diff options
Diffstat (limited to 'ealg/n2.lyx')
| -rw-r--r-- | ealg/n2.lyx | 1615 | 
1 files changed, 1601 insertions, 14 deletions
| diff --git a/ealg/n2.lyx b/ealg/n2.lyx index e3050d9..43616ba 100644 --- a/ealg/n2.lyx +++ b/ealg/n2.lyx @@ -151,7 +151,7 @@ de cuerpos  \end_inset  , que representamos como  -\begin_inset Formula $K\subset L$ +\begin_inset Formula $K\subseteq L$  \end_inset  ,  @@ -171,11 +171,11 @@ de cuerpos  \begin_layout Standard  Algunas extensiones son  -\begin_inset Formula $\mathbb{Q}\subset\mathbb{R}$ +\begin_inset Formula $\mathbb{Q}\subseteq\mathbb{R}$  \end_inset  ,  -\begin_inset Formula $\mathbb{R}\subset\mathbb{C}$ +\begin_inset Formula $\mathbb{R}\subseteq\mathbb{C}$  \end_inset   y, para todo cuerpo  @@ -183,7 +183,7 @@ Algunas extensiones son  \end_inset  ,  -\begin_inset Formula $K\subset K(X)$ +\begin_inset Formula $K\subseteq K(X)$  \end_inset  , donde  @@ -196,29 +196,47 @@ Algunas extensiones son  .   Otras son  -\begin_inset Formula $\mathbb{Q}\subset\mathbb{Q}[\sqrt{m}]$ +\begin_inset Formula $\mathbb{Q}\subseteq\mathbb{Q}[\sqrt{m}]$  \end_inset   para   \begin_inset Formula $m\in\mathbb{Z}$  \end_inset - no cuadrado y  -\begin_inset Formula $\mathbb{Q}\subset\mathbb{Q}[i]$ + no cuadrado, incluyendo  +\begin_inset Formula $\mathbb{Q}[i]$  \end_inset  . - En ef -\begin_inset Note Note -status open + En efecto, es claro que  +\begin_inset Formula $\mathbb{Q}[\sqrt{m}]$ +\end_inset -\begin_layout Plain Layout -a.pdf::27 -\end_layout + es cerrado para restas y productos, y para inversos, sean  +\begin_inset Formula $a,b\in\mathbb{Q}$ +\end_inset + + con  +\begin_inset Formula $a+b\sqrt{m}\neq0$ +\end_inset + +, entonces  +\begin_inset Formula $c:=(a+b\sqrt{m})(a-b\sqrt{m})=a^{2}-mb^{2}\in\mathbb{Q}\setminus0$ +\end_inset + +, pues  +\begin_inset Formula $m$ +\end_inset + no es racional, y entonces  +\begin_inset Formula $\frac{a}{c}-\frac{b}{c}\sqrt{m}\in\mathbb{Q}[\sqrt{m}]$  \end_inset + es el inverso de  +\begin_inset Formula $a+b\sqrt{m}$ +\end_inset +.  \end_layout  \begin_layout Standard @@ -238,7 +256,27 @@ sremember{GyA}  \end_layout  \begin_layout Standard -Sea  +Llamamos  +\series bold +subanillo primo +\series default + de  +\begin_inset Formula $A$ +\end_inset + + a  +\begin_inset Formula $\mathbb{Z}1:=\{n1_{A}\}_{n\in\mathbb{Z}}$ +\end_inset + +, el menor subanillo de  +\begin_inset Formula $A$ +\end_inset + +. +\end_layout + +\begin_layout Standard +[...] Sea   \begin_inset Formula $K$  \end_inset @@ -279,6 +317,91 @@ subcuerpo primo  \end_inset   en caso contrario. +  +\series bold +Demostración: +\series default + Si la característica es un primo  +\begin_inset Formula $p$ +\end_inset + +, el subanillo primo de  +\begin_inset Formula $K$ +\end_inset + +, isomorfo a  +\begin_inset Formula $\mathbb{Z}_{p}$ +\end_inset + +, es un cuerpo y contiene a cualquier subanillo de  +\begin_inset Formula $K$ +\end_inset + + [...]. + En otro caso [...] la característica es 0, por lo que  +\begin_inset Formula $f:\mathbb{Z}\to K$ +\end_inset + + dado por  +\begin_inset Formula $f(n):=n1$ +\end_inset + + es un homomorfismo inyectivo y la propiedad universal nos da un homomorfismo +  +\begin_inset Formula $\tilde{f}:Q(\mathbb{Z})=\mathbb{Q}\to K$ +\end_inset + + dado por  +\begin_inset Formula $f(\frac{n}{m})=f(n)f(m)^{-1}$ +\end_inset + +. + Es claro entonces que  +\begin_inset Formula $K':=\tilde{f}(\mathbb{Q})$ +\end_inset + + es isomorfo a  +\begin_inset Formula $\mathbb{Q}$ +\end_inset + +, y queda ver que está contenido en cualquier subcuerpo de  +\begin_inset Formula $K$ +\end_inset + +. + Dado un tal  +\begin_inset Formula $F$ +\end_inset + +, para  +\begin_inset Formula $m\in\mathbb{Z}$ +\end_inset + +,  +\begin_inset Formula $f(m)=m1\in F$ +\end_inset + +, y para  +\begin_inset Formula $n\in\mathbb{Z}\setminus\{0\}$ +\end_inset + +,  +\begin_inset Formula $f(n)\neq0$ +\end_inset + + y  +\begin_inset Formula $f(n)^{-1}\in F$ +\end_inset + +, luego  +\begin_inset Formula $\tilde{f}(\frac{m}{n})=f(m)f(n)^{-1}\in F$ +\end_inset + +, y en resumen  +\begin_inset Formula $\tilde{f}(\mathbb{Q})\subseteq F$ +\end_inset + +.  \end_layout  \begin_layout Standard @@ -297,5 +420,1469 @@ eremember  \end_layout +\begin_layout Section +Grado de una extensión +\end_layout + +\begin_layout Standard +Si  +\begin_inset Formula $K\subseteq L$ +\end_inset + + es una extensión de cuerpos,  +\begin_inset Formula $L$ +\end_inset + + es un  +\begin_inset Formula $K$ +\end_inset + +-espacio vectorial con la suma y el producto por escalares dados por la + suma y el producto en  +\begin_inset Formula $L$ +\end_inset + +, y  +\begin_inset Formula $K$ +\end_inset + + es un subespacio de  +\begin_inset Formula $L$ +\end_inset + +. + Llamamos  +\series bold +grado +\series default + de  +\begin_inset Formula $K\subseteq L$ +\end_inset + + a  +\begin_inset Formula $[L:K]:=\dim_{K}L$ +\end_inset + +, la dimensión de  +\begin_inset Formula $L$ +\end_inset + + como  +\begin_inset Formula $K$ +\end_inset + +-espacio vectorial. +  +\begin_inset Formula $K\subseteq L$ +\end_inset + + es  +\series bold +finita +\series default + o  +\series bold +infinita +\series default + según lo sea  +\begin_inset Formula $[L:K]$ +\end_inset + +. + Entonces: +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $[L:K]=1\iff L=K$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Enumerate +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\implies]$ +\end_inset + + +\end_layout + +\end_inset + +Si hubiera  +\begin_inset Formula $\alpha\in L\setminus K$ +\end_inset + +, como  +\begin_inset Formula $\alpha\notin K=\text{span}\{1\}$ +\end_inset + +,  +\begin_inset Formula $\alpha$ +\end_inset + + y 1 son linealmente independientes y  +\begin_inset Formula $\text{span}\{1,\alpha\}\subseteq L$ +\end_inset + +, luego  +\begin_inset Formula $[L:K]\geq2\#$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Enumerate +\begin_inset Formula $[\mathbb{C}:\mathbb{R}]=2$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Standard +Tomando la base  +\begin_inset Formula $(1,i)$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Enumerate +Para  +\begin_inset Formula $m\in\mathbb{Z}$ +\end_inset + + no cuadrado,  +\begin_inset Formula $[\mathbb{Q}[\sqrt{m}]:\mathbb{Q}]=2$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Standard +Tomando la base  +\begin_inset Formula $(1,\sqrt{m})$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Enumerate +\begin_inset Formula $\mathbb{Q}\subseteq\mathbb{R}$ +\end_inset + + es infinita. +\end_layout + +\begin_deeper +\begin_layout Standard +Si fuera  +\begin_inset Formula $[\mathbb{R}:\mathbb{Q}]=:n<+\infty$ +\end_inset + +, habría un isomorfismo de espacios vectoriales  +\begin_inset Formula $\mathbb{R}\cong\mathbb{Q}^{n}$ +\end_inset + + y  +\begin_inset Formula $\mathbb{R}$ +\end_inset + + sería numerable. +\begin_inset Formula $\#$ +\end_inset + + +\end_layout + +\end_deeper +\begin_layout Enumerate +\begin_inset