula $\sigma(E',E)$ +\end_inset + +-continua sobre los equicontinuos de +\begin_inset Formula $E'$ +\end_inset + + es +\begin_inset Formula $\sigma(E',E)$ +\end_inset + +-continua en +\begin_inset Formula $E'$ +\end_inset + +, si y sólo si está en +\begin_inset Formula $E$ +\end_inset + +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +Un +\begin_inset Formula $(X,\Vert\cdot\Vert)$ +\end_inset + + normado es de Banach si y sólo si toda +\begin_inset Formula $x:X^{*}\to\mathbb{K}$ +\end_inset + + lineal +\begin_inset Formula $\sigma(X^{*},X)$ +\end_inset + +-continua en +\begin_inset Formula $B_{X^{*}}$ +\end_inset + + es +\begin_inset Formula $\sigma(X^{*},X)$ +\end_inset + +-continua en +\begin_inset Formula $X^{*}$ +\end_inset + +, si y sólo si está en +\begin_inset Formula $E$ +\end_inset + +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Si +\begin_inset Formula $(X,\Vert\cdot\Vert)$ +\end_inset + + es normado, +\begin_inset Formula $K\coloneqq(B_{X^{*}},\sigma(X^{*},X))$ +\end_inset + + e +\begin_inset Formula $\iota:X\hookrightarrow C(K)$ +\end_inset + + es la identificación estándar en el bidual: +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\iota:(X,\Vert\cdot\Vert)\hookrightarrow(C(K),\Vert\cdot\Vert_{\infty})$ +\end_inset + + e +\begin_inset Formula $\iota:(X,\Vert\cdot\Vert)\hookrightarrow(C(K),{\cal T}_{\text{p}}(K))$ +\end_inset + + son isomorfismos isométricos sobre su imagen. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $X$ +\end_inset + + es de Banach, +\begin_inset Formula $(X,\sigma(X,X^{*}))$ +\end_inset + + se identifica con un subespacio cerrado de +\begin_inset Formula $(C(K),{\cal T}_{\text{p}}(K))$ +\end_inset + +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Section +Espacios reflexivos +\end_layout + +\begin_layout Standard +Sean +\begin_inset Formula $(X,\Vert\cdot\Vert)$ +\end_inset + + es un espacio normado y +\begin_inset Formula ${\cal T}$ +\end_inset + + la topología asociada a +\begin_inset Formula $\Vert\cdot\Vert$ +\end_inset + +: +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\sigma(X,X^{*})$ +\end_inset + + es más gruesa que +\begin_inset Formula ${\cal T}$ +\end_inset + + y +\begin_inset Formula $\sigma(X^{*},X)$ +\end_inset + + es más gruesa que la asociada a la norma dual. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\sigma(X,X^{*})$ +\end_inset + + es metrizable si y sólo si +\begin_inset Formula $X$ +\end_inset + + es dimensión finita, en cuyo caso es igual a +\begin_inset Formula ${\cal T}$ +\end_inset + +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $A\subseteq X$ +\end_inset + + convexo es cerrado en +\begin_inset Formula $\sigma(X,X^{*})$ +\end_inset + + si y sólo si lo es en +\begin_inset Formula ${\cal T}$ +\end_inset + +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Un espacio de Banach es +\series bold +reflexivo +\series default + si la identificación estándar +\begin_inset Formula $\hat{}:X\to X^{**}$ +\end_inset + + es suprayectiva. +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $p\in(1,\infty)$ +\end_inset + + y +\begin_inset Formula $(\Omega,\Sigma,\mu)$ +\end_inset + + es un espacio de medida, +\begin_inset Formula $(L^{p}(\mu),\Vert\cdot\Vert_{p})$ +\end_inset + + es reflexivo. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $(c_{0},\Vert\cdot\Vert_{\infty})$ +\end_inset + + no es reflexivo. