diff options
Diffstat (limited to 'anm/n3.lyx')
| -rw-r--r-- | anm/n3.lyx | 1611 | 
1 files changed, 1611 insertions, 0 deletions
| diff --git a/anm/n3.lyx b/anm/n3.lyx new file mode 100644 index 0000000..2cb2693 --- /dev/null +++ b/anm/n3.lyx @@ -0,0 +1,1611 @@ +#LyX 2.3 created this file. For more info see http://www.lyx.org/ +\lyxformat 544 +\begin_document +\begin_header +\save_transient_properties true +\origin unavailable +\textclass book +\begin_preamble +\input{../defs} +\end_preamble +\use_default_options true +\begin_modules +algorithm2e +\end_modules +\maintain_unincluded_children false +\language spanish +\language_package default +\inputencoding auto +\fontencoding global +\font_roman "default" "default" +\font_sans "default" "default" +\font_typewriter "default" "default" +\font_math "auto" "auto" +\font_default_family default +\use_non_tex_fonts false +\font_sc false +\font_osf false +\font_sf_scale 100 100 +\font_tt_scale 100 100 +\use_microtype false +\use_dash_ligatures true +\graphics default +\default_output_format default +\output_sync 0 +\bibtex_command default +\index_command default +\paperfontsize default +\spacing single +\use_hyperref false +\papersize default +\use_geometry false +\use_package amsmath 1 +\use_package amssymb 1 +\use_package cancel 1 +\use_package esint 1 +\use_package mathdots 1 +\use_package mathtools 1 +\use_package mhchem 1 +\use_package stackrel 1 +\use_package stmaryrd 1 +\use_package undertilde 1 +\cite_engine basic +\cite_engine_type default +\biblio_style plain +\use_bibtopic false +\use_indices false +\paperorientation portrait +\suppress_date false +\justification true +\use_refstyle 1 +\use_minted 0 +\index Index +\shortcut idx +\color #008000 +\end_index +\secnumdepth 3 +\tocdepth 3 +\paragraph_separation indent +\paragraph_indentation default +\is_math_indent 0 +\math_numbering_side default +\quotes_style french +\dynamic_quotes 0 +\papercolumns 1 +\papersides 1 +\paperpagestyle default +\tracking_changes false +\output_changes false +\html_math_output 0 +\html_css_as_file 0 +\html_be_strict false +\end_header + +\begin_body + +\begin_layout Standard +Sean  +\begin_inset Formula $A\in{\cal M}_{m\times n}(\mathbb{C})$ +\end_inset + + y  +\begin_inset Formula $b\in\mathbb{C}^{m}$ +\end_inset + +, un  +\series bold +método iterativo de resolución +\series default + del sistema lineal  +\begin_inset Formula $Ax=b$ +\end_inset + + es un par  +\begin_inset Formula $(T,c)$ +\end_inset + + con  +\begin_inset Formula $T\in{\cal M}_{n}$ +\end_inset + + y  +\begin_inset Formula $c\in\mathbb{C}^{n}$ +\end_inset + + tal que la solución del sistema es el único punto fijo de  +\begin_inset Formula $\Phi(x):=Tx+c$ +\end_inset + +. + Si para todo  +\begin_inset Formula $x\in\mathbb{C}^{n}$ +\end_inset + + la sucesión  +\begin_inset Formula $(x_{n})_{n}$ +\end_inset + + dada por  +\begin_inset Formula $x_{0}:=x$ +\end_inset + + y  +\begin_inset Formula $x_{k+1}:=\Phi(x_{k})$ +\end_inset + + converge hacia el punto fijo,  +\begin_inset Formula $(T,c)$ +\end_inset + + es  +\series bold +convergente +\series default +. +\end_layout + +\begin_layout Standard +Sea  +\begin_inset Formula $T\in{\cal M}_{n}$ +\end_inset + +,  +\begin_inset Formula $\rho(T)<1$ +\end_inset + + si y sólo si, para cualesquiera  +\begin_inset Formula $c,x\in\mathbb{C}^{n}$ +\end_inset + +, la sucesión  +\begin_inset Formula $x_{0}:=y$ +\end_inset + +,  +\begin_inset Formula $x_{k+1}:=Tx_{k}+c$ +\end_inset + +, converge. +\end_layout + +\begin_layout Itemize +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\implies]$ +\end_inset + + +\end_layout + +\end_inset + +Entonces existe una norma matricial tal que  +\begin_inset Formula $\Vert T\Vert<1$ +\end_inset + +, y si  +\begin_inset Formula $\Phi(x):=Tx+c$ +\end_inset + +,  +\begin_inset Formula $\Vert\Phi(x)-\Phi(y)\Vert=\Vert Tx-Ty\Vert=\Vert T(x-y)\Vert\leq\Vert T\Vert\Vert x-y\Vert$ +\end_inset + +, luego  +\begin_inset Formula $\Phi$ +\end_inset + + es contractiva y, por el teorema del punto fijo de Banach, la sucesión + converge a un punto fijo. +\end_layout + +\begin_layout Itemize +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\impliedby]$ +\end_inset + + +\end_layout + +\end_inset + +Sean  +\begin_inset Formula $c,v\in\mathbb{C}^{n}$ +\end_inset + +,  +\begin_inset Formula $x$ +\end_inset + + la solución de  +\begin_inset Formula $x=Tx+c$ +\end_inset + +,  +\begin_inset Formula $y:=x-v$ +\end_inset + + y  +\begin_inset Formula $(x_{n})_{n}$ +\end_inset + + la sucesión del enunciado, entonces  +\begin_inset Formula $x-x_{0}=v=T^{0}v$ +\end_inset + +, y si  +\begin_inset Formula $x-x_{k}=T^{k}v$ +\end_inset + +, entonces  +\begin_inset Formula $x-x_{k+1}=(Tx+c)-(Tx_{k}+c)=T(x-x_{k})=TT^{k}v=T^{k+1}v$ +\end_inset + +. + Por tanto  +\begin_inset Formula $\lim_{k}T^{k}v=\lim_{k}(x-x_{k})=0$ +\end_inset + +, y que esto ocurra para  +\begin_inset Formula $v$ +\end_inset + + arbitrario equivale a que  +\begin_inset Formula $\rho(T)<1$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Dado un sistema lineal  +\begin_inset Formula $Ax=b$ +\end_inset + +, si  +\begin_inset Formula $A=M-N$ +\end_inset + + con  +\begin_inset Formula $M$ +\end_inset + + fácil de invertir, entonces  +\begin_inset Formula $(M^{-1}N,M^{-1}b)$ +\end_inset + + es un método iterativo de resolución de  +\begin_inset Formula $Ax=b$ +\end_inset + +, pues  +\begin_inset Formula $Ax=Mx-Nx=b\iff Mx=Nx+b\iff x=M^{-1}Nx+M^{-1}b$ +\end_inset + +. + El  +\series bold +método iterativo de Richardson +\series default + para una matriz  +\begin_inset Formula $A:=(a_{ij})$ +\end_inset + + sin ceros en la diagonal consiste en tomar como matriz fácil de invertir + en lo anterior una matriz  +\begin_inset Formula $\alpha I_{n}$ +\end_inset + + para un cierto  +\begin_inset Formula $\alpha\in\mathbb{C}$ +\end_inset + +. +\end_layout + +\begin_layout Section +Método de Jacobi +\end_layout + +\begin_layout Standard +En adelante,  +\begin_inset Formula $Ax=b$ +\end_inset + + es un sistema lineal tal que  +\begin_inset Formula $A$ +\end_inset + + no tiene ceros en la diagonal,  +\begin_inset Formula $D$ +\end_inset + + es la matriz diagonal de  +\begin_inset Formula $A$ +\end_inset + +,  +\begin_inset Formula $L$ +\end_inset + + la matriz formada por los elementos de  +\begin_inset Formula $A$ +\end_inset + + bajo la diagonal y  +\begin_inset Formula $U$ +\end_inset + + la formada por los elementos sobre la diagonal, de modo que  +\begin_inset Formula $A=L+D+U$ +\end_inset + +. +  +\end_layout + +\begin_layout Standard +Para el método de Jacobi tomamos  +\begin_inset Formula $M:=D$ +\end_inset + + y  +\begin_inset Formula $N:=-(L+U)$ +\end_inset + +, y nos queda el método iterativo  +\begin_inset Formula $(T_{J}:=-D^{-1}(L+U),D^{-1}b)$ +\end_inset + +. +  +\end_layout + +\begin_layout Standard +Para calcular de forma eficiente, en cada iteración calculamos  +\begin_inset Formula $r_{k}:=Ax_{k}-b$ +\end_inset + + y  +\begin_inset Formula $x_{k+1}=x_{k}-D^{-1}r_{k}$ +\end_inset + +, pues  +\begin_inset Formula $D^{-1}r_{k}=D^{-1}(Dx_{k}+(L+U)x_{k}-b)=x_{k}-(-D^{-1}(L+U)x_{k}+D^{-1}b)=x_{k}-x_{k+1}$ +\end_inset + +. +\end_layout + +\begin_layout Section +Método de Gauss-Seidel +\end_layout + +\begin_layout Standard +Es como el de Jacobi pero, para calcular una coordenada de  +\begin_inset Formula $x_{k+1}$ +\end_inset + +, usamos las coordenadas anteriores, que ya habremos calculado, en vez de + las correspondientes de  +\begin_inset Formula $x_{k}$ +\end_inset + +, pues serán una mejor aproximación. + Si  +\begin_inset Formula $A\in{\cal M}_{n}$ +\end_inset + +, para  +\begin_inset Formula $i$ +\end_inset + + de 1 a  +\begin_inset Formula $n$ +\end_inset + +, calculamos +\begin_inset Formula  +\[ +\tilde{r}_{ki}:=\sum_{j=1}^{i-1}a_{ij}x_{(k+1)j}+\sum_{j=i}^{n}a_{ij}x_{kj}-b_{i} +\] + +\end_inset + +y +\begin_inset Formula  +\[ +x_{(k+1)i}:=x_{ki}-\frac{\tilde{r}_{ki}}{a_{ii}}=\frac{1}{a_{ii}}\left(b_{i}-\sum_{j=1}^{i-1}a_{ij}x_{(k+1)j}-\sum_{j=i+1}^{n}a_{ij}x_{kj}\right). +\] + +\end_inset + +Esto es el método  +\begin_inset Formula $(T_{G}:=-(L+D)^{-1}U,(L+D)^{-1}b)$ +\end_inset + +, equivalente a tomar  +\begin_inset Formula $M:=L+D$ +\end_inset + + y  +\begin_inset Formula $N:=-U$ +\end_inset + +. +  +\series bold +Demostración: +\series default + Despejando,  +\begin_inset Formula  +\[ +a_{ii}x_{(k+1)i}+\sum_{j=1}^{i-1}a_{ij}x_{(k+1)j}=b_{i}-\sum_{j=i+1}^{n}a_{ij}x_{kj}, +\] + +\end_inset + +esto es,  +\begin_inset Formula $((L+D)x_{k+1})_{i}=b_{i}-(Ux_{k})_{i}$ +\end_inset + +, luego  +\begin_inset Formula $(L+D)x_{k+1}=b-Ux_{k}$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Tenemos que  +\begin_inset Formula $\tilde{r}_{ki}=A\tilde{x}_{ki}-b$ +\end_inset + +, donde  +\begin_inset Formula $\tilde{x}_{ki}=(x_{(k+1)1},\dots,x_{(k+1)(i-1)},x_{ki},\dots,x_{kn})$ +\end_inset + +, por lo que podemos usar como condición de parada que  +\begin_inset Formula $\tilde{r}_{k}$ +\end_inset + + sea lo suficientemente pequeño. +\end_layout + +\begin_layout Standard + +\series bold +Teorema de P. + Stein y R. + L. + Rosenberg +\series default + (1948) +\series bold +: +\series default + Si  +\begin_inset Formula $A=D+L+U\in{\cal M}_{n}(\mathbb{R})$ +\end_inset + + con  +\begin_inset Formula $L,U\leq0$ +\end_inset + +,  +\begin_inset Formula $L,U\neq0$ +\end_inset + + y  +\begin_inset Formula $L$ +\end_inset + + y  +\begin_inset Formula $U$ +\end_inset + + triangulares estrictamente inferior y superior, respectivamente, se da + exactamente una de las siguientes afirmaciones: +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $0\leq\rho(T_{G})\leq\rho(T_{J})<1$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\rho(T_{J})=\rho(T_{G})=1$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $1<\rho(T_{J})\leq\rho(T_{G})$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Por tanto, si el método de Jacobi converge, el de Gauss-Seidel lo hace más + rápido, y si diverge, también. +\end_layout + +\begin_layout Standard +Si  +\begin_inset Formula $A\in{\cal M}_{n}(\mathbb{R})$ +\end_inset + + tiene diagonal estrictamente dominante, los métodos de Jacobi y Gauss-Seidel + para resolver  +\begin_inset Formula $Ax=b$ +\end_inset + + convergen y  +\begin_inset Formula $\Vert T_{G}\Vert_{\infty}\leq\Vert T_{J}\Vert_{\infty}<1$ +\end_inset + +. +  +\series bold +Demostración: +\series default +  +\begin_inset Formula $(T_{J})_{ij}=-(1-\delta_{ij})\frac{a_{ij}}{a_{ii}}$ +\end_inset + +, luego  +\begin_inset Formula $\Vert T_{J}\Vert_{\infty}=\max_{i}\sum_{j}|(T_{J})_{ij}|=\max_{i}\sum_{j\neq i}\frac{|a_{ij}|}{|a_{ii}|}<1$ +\end_inset + + y  +\begin_inset Formula $\rho(T_{J})<1$ +\end_inset + +. + Sean  +\begin_inset Formula $y\in\mathbb{R}^{n}$ +\end_inset + + y  +\begin_inset Formula $z:=T_{G}y$ +\end_inset + +, con lo que  +\begin_inset Formula $(L+D)z=-Uy$ +\end_inset + +, y queremos ver