Formula $K\subseteq K(X)$ +\end_inset + + es infinita. +\end_layout + +\begin_deeper +\begin_layout Standard +\begin_inset Formula $\{X^{n}\}_{n\in\mathbb{N}}$ +\end_inset + + es infinito y linealmente independiente sobre  +\begin_inset Formula $K$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Standard +Dadas dos extensiones  +\begin_inset Formula $K\subseteq L$ +\end_inset + + y  +\begin_inset Formula $L\subseteq M$ +\end_inset + +,  +\begin_inset Formula $[M:K]=[M:L][L:K]$ +\end_inset + +. + En particular, si  +\begin_inset Formula $K\subseteq L$ +\end_inset + + y  +\begin_inset Formula $L\subseteq M$ +\end_inset + + son finitas, entonces  +\begin_inset Formula $[M:L],[L:K]\mid[M:K]$ +\end_inset + +. +  +\series bold +Demostración: +\series default + Sean  +\begin_inset Formula $(u_{i})_{i\in I}$ +\end_inset + + una base de  +\begin_inset Formula $M$ +\end_inset + + sobre  +\begin_inset Formula $L$ +\end_inset + + y  +\begin_inset Formula $(v_{j})_{j\in J}$ +\end_inset + + una de  +\begin_inset Formula $L$ +\end_inset + + sobre  +\begin_inset Formula $K$ +\end_inset + +, todo  +\begin_inset Formula $\alpha\in M$ +\end_inset + + se expresa de forma única como  +\begin_inset Formula $\alpha=:\sum_{i\in I}a_{i}u_{i}$ +\end_inset + + con los  +\begin_inset Formula $a_{i}\in L$ +\end_inset + +, y cada  +\begin_inset Formula $a_{i}$ +\end_inset + + se expresa de forma única como  +\begin_inset Formula $a_{i}=:\sum_{j\in J}c_{ij}v_{j}$ +\end_inset + + con los  +\begin_inset Formula $c_{ij}\in K$ +\end_inset + +, luego  +\begin_inset Formula $\alpha=\sum_{(i,j)\in I\times J}c_{ij}u_{i}v_{j}$ +\end_inset + +. + Pero agrupando, esta descomposición es única, luego  +\begin_inset Formula $(u_{i}v_{j})_{(i,j)\in I\times J}$ +\end_inset + + es base de  +\begin_inset Formula $M$ +\end_inset + + sobre  +\begin_inset Formula $K$ +\end_inset + + y  +\begin_inset Formula $[M:K]=|I\times J|=|I||J|=[M:L][L:K]$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Así, si  +\begin_inset Formula $K\subseteq L$ +\end_inset + + tiene grado finito y primo, no hay ningún cuerpo intermedio entre ellos. + En efecto, sea  +\begin_inset Formula $E$ +\end_inset + + un cuerpo con  +\begin_inset Formula $K\subseteq E\subseteq L$ +\end_inset + +, como  +\begin_inset Formula $[L:K]=[L:E][E:K]$ +\end_inset + + es primo, bien  +\begin_inset Formula $[L:E]=1$ +\end_inset + + o  +\begin_inset Formula $[E:K]=1$ +\end_inset + +, luego  +\begin_inset Formula $E\in\{K,L\}$ +\end_inset + +. + En particular no hay ningún cuerpo entre  +\begin_inset Formula $\mathbb{R}$ +\end_inset + + y  +\begin_inset Formula $\mathbb{C}$ +\end_inset + +. +\end_layout + +\begin_layout Section +Extensiones generadas y admisibles +\end_layout + +\begin_layout Standard +Dado un conjunto  +\begin_inset Formula ${\cal C}$ +\end_inset + +, la unión  +\begin_inset Formula $\bigcup{\cal C}$ +\end_inset + + es una  +\series bold +unión dirigida +\series default + si para  +\begin_inset Formula $A,B\in{\cal C}$ +\end_inset + + existe  +\begin_inset Formula $C\in{\cal C}$ +\end_inset + + con  +\begin_inset Formula $A,B\subseteq C$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Dados una extensión de cuerpos  +\begin_inset Formula $K\subseteq L$ +\end_inset + + y un  +\begin_inset Formula $S\subseteq L$ +\end_inset + +, llamamos  +\begin_inset Formula $K[S]$ +\end_inset + + al conjunto de expresiones polinómicas de elementos de  +\begin_inset Formula $S$ +\end_inset + + con