diff options
Diffstat (limited to 'bd/n6.lyx')
| -rw-r--r-- | bd/n6.lyx | 14 | 
1 files changed, 7 insertions, 7 deletions
| @@ -4639,7 +4639,7 @@ condición  \end_inset   es una condición,  -\begin_inset Formula $\sigma_{C}(R):=(\{r\in R:C(r)\},T,N)$ +\begin_inset Formula $\sigma_{C}(R):=(\{r\in R\mid C(r)\},T,N)$  \end_inset  , donde  @@ -4787,7 +4787,7 @@ El producto cartesiano ampliado y la reunión son asociativas, y son conmutativa  Reunión natural  \series default  : Sea  -\begin_inset Formula $\{j_{1},\dots,j_{p}\}:=\{j:M_{j}\notin\{N_{i}\}\}$ +\begin_inset Formula $\{j_{1},\dots,j_{p}\}\mid =\{j\mid M_{j}\notin\{N_{i}\}\}$  \end_inset  , si para  @@ -4805,7 +4805,7 @@ Reunión natural  , entonces   \begin_inset Formula   \[ -R\hexstar S:=(\{r*(s_{j_{1}},\dots,s_{j_{p}}):r\in R,s\in S,\forall i,j,(N_{i}=M_{j}\implies r_{i}=s_{j})\},T*U,N*M). +R\hexstar S:=(\{r*(s_{j_{1}},\dots,s_{j_{p}})\mid r\in R,s\in S,\forall i,j,(N_{i}=M_{j}\implies r_{i}=s_{j})\},T*U,N*M).  \]  \end_inset @@ -4836,7 +4836,7 @@ reunión externa izquierda  \end_inset   como  -\begin_inset Formula $R]\bowtie_{C}S:=R\bowtie_{C}S\cup(\{r\in R:\nexists s\in S:C(r,s)\}\times N_{m})$ +\begin_inset Formula $R]\bowtie_{C}S:=R\bowtie_{C}S\cup(\{r\in R\mid \nexists s\in S\mid C(r,s)\}\times N_{m})$  \end_inset  , la  @@ -4844,7 +4844,7 @@ reunión externa izquierda  reunión externa derecha  \series default   como  -\begin_inset Formula $R\bowtie[_{C}S:=R\bowtie_{C}S\cup(N_{n}\times\{s\in S:\nexists r\in R:C(r,s)\})$ +\begin_inset Formula $R\bowtie[_{C}S:=R\bowtie_{C}S\cup(N_{n}\times\{s\in S\mid \nexists r\in R\mid C(r,s)\})$  \end_inset   y la  @@ -4870,7 +4870,7 @@ División  , entonces   \begin_inset Formula   \[ -R\div S:=(\{r:\forall s\in S,r*s\in R\},(T_{1},\dots,T_{n}),(N_{1},\dots,N_{n})). +R\div S:=(\{r\mid \forall s\in S,r*s\in R\},(T_{1},\dots,T_{n}),(N_{1},\dots,N_{n})).  \]  \end_inset @@ -5220,7 +5220,7 @@ segura  \end_inset   se refiere al conjunto  -\begin_inset Formula $\{T:t_{1},\dots,t_{n}\in\bigcup_{n\in\mathbb{N}}D^{n}\land\text{COND}(t_{1},\dots,t_{n})\}$ +\begin_inset Formula $\{T\mid t_{1},\dots,t_{n}\in\bigcup_{n\in\mathbb{N}}D^{n}\land\text{COND}(t_{1},\dots,t_{n})\}$  \end_inset  . | 