que, para  +\begin_inset Formula $i\in\{1,\dots,n\}$ +\end_inset + +,  +\begin_inset Formula $|z_{i}|\leq\frac{1}{|a_{ii}|}\sum_{j\neq i}|a_{ij}|\Vert y\Vert_{\infty}$ +\end_inset + +, y en particular  +\begin_inset Formula $|z_{i}|\leq\Vert T_{J}\Vert_{\infty}\Vert y\Vert_{\infty}$ +\end_inset + +. + Para  +\begin_inset Formula $i=1$ +\end_inset + +,  +\begin_inset Formula  +\[ +|a_{11}||z_{1}|=|(L+D)_{11}z_{1}|=|((L+D)z)_{1}|=|-Uy|=\left|\sum_{j=2}^{n}a_{1j}y_{j}\right|\leq\sum_{j=2}^{n}|a_{1j}||y_{j}|\leq\sum_{j=2}^{n}|a_{1j}|\Vert y\Vert_{\infty}. +\] + +\end_inset + +Para  +\begin_inset Formula $i>1$ +\end_inset + +, usando la fórmula con  +\begin_inset Formula $b=0$ +\end_inset + +, +\begin_inset Formula  +\begin{eqnarray*} +|z_{i}| & = & \left|\frac{1}{a_{ii}}\left(-\sum_{j=1}^{i-1}a_{ij}z_{j}-\sum_{j=i+1}^{n}a_{ij}y_{j}\right)\right|\leq\frac{1}{|a_{ii}|}\left(\sum_{j=1}^{i-1}|a_{ij}||z_{j}|+\sum_{i=j+1}^{n}|a_{ij}||y_{j}|\right)\\ + & \leq & \frac{1}{|a_{ij}|}\left(\sum_{j=1}^{i-1}|a_{ij}|\Vert T_{J}\Vert_{\infty}+\sum_{j=1}^{i-1}|a_{ij}|\right)\Vert y\Vert_{\infty}\overset{\Vert T_{J}\Vert_{\infty}<1}{\leq}\frac{1}{|a_{ij}|}\sum_{j\neq i}|a_{ij}|\Vert y\Vert_{\infty}. +\end{eqnarray*} + +\end_inset + +Por tanto  +\begin_inset Formula $\Vert T_{G}y\Vert_{\infty}=\Vert z\Vert_{\infty}\leq\Vert T_{J}\Vert_{\infty}\Vert y\Vert_{\infty}$ +\end_inset + + y, tomando  +\begin_inset Formula $y:=(1,\dots,1)_{\infty}$ +\end_inset + +,  +\begin_inset Formula $\Vert T_{G}\Vert_{\infty}=\max_{i}\sum_{j}|(T_{G})_{ij}||y_{j}|=\Vert T_{G}y\Vert_{\infty}\leq\Vert T_{J}\Vert_{\infty}\Vert y\Vert_{\infty}=\Vert T_{J}\Vert_{\infty}$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Si  +\begin_inset Formula $A$ +\end_inset + + es tridiagonal es  +\begin_inset Formula $\rho(T_{G})=\rho(T_{J})^{2}$ +\end_inset + +, con lo que los métodos de Jacobi y Gauss-Seidel convergen simultáneamente + y, entonces, el de Gauss-Seidel converge más rápido. +  +\series bold +Demostración: +\series default + Vemos primero que si  +\begin_inset Formula $A:\mathbb{C}\to{\cal M}_{n}(\mathbb{C})$ +\end_inset + + es de la forma  +\begin_inset Formula  +\[ +A(\lambda):=\left(\begin{array}{ccccc} +\lambda b_{1} & c_{1}\\ +\lambda^{2}a_{2} & \lambda b_{2} & c_{2}\\ + & \ddots & \ddots & \ddots\\ + &  & \lambda^{2}a_{n-1} & \lambda b_{n-1} & c_{n-1}\\ + &  &  & \lambda^{2}a_{n} & \lambda b_{n} +\end{array}\right), +\] + +\end_inset + +entonces  +\begin_inset Formula $\det(A(\lambda))=\det(A(1))$ +\end_inset + + para todo  +\begin_inset Formula $\lambda\neq0$ +\end_inset + +. + En efecto, sea  +\begin_inset Formula $Q(\lambda):=\text{diag}(\lambda,\lambda^{2},\dots,\lambda^{n})$ +\end_inset + +, es fácil ver que  +\begin_inset Formula $A(\lambda)=Q(\lambda)A(1)Q(\lambda)^{-1}$ +\end_inset + +. + Los valores propios de  +\begin_inset Formula $T_{J}$ +\end_inset + + son los ceros de  +\begin_inset Formula $p_{J}(\lambda):=\det(-D^{-1}(L+U)-\lambda I_{n})$ +\end_inset + +, que son los mismos que los de  +\begin_inset Formula $q_{J}(\lambda):=\det(L+U+\lambda D)$ +\end_inset + +. + Los de  +\begin_inset Formula $T_{G}$ +\end_inset + + son los ceros de  +\begin_inset Formula $p_{G}(\lambda):=\det(-(L+D)^{-1}U-\lambda I_{n})$ +\end_inset + +, que son los de  +\begin_inset Formula $q_{G}(\lambda):=\det(U+\lambda L+\lambda D)$ +\end_inset + +. + Usando el resultado al principio, para  +\begin_inset Formula $\lambda\neq0$ +\end_inset + +,  +\begin_inset Formula $q_{G}(\lambda^{2})=\det(\lambda^{2}D+\lambda^{2}L+U)=\det(\lambda^{2}L+\lambda(\lambda D)+U)=\det(L+\lambda D+U)=q_{J}(\lambda)$ +\end_inset + +, y para  +\begin_inset Formula $\lambda=0$ +\end_inset + + esto se cumple por continuidad. + Así,  +\begin_inset Formula $\lambda$ +\end_inset + + es valor propio de  +\begin_inset Formula $T_{J}$ +\end_inset + + si y sólo si  +\begin_inset Formula $\lambda^{2}$ +\end_inset + + lo es de  +\begin_inset Formula $T_{G}$ +\end_inset + +, de donde se obtiene el resultado. +\end_layout + +\begin_layout Section +Método de relajación +\end_layout + +\begin_layout Standard +Se trata de encontrar un peso  +\begin_inset Formula $\omega>0$ +\end_inset + + para corregirlas coordenadas de  +\begin_inset Formula $x_{k}$ +\end_inset + + poniendo +\begin_inset Formula  +\[ +x_{(k+1)i}:=x_{ki}-\frac{\omega}{a_{ii}}\tilde{r}_{ki} +\] + +\end_inset + +en el método de Gauss-Seidel. + Entonces el método es  +\begin_inset Formula $(T_{R}(\omega):=(D+\omega L)^{-1}((1-\omega)D-\omega U),(D+\omega L)^{-1}\omega)$ +\end_inset + +, que equivale a tomar  +\begin_inset Formula $M:=\frac{1}{\omega}D+L$ +\end_inset + + y  +\begin_inset Formula $N:=\frac{1-\omega}{\omega}D-U$ +\end_inset + +. +  +\series bold +Demostración: +\series default + Ahora es +\begin_inset Formula  +\[ +a_{ii}x_{(k+1)i}=a_{ii}x_{ki}-\omega\left(\sum_{j=1}^{i-1}a_{ij}x_{(k+1)j}+\sum_{j=i}^{n}a_{ij}x_{kj}-b_{i}\right), +\] + +\end_inset + +luego +\begin_inset Formula  +\[ +a_{ii}x_{(k+1)i}+\omega\sum_{j=1}^{i-1}a_{ij}x_{(k+1)j}=(1-\omega)a_{ii}x_{ki}-\omega\sum_{j=i+1}^{n}a_{ij}x_{kj}-b_{i}, +\] + +\end_inset + +con lo que  +\begin_inset Formula $(D+\omega L)x_{k+1}=(1-\omega)D-\omega U-b$ +\end_inset + +. + Entonces,  +\begin_inset Formula $(D+\omega L)^{-1}((1-\omega)D+\omega U)=(\frac{1}{\omega}D+\omega L)^{-1}(\frac{1-\omega}{\omega D}+U)$ +\end_inset + +. +\end_layout + +\begin_layout Standard + +\series bold +Teorema de Kahan +\series default + (1958) +\series bold +: +\series default +  +\begin_inset Formula $\rho(T_{R}(\omega))>|\omega-1|$ +\end_inset + +, y en particular el método de relajación solo puede ser convergente para +  +\begin_inset Formula $\omega\in(0,2)$ +\end_inset + +. +  +\series bold +Demostración: +\series default +  +\begin_inset Formula  +\[ +\det T_{R}(\omega)=\frac{\det((1-\omega)D-\omega U)}{\det(D+\omega L)}=\frac{\det((1-\omega)D)}{\det(D)}=(1-\omega)^{n}, +\] + +\end_inset + +con lo que si  +\begin_inset Formula $\lambda_{1},\dots,\lambda_{n}$ +\end_inset + + son los valores propios de  +\begin_inset Formula $T_{R}(\omega)$ +\end_inset + +, repetidos según sea su multiplicidad,  +\begin_inset Formula $\rho(T_{R}(\omega))^{n}\geq\prod_{k=1}^{n}|\lambda_{k}|=|\det T_{R}(\omega)|=|1-\omega|^{n}$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Si  +\begin_inset Formula $A$ +\end_inset + + es SPD, el método de relajación converge para  +\begin_inset Formula $\omega\in(0,2)$ +\end_inset + +. +  +\series bold +Demostración: +\series default + Si  +\begin_inset Formula $M:=\frac{1}{\omega}D+L$ +\end_inset + + y  +\begin_inset Formula $N:=\frac{1-\omega}{\omega}D-U$ +\end_inset + +,  +\begin_inset Formula $A=M-N$ +\end_inset + + y  +\begin_inset Formula $T_{R}(\omega)=M^{-1}N$ +\end_inset + +. + Además, como  +\begin_inset Formula $L^{t}=U$ +\end_inset + +,  +\begin_inset Formula $M^{t}+N=\frac{2-\omega}{\omega}D$ +\end_inset + +, que es SPD, y queremos ver que entonces  +\begin_inset Formula $\rho(M^{-1}N)\leq\Vert M^{-1}N\Vert_{A}<1$ +\end_inset + +. + En dimensión finita,  +\begin_inset Formula $\Vert M^{-1}N\Vert_{A}=\max\{\Vert M^{-1}Nv\Vert_{A}:\Vert v\Vert_{A}=1\}$ +\end_inset + +. + Sean  +\begin_inset Formula $v\in\mathbb{R}^{n}$ +\end_inset + + con  +\begin_inset Formula $\Vert v\Vert_{A}^{2}=1$ +\end_inset + + tal que  +\begin_inset Formula $\Vert M^{-1}N\Vert_{A}=\Vert M^{-1}Nv\Vert_{A}$ +\end_inset + + y  +\begin_inset Formula $w:=M^{-1}Av$ +\end_inset + +, entonces  +\begin_inset Formula $Mw=Av$ +\end_inset + +, luego +\begin_inset Formula  +\begin{align*} +\Vert M^{-1}Nv\Vert_{A}^{2} & =\langle AM^{-1}Nv,M^{-1}Nv\rangle=\langle AM^{-1}(M-A)v,M^{-1}(M-A)v\rangle=\\ + & =\langle Av-AM^{-1}Av,v-M^{-1}Av\rangle=\\ + & =\langle Av,v\rangle-\langle AM^{-1}Av,v\rangle-\langle Av,M^{-1}Av\rangle+\langle AM^{-1}Av,M^{-1}Av\rangle=\\ + & =1-\langle M^{-1}Av,Av\rangle-\langle Mw,w\rangle+\langle Aw,w\rangle=\\ + & =1-\langle w,Mw\rangle-\langle Mw,w\rangle+\langle(M-N)w,w\rangle=1-\langle M^{t}w,w\rangle-\langle Nw,w\rangle=\\ + & =1-\langle(M^{t}+N)w,w\rangle<1, +\end{align*} + +\end_inset + +por ser  +\begin_inset Formula $M^{t}+N$ +\end_inset + + definida positiva. +\end_layout + +\begin_layout Standard +Si  +\begin_inset Formula $A$ +\end_inset + + es SPD y tridiagonal, los métodos de Jacobi, Gauss-Seidel y relajación + para  +\begin_inset Formula $0<\omega<2$ +\end_inset + + convergen. + Además, el mínimo  +\begin_inset Formula $\rho(T_{R}(\omega))$ +\end_inset + + para  +\begin_inset Formula $\omega\in(0,2)$ +\end_inset + + se alcanza en  +\begin_inset Formula  +\[ +\omega=\omega_{0}:=\frac{2}{1+\sqrt{1-\rho(T_{J})^{2}}}, +\] + +\end_inset + +con lo que  +\begin_inset Formula $\rho(T_{R}(\omega_{0}))\leq\rho(T_{G})<\rho(T_{J})$ +\end_inset + +, y se tiene  +\begin_inset Formula $\rho(T_{R}(\omega_{0}))=\omega_{0}-1$ +\end_inset + +. +\end_layout + +\begin_layout Section +Método del descenso rápido +\end_layout + +\begin_layout Standard +Si  +\begin_inset Formula $A$ +\end_inset + + es SPD,  +\begin_inset Formula $x\in\mathbb{R}^{n}$ +\end_inset + + es solución de  +\begin_inset Formula $Ax=b$ +\end_inset + + si y sólo si minimiza  +\begin_inset Formula $g(x):=x^{t}Ax-2x^{t}b$ +\end_inset + +, y para  +\begin_inset Formula $v\in\mathbb{R}^{n}\setminus0$ +\end_inset + +, el mínimo de  +\begin_inset Formula $h(t):=g(x+tv)$ +\end_inset + + es  +\begin_inset Formula $\frac{v^{t}(b-Ax)}{v^{t}Av}$ +\end_inset + +. +  +\series bold +Demostración: +\series default + Sean  +\begin_inset Formula $v\in\mathbb{R}^{n}\setminus\{0\}$ +\end_inset + + y  +\begin_inset Formula $t\in\mathbb{R}$ +\end_inset + +, +\begin_inset Formula  +\begin{multline*} +g(x+tv)=(x+tv)^{t}A(x+tv)-2(x+tv)^{t}b=\\ +=x^{t}Ax+tv^{t}Ax+tx^{t}Av+t^{2}v^{t}Av-2x^{t}b-2tv^{t}b=g(x)-2tv^{t}(b-Ax)+t^{2}v^{t}Av, +\end{multline*} + +\end_inset + +luego el mínimo de  +\begin_inset Formula $h$ +\end_inset + + es  +\begin_inset Formula $t_{xv}$ +\end_inset + + tal que  +\begin_inset Formula $h'(t_{xv})=2t_{xv}v^{t}Av-2v^{t}(b-Ax)=0\iff t_{xv}=\frac{v^{t}(b-Ax)}{v^{t}Av}$ +\end_inset + +. + En efecto,  +\begin_inset Formula $h''(t_{xv})=2v^{t}Av>0$ +\end_inset + +. + Así: +\end_layout + +\begin_layout Itemize +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\implies]$ +\end_inset + + +\end_layout + +\end_inset + +Si  +\begin_inset Formula $Ax=b$ +\end_inset + +,  +\begin_inset Formula $b-Ax=0$ +\end_inset + + y  +\begin_inset Formula $t_{xv}=0$ +\end_inset + + para todo  +\begin_inset Formula $v\neq0$ +\end_inset + +, luego  +\begin_inset Formula $x$ +\end_inset + + es el mínimo de  +\begin_inset Formula $g$ +\end_inset + + en cualquier dirección. +\end_layout + +\begin_layout Itemize +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\impliedby]$ +\end_inset + + +\end_layout + +\end_inset + +Si  +\begin_inset Formula $x$ +\end_inset + + minimiza  +\begin_inset Formula $g$ +\end_inset + +, para cualquier