coeficientes en  +\begin_inset Formula $K$ +\end_inset + +, es decir, la unión dirigida  +\begin_inset Formula $\bigcup_{\{\alpha_{1},\dots,\alpha_{k}\}\subseteq S}K[\alpha_{1},\dots,\alpha_{k}]$ +\end_inset + +, que es el menor subanillo de  +\begin_inset Formula $L$ +\end_inset + + que contiene a  +\begin_inset Formula $K\cup S$ +\end_inset + +, es decir, la intersección de todos estos subanillos. +\begin_inset Note Comment +status open + +\begin_layout Plain Layout +En efecto, todo subanillo de  +\begin_inset Formula $L$ +\end_inset + + que contenga a  +\begin_inset Formula $K\cup S$ +\end_inset + + contendrá a los  +\begin_inset Formula $K[\alpha_{1},\dots,\alpha_{k}]$ +\end_inset + + con  +\begin_inset Formula $\{\alpha_{1},\dots,\alpha_{k}\}\in S$ +\end_inset + +,  +\begin_inset Formula $1\in K[S]$ +\end_inset + + y claramente  +\begin_inset Formula $K[S]$ +\end_inset + + es cerrado por restas y productos. +\begin_inset Foot +status open + +\begin_layout Plain Layout +Sean  +\begin_inset Formula $a:=\sum_{i\in I}a_{i}\alpha_{1}^{i_{1}}\cdots\alpha_{p}^{i_{p}},b:=\sum_{j\in J}b_{i}\beta_{1}^{j_{1}}\cdots\beta_{q}^{i_{q}}\in K(S)$ +\end_inset + +, con  +\begin_inset Formula $\alpha_{1},\dots,\alpha_{p},\beta_{1},\dots,\beta_{q}\in S$ +\end_inset + +,  +\begin_inset Formula $I\subseteq\mathbb{N}^{p}$ +\end_inset + + y  +\begin_inset Formula $J\subseteq\mathbb{N}^{q}$ +\end_inset + + finitos y  +\begin_inset Formula $a_{i},b_{j}\in S$ +\end_inset + + para  +\begin_inset Formula $i\in I$ +\end_inset + + y  +\begin_inset Formula $j\in J$ +\end_inset + +. + Entonces  +\begin_inset Formula $a-b=\sum_{i\in I}a_{i}\alpha_{1}^{i_{1}}\cdots\alpha_{p}^{i_{p}}-\sum_{j\in J}b_{i}\beta_{1}^{j_{1}}\cdots\beta_{q}^{j_{q}}\in K[\alpha_{1},\dots,\alpha_{p},\beta_{1},\dots,\beta_{q}]\subseteq S$ +\end_inset + + y  +\begin_inset Formula $ab=\sum_{(i,j)\in I\times J}a_{i}b_{j}\alpha_{1}^{i_{1}}\cdots\alpha_{p}^{i_{p}}\beta_{1}^{j_{1}}\cdots\beta_{q}^{j_{q}}\in K[\alpha_{1},\dots,\alpha_{p},\beta_{1},\dots,\beta_{q}]\subseteq S$ +\end_inset + +. +\end_layout + +\end_inset + + +\end_layout + +\end_inset + +  +\begin_inset Formula $K[S]$ +\end_inset + + es un dominio +\begin_inset Note Comment +status open + +\begin_layout Plain Layout +, pues es un subanillo del cuerpo  +\begin_inset Formula $L$ +\end_inset + + +\end_layout + +\end_inset + +. +\end_layout + +\begin_layout Standard +Llamamos  +\begin_inset Formula $K(S)$ +\end_inset + + al cuerpo de fracciones de  +\begin_inset Formula $K(S)$ +\end_inset + +, que es la unión dirigida  +\begin_inset Formula $\bigcup_{\{\alpha_{1},\dots,\alpha_{k}\}\subseteq S}K(\alpha_{1},\dots,\alpha_{k})$ +\end_inset + +, donde  +\begin_inset Formula $K(\alpha_{1},\dots,\alpha_{k})$ +\end_inset + + es el cuerpo de fracciones de  +\begin_inset Formula $K[\alpha_{1},\dots,\alpha_{k}]$ +\end_inset + +. +  +\begin_inset Formula $K(S)$ +\end_inset + + es el menor subcuerpo de  +\begin_inset Formula $L$ +\end_inset + + que contiene a  +\begin_inset Formula $K\cup S$ +\end_inset + +, es decir, la intersección de todos ellos. +\begin_inset Note Comment +status open + +\begin_layout Plain Layout +En efecto,  +\begin_inset Formula $K(S)$ +\end_inset + + es un cuerpo de fracciones y todo subcuerpo que contenga a  +\begin_inset Formula $K\cup S$ +\end_inset + + contendrá a  +\begin_inset Formula $K[S]$ +\end_inset + + y por tanto a  +\begin_inset Formula $K(S)$ +\end_inset + +, aplicando la propiedad universal del cuerpo