diff options
Diffstat (limited to 'algl')
| -rw-r--r-- | algl/n1.lyx | 8 | ||||
| -rw-r--r-- | algl/n3.lyx | 2 | ||||
| -rw-r--r-- | algl/n4.lyx | 2 | ||||
| -rw-r--r-- | algl/n5.lyx | 4 | 
4 files changed, 8 insertions, 8 deletions
| diff --git a/algl/n1.lyx b/algl/n1.lyx index da5b457..967e0e1 100644 --- a/algl/n1.lyx +++ b/algl/n1.lyx @@ -178,7 +178,7 @@ opuesto:  . -\begin_inset Formula $-a:=a'$ +\begin_inset Formula $-a\coloneqq a'$  \end_inset  . @@ -242,11 +242,11 @@ unidad:  Inverso para el producto:  \series default -\begin_inset Formula $\forall a\in K\backslash\{0\},\exists!a''\mid a\cdot a''=1$ +\begin_inset Formula $\forall a\in K\backslash\{0\},\exists!a'':a\cdot a''=1$  \end_inset  ;  -\begin_inset Formula $a^{-1}:=\frac{1}{a}:=a''$ +\begin_inset Formula $a^{-1}\coloneqq \frac{1}{a}\coloneqq a''$  \end_inset  . @@ -722,7 +722,7 @@ Opuesto para la suma:  \end_inset  ;  -\begin_inset Formula $u':=-u$ +\begin_inset Formula $u'\coloneqq -u$  \end_inset  . diff --git a/algl/n3.lyx b/algl/n3.lyx index 99baa10..a283418 100644 --- a/algl/n3.lyx +++ b/algl/n3.lyx @@ -406,7 +406,7 @@ Por tanto  \end_inset  , entonces  -\begin_inset Formula $k:=\dim(\text{Nuc}(f))=n-\text{rang}(f)$ +\begin_inset Formula $k\coloneqq \dim(\text{Nuc}(f))=n-\text{rang}(f)$  \end_inset  , por lo que existen  diff --git a/algl/n4.lyx b/algl/n4.lyx index a0f5c5f..cc6c374 100644 --- a/algl/n4.lyx +++ b/algl/n4.lyx @@ -641,7 +641,7 @@ adjunto  \end_inset   al escalar  -\begin_inset Formula $\Delta_{ij}:=(-1)^{i+j}|A_{ij}|$ +\begin_inset Formula $\Delta_{ij}\coloneqq (-1)^{i+j}|A_{ij}|$  \end_inset  . diff --git a/algl/n5.lyx b/algl/n5.lyx index 963ebd6..14455ac 100644 --- a/algl/n5.lyx +++ b/algl/n5.lyx @@ -587,7 +587,7 @@ Demostración:  \end_layout  \begin_layout Standard -\begin_inset Formula $P_{f}(x):=\det(xId-f)$ +\begin_inset Formula $P_{f}(x)\coloneqq \det(xId-f)$  \end_inset   es el  @@ -603,7 +603,7 @@ polinomio característico  \series default  , y  -\begin_inset Formula $P_{A}(x):=\det(xI_{n}-A)$ +\begin_inset Formula $P_{A}(x)\coloneqq \det(xI_{n}-A)$  \end_inset   es el polinomio característico de  | 