dirección  +\begin_inset Formula $v\neq0$ +\end_inset + +,  +\begin_inset Formula $t_{xv}=0$ +\end_inset + +, luego  +\begin_inset Formula $v^{t}(b-Ax)=0$ +\end_inset + + y, en particular,  +\begin_inset Formula $\Vert b-Ax\Vert=0$ +\end_inset + + y  +\begin_inset Formula $Ax=b$ +\end_inset + +. +\end_layout + +\begin_layout Standard +El vector gradiente +\begin_inset Formula  +\[ +\nabla g(x)=\left(\frac{\partial g}{\partial x_{1}}(x),\dots,\frac{\partial g}{\partial x_{n}}(x)\right) +\] + +\end_inset + +es el de máximo crecimiento en  +\begin_inset Formula $x$ +\end_inset + +, y el  +\series bold +método del descenso rápido +\series default + consiste en partir de un  +\begin_inset Formula $x_{0}$ +\end_inset + + y hacer  +\begin_inset Formula $x_{k+1}:=x_{k}-\alpha\nabla g(x_{k})$ +\end_inset + +, donde  +\begin_inset Formula $\alpha$ +\end_inset + + minimiza  +\begin_inset Formula $g(x_{k+1})$ +\end_inset + +. +  +\series bold +Demostración: +\series default +  +\begin_inset Formula $g(x)=\sum_{k=1}^{n}a_{kk}x_{k}^{2}+2\sum_{1\leq i<j\leq n}a_{ij}x_{j}-2\sum_{k=1}^{n}b_{k}x_{k}$ +\end_inset + +, luego  +\begin_inset Formula  +\[ +\frac{\partial g}{\partial x_{k}}(x)=2a_{kk}x_{k}+2\left(\sum_{i=1}^{k-1}a_{ik}x_{i}+\sum_{j=k+1}^{n}a_{kj}x_{j}\right)-2b_{k}=2\left(\sum_{i=1}^{n}a_{ki}x_{i}-b_{k}\right) +\] + +\end_inset + +y por tanto  +\begin_inset Formula $\nabla g(x)=2(Ax-b)$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Este método es seguro, pero no se usa en la práctica por ser muy lento. +\end_layout + +\begin_layout Section +Método del gradiente conjugado +\end_layout + +\begin_layout Standard +Sean  +\begin_inset Formula $A$ +\end_inset + + una matriz SPD de dimensión  +\begin_inset Formula $n$ +\end_inset + +,  +\begin_inset Formula $(v_{1},\dots,v_{n})$ +\end_inset + + una base de vectores de  +\begin_inset Formula $\mathbb{R}^{n}$ +\end_inset + + ortogonal respecto a  +\begin_inset Formula $A$ +\end_inset + +,  +\begin_inset Formula $y\in\mathbb{R}^{n}$ +\end_inset + + y las secuencias  +\begin_inset Formula $(r_{k})_{k=0}^{n}$ +\end_inset + +  +\begin_inset Formula $(t_{k})_{k=1}^{n}$ +\end_inset + + y  +\begin_inset Formula $(x_{k})_{k=0}^{n}$ +\end_inset + + dadas por +\begin_inset Formula  +\begin{align*} +r_{k} & :=b-Ax_{k}, & t_{k} & :=\frac{v_{k}^{*}r_{k-1}}{v_{k}^{*}Av_{k}}, & x_{0} & :=y, & x_{k+1} & :=x_{k}+t_{k+1}v_{k+1}, +\end{align*} + +\end_inset + +entonces  +\begin_inset Formula $x_{n}$ +\end_inset + + es la solución del sistema  +\begin_inset Formula $Ax=b$ +\end_inset + +. +  +\series bold +Demostración: +\series default + Tenemos  +\begin_inset Formula $r_{0}=b-Ax_{0}$ +\end_inset + +,  +\begin_inset Formula $r_{1}=b-Ax_{1}=b-A(x_{0}+t_{1}v_{1})=b-Ax_{0}-t_{1}Av_{1}$ +\end_inset + +, y por inducción  +\begin_inset Formula $r_{k}=b-Ax_{0}-t_{1}Av_{1}-\dots-t_{k}Av_{k}=r_{0}-t_{1}Av_{1}-\dots-t_{k}Av_{k}$ +\end_inset + +. + Como los  +\begin_inset Formula $v_{k}$ +\end_inset + + son ortogonales, para  +\begin_inset Formula $j\leq k$ +\end_inset + +,  +\begin_inset Formula $v_{j}^{*}r_{k}=v_{j}^{*}r_{0}-t_{j}v_{j}^{*}Av_{j}$ +\end_inset + +, y por definición de los  +\begin_inset Formula $t_{j}$ +\end_inset + +,  +\begin_inset Formula $t_{j}v_{j}^{*}Av_{j}=v_{j}^{*}r_{j-1}=v_{j}^{*}r_{0}$ +\end_inset + +, con lo que  +\begin_inset Formula $v_{j}^{*}r_{k}=v_{j}^{*}r_{0}-v_{j}^{*}r_{0}=0$ +\end_inset + + y  +\begin_inset Formula $r_{k}\bot v_{j}$ +\end_inset + + en el producto escalar usual. + En particular  +\begin_inset Formula $r_{n}$ +\end_inset + + es ortogonal a todos los  +\begin_inset Formula $v_{j}$ +\end_inset + + y por tanto  +\begin_inset Formula $Ax_{n}-b=r_{n}=0$ +\end_inset + +. +\end_layout + +\begin_layout Standard +El  +\series bold +método del gradiente conjugado +\series default +, mostrado en el algoritmo  +\begin_inset CommandInset ref +LatexCommand ref +reference "alg:gradient" +plural "false" +caps "false" +noprefix "false" + +\end_inset + +, calcula la base  +\begin_inset Formula $(v_{1},\dots,v_{n})$ +\end_inset + + a la vez que los términos de las sucesiones. +\end_layout + +\begin_layout Standard +\begin_inset Float algorithm +wide false +sideways false +status open + +\begin_layout Plain Layout +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +Entrada{Matriz $A +\backslash +in{ +\backslash +cal M}_n$ SPD de coeficientes, vector $b$ de términos independientes y vector + inicial $x_0$.} +\end_layout + +\begin_layout Plain Layout + + +\backslash +Salida{Solución $x$.} +\end_layout + +\begin_layout Plain Layout + +$x +\backslash +gets x_0$ +\backslash +; +\end_layout + +\begin_layout Plain Layout + +$v +\backslash +gets r +\backslash +gets b-Ax_0$ +\backslash +; +\end_layout + +\begin_layout Plain Layout + +$ +\backslash +gamma +\backslash +gets +\backslash +Vert r_0 +\backslash +Vert^2$ +\backslash +; +\end_layout + +\begin_layout Plain Layout + + +\backslash +Para{$i +\backslash +gets1$  +\backslash +KwA $n$}{ +\end_layout + +\begin_layout Plain Layout + +	$y +\backslash +gets Av$ +\backslash +; +\end_layout + +\begin_layout Plain Layout + +	$t +\backslash +gets{ +\backslash +gamma +\backslash +over v +\backslash +cdot y}$ +\backslash +; +\end_layout + +\begin_layout Plain Layout + +	$x +\backslash +gets x+tv$ +\backslash +; +\end_layout + +\begin_layout Plain Layout + +	$r +\backslash +gets r-ty$ +\backslash +; +\end_layout + +\begin_layout Plain Layout + +	$ +\backslash +beta +\backslash +gets +\backslash +Vert r +\backslash +Vert_2^2$ +\backslash +; +\end_layout + +\begin_layout Plain Layout + +	$s +\backslash +gets{ +\backslash +beta +\backslash +over +\backslash +gamma}$ +\backslash +; +\end_layout + +\begin_layout Plain Layout + +	$ +\backslash +gamma +\backslash +gets +\backslash +beta$ +\backslash +; +\end_layout + +\begin_layout Plain Layout + +	$v +\backslash +gets r+sv$ +\backslash +; +\end_layout + +\begin_layout Plain Layout + +} +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Plain Layout +\begin_inset Caption Standard + +\begin_layout Plain Layout +\begin_inset CommandInset label +LatexCommand label +name "alg:gradient" + +\end_inset + +Algoritmo del gradiente conjugado. +\end_layout + +\end_inset + + +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Se puede usar como condición de parada que  +\begin_inset Formula $\gamma$ +\end_inset + + sea suficientemente pequeño, comprobando que lo sea al terminar, ya que + de lo contrario tenemos inestabilidad en los cálculos. +\end_layout + +\begin_layout Standard +Sea  +\begin_inset Formula $A$ +\end_inset + + SPD, llamamos  +\series bold +precondicionamiento +\series default + de  +\begin_inset Formula $A$ +\end_inset + + a una matriz  +\begin_inset Formula $C$ +\end_inset + + fácil de invertir tal que  +\begin_inset Formula $\tilde{A}:=C^{-1}A(C^{-1})^{t}$ +\end_inset + + es SPD y  +\begin_inset Formula $\text{cond}_{2}\tilde{A}<\text{cond}_{2}A$ +\end_inset + +. + El sistema  +\begin_inset Formula $Ax=b$ +\end_inset + +, llamando  +\begin_inset Formula $\tilde{x}:=C^{t}x$ +\end_inset + +, es equivale al sistema  +\begin_inset Formula $(C^{-1}A(C^{-1})^{t})\tilde{x}=C^{-1}b$ +\end_inset + +, llamado  +\series bold +sistema precondicionado +\series default +. +\end_layout + +\end_body +\end_document | 