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard + +\series bold +Teorema de Goldstine: +\series default + Sea +\begin_inset Formula $(X,\Vert\cdot\Vert)$ +\end_inset + + normado, +\begin_inset Formula $B_{X}$ +\end_inset + + es denso en +\begin_inset Formula $(B_{X^{**}},\sigma(X^{**},X^{*}))$ +\end_inset + +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard + +\series bold +Teorema de caracterización de la reflexividad: +\series default + Un espacio de Banach +\begin_inset Formula $X$ +\end_inset + + es reflexivo si y sólo si +\begin_inset Formula $B_{X}$ +\end_inset + + es compacta en +\begin_inset Formula $\sigma(X,X^{*})$ +\end_inset + +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Si +\begin_inset Formula $X$ +\end_inset + + es un espacio de Banach: +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $X$ +\end_inset + + es separable si y sólo si +\begin_inset Formula $(B_{X^{*}},\sigma(X^{*},X))$ +\end_inset + + es metrizable. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $X^{*}$ +\end_inset + + es separable si y solo si +\begin_inset Formula $(B_{X},\sigma(X,X^{*}))$ +\end_inset + + es metrizable. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $X^{*}$ +\end_inset + +es separable, +\begin_inset Formula $X$ +\end_inset + + es separable. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Si +\begin_inset Formula $X$ +\end_inset + + es un espacio reflexivo: +\end_layout + +\begin_layout Enumerate +Todo subespacio cerrado es reflexivo. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $X$ +\end_inset + + es separable si y sólo si lo es +\begin_inset Formula $X^{*}$ +\end_inset + +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Un espacio de Banach +\begin_inset Formula $X$ +\end_inset + + es reflexivo si y sólo si lo es +\begin_inset Formula $X^{*}$ +\end_inset + + con la norma dual. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Ejemplos: +\end_layout + +\begin_layout Enumerate +Todo espacio de dimensión finita es reflexivo. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\ell^{1}$ +\end_inset + + y +\begin_inset Formula $\ell^{\infty}$ +\end_inset + + son reflexivos. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +Ni +\begin_inset Formula $({\cal C}([a,b]),\Vert\cdot\Vert_{\infty})$ +\end_inset + + ni su dual son reflexivos. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +Ni +\begin_inset Formula $L^{1}([a,b])$ +\end_inset + + ni +\begin_inset Formula $L^{\infty}([a,b])$ +\end_inset + + son reflexivos. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Un espacio normado +\begin_inset Formula $(X,\Vert\cdot\Vert)$ +\end_inset + + es +\series bold +uniformemente convexo +\series default + si +\begin_inset Formula +\[ +\forall\varepsilon>0,\exists\delta>0:\forall x,y\in B_{X},\left(\Vert x-y\Vert\geq\varepsilon\implies\left\Vert \frac{x+y}{2}\right\Vert \leq1-\delta\right), +\] + +\end_inset + +si y sólo si +\begin_inset Formula +\[ +\forall\{x_{n}\}_{n},\{y_{n}\}_{n}\subseteq B_{X},\left(\lim_{n}\left\Vert \frac{x_{n}+y_{n}}{2}\right\Vert =1\implies\lim_{n}\Vert x_{n}-y_{n}\Vert=0\right), +\] + +\end_inset + +en cuyo caso +\begin_inset Formula $\Vert\cdot\Vert$ +\end_inset + + es +\series bold +uniformemente convexa +\series default +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +Toda norma uniformemente convexa es estrictamente convexa. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +Todo espacio prehilbertiano es uniformemente convexo. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +En un espacio normado +\begin_inset Formula $(X,\Vert\cdot\Vert)$ +\end_inset + +, +\begin_inset Formula $f:X\to\mathbb{R}$ +\end_inset + + es +\series bold +uniformemente diferenciable Fréchet +\series default + en +\begin_inset Formula $x\in X$ +\end_inset + + si existe +\begin_inset Formula $\lim_{t\to0}\sup_{h\in B_{X}}\frac{f(x+th)-f(x)}{t}$ +\end_inset + +. + +\series bold + Primer teorema de Šmulian: +\series default + Un espacio de Banach +\begin_inset Formula $(X,\Vert\cdot\Vert)$ +\end_inset + + es uniformemente convexo si y sólo si para +\begin_inset Formula $f\in B_{X^{*}}$ +\end_inset + +, la norma dual es uniformemente diferenciable Fréchet en todo +\begin_inset Formula $B_{X^{*}}$ +\end_inset + +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard + +\series bold +Teorema de Milman: +\series default + Todo espacio de Banach con norma uniformemente convexa es reflexivo. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Si +\begin_inset Formula $X$ +\end_inset + + es un espacio de Banach y +\begin_inset Formula $\varepsilon>0$ +\end_inset + +, un +\series bold + +\begin_inset Formula $\varepsilon$ +\end_inset + +-árbol diádico +\series default + con +\series bold +raíz +\series default + +\begin_inset Formula $x\in X$ +\end_inset + + de longitud +\begin_inset Formula $N\in\mathbb{N}\cup\{\infty\}$ +\end_inset + + es una familia +\begin_inset Formula $\{x_{s}\}_{s\in\bigcup_{i=0}^{n}\{\pm1\}^{n}}\subseteq X$ +\end_inset + + tal que +\begin_inset Formula $x_{\emptyset}=x$ +\end_inset + + y, para +\begin_inset Formula $s\in\bigcup_{i=0}^{n-1}\{\pm1\}^{n}$ +\end_inset + +, +\begin_inset Formula $x_{s}=\frac{x_{s(-1)}+x_{s1}}{2}$ +\end_inset + + y +\begin_inset Formula $\Vert x_{s(-1)}-x_{s1}\Vert\geq\varepsilon$ +\end_inset + +. + Un espacio de Banach +\begin_inset Formula $(X,\Vert\cdot\Vert)$ +\end_inset + + es +\series bold +superreflexivo +\series default + si para +\begin_inset Formula $\varepsilon>0$ +\end_inset + + existe +\begin_inset Formula $N\in\mathbb{N}$ +\end_inset + + tal que todo +\begin_inset Formula $\varepsilon$ +\end_inset + +-árbol diádico contenido en +\begin_inset Formula $B_{X}$ +\end_inset + + tiene longitud máxima +\begin_inset Formula $N$ +\end_inset + +, si y sólo si +\begin_inset Formula $X$ +\end_inset + + admite una norma uniformemente convexa equivalente a +\begin_inset Formula $\Vert\cdot\Vert$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Si +\begin_inset Formula $p\in(1,\infty)$ +\end_inset + + y +\begin_inset Formula $(\Omega,\Sigma,\mu)$ +\end_inset + + es un espacio de medida, +\begin_inset Formula $L^{p}(\Omega,\Sigma,\mu)$ +\end_inset + + es uniformemente convexo y reflexivo, y si +\begin_inset Formula $q\in(1,\infty)$ +\end_inset + + es tal que +\begin_inset Formula $\frac{1}{p}+\frac{1}{q}=1$ +\end_inset + +, +\begin_inset Formula $\Phi:L^{q}(\mu)\to L^{p}(\mu)^{*}$ +\end_inset + + dado por +\begin_inset Formula +\[ +\Phi(g)(f)\coloneqq\int_{\Omega}fg\dif\mu +\] + +\end_inset + + es un isomorfismo isométrico. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard + +\series bold +Propiedad de Schur: +\series default + En +\begin_inset Formula $\ell^{1}$ +\end_inset + +, las sucesiones convergentes en la topología asociada a la norma y en +\begin_inset Formula $\sigma(\ell^{1},\ell^{\infty})$ +\end_inset + + son las mismas, pese a que son topologías distintas. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard + +\series bold +Segundo teorema de Šmulian: +\series default + Si +\begin_inset Formula $(X,\Vert\cdot\Vert)$ +\end_inset + + es normado, un subespacio de +\begin_inset Formula $(X,\sigma(X,X^{*}))$ +\end_inset + + es compacto si y sólo si es compacto por sucesiones. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Un subconjunto de +\begin_inset Formula $(\ell^{1},\Vert\cdot\Vert_{1})$ +\end_inset + + es débilmente compacto (compacto con la topología débil) si y sólo si es + compacto. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\end_body +\end_document |