de fracciones a la inclusión +  +\begin_inset Formula $K[S]\to L$ +\end_inset + +. +\end_layout + +\end_inset + + Claramente  +\begin_inset Formula $K(S)=K[S]$ +\end_inset + + si y solo si  +\begin_inset Formula $K[S]$ +\end_inset + + es un cuerpo. +\end_layout + +\begin_layout Standard +Dos extensiones  +\begin_inset Formula $K\subseteq E_{1}$ +\end_inset + + y  +\begin_inset Formula $K\subseteq E_{2}$ +\end_inset + + son  +\series bold +admisibles +\series default + si  +\begin_inset Formula $E_{1}$ +\end_inset + + y  +\begin_inset Formula $E_{2}$ +\end_inset + + son subcuerpos de un mismo cuerpo  +\begin_inset Formula $L$ +\end_inset + +, y  +\begin_inset Formula $E_{1}\cap E_{2}$ +\end_inset + + es un cuerpo. + Llamamos  +\series bold +compuesto +\series default + de  +\begin_inset Formula $E_{1}$ +\end_inset + + y  +\begin_inset Formula $E_{2}$ +\end_inset + + a  +\begin_inset Formula $K(E_{1}\cup E_{2})=E_{1}(E_{2})=E_{2}(E_{1})$ +\end_inset + +, de modo que tenemos las extensiones  +\begin_inset Formula  +\[ +K\subseteq E_{1}\cap E_{2}\subseteq E_{1},E_{2}\subseteq E_{1}E_{2}\subseteq L. +\] + +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset Note Comment +status open + +\begin_layout Plain Layout +Sean  +\begin_inset Formula $p,q\in\mathbb{N}$ +\end_inset + + primos,  +\begin_inset Formula $\mathbb{Q}\subseteq\mathbb{Q}[\sqrt{p}]$ +\end_inset + + y  +\begin_inset Formula $\mathbb{Q}\subseteq\mathbb{Q}[\sqrt{q}]$ +\end_inset + + son admisibles y +\begin_inset Formula  +\[ +\mathbb{Q}[\sqrt{p}]\mathbb{Q}[\sqrt{q}]=\{a+b\sqrt{p}+c\sqrt{q}+d\sqrt{pq}\}_{a,b,c,d\in\mathbb{Q}}=\mathbb{Q}(\sqrt{p}+\sqrt{q}). +\] + +\end_inset + + +\series bold +Demostración: +\series default +  +\begin_inset Note Note +status open + +\begin_layout Plain Layout +TODO Hay que hacer mierdas de irreducibles para que salga bien, a.pdf::29. +\end_layout + +\end_inset + + +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Section +Grupos de Galois +\end_layout + +\begin_layout Standard +Dadas  +\begin_inset Formula $K\subseteq L$ +\end_inset + + y  +\begin_inset Formula $K\subseteq L'$ +\end_inset + +, un  +\series bold + +\begin_inset Formula $K$ +\end_inset + +-encaje +\series default + o  +\series bold + +\begin_inset Formula $K$ +\end_inset + +-homomorfismo +\series default + es un homomorfismo de anillos  +\begin_inset Formula $\sigma:L\to L'$ +\end_inset + + con  +\begin_inset Formula $\sigma|_{K}=1_{K}$ +\end_inset + +. + Entonces  +\begin_inset Formula $\sigma$ +\end_inset + + es  +\begin_inset Formula $K$ +\end_inset + +-lineal e inyectivo. + En efecto, sean  +\begin_inset Formula $r\in K$ +\end_inset + + y  +\begin_inset Formula $\alpha,\beta\in L$ +\end_inset + +,  +\begin_inset Formula $\sigma(\alpha+\beta)=\sigma(\alpha)+\sigma(\beta)$ +\end_inset + + y  +\begin_inset Formula $\sigma(r\alpha)=\sigma(r)\sigma(\alpha)=r\sigma(\alpha)$ +\end_inset + +, y  +\begin_inset Formula $\sigma$ +\end_inset + + es inyectivo como todo homomorfismo que parte de un cuerpo. + Si además  +\begin_inset Formula $\sigma$ +\end_inset + + es suprayectivo, es un  +\series bold + +\begin_inset Formula $K$ +\end_inset + +-isomorfismo +\series default + y  +\begin_inset Formula $K\subseteq L$ +\end_inset + + y  +\begin_inset Formula $K\subseteq L'$ +\end_inset + + son extensiones  +\series bold + +\begin_inset Formula $K$ +\end_inset + +-isomorfas +\series default +. +\end_layout + +\begin_layout Standard +Si  +\begin_inset Formula $K\subseteq L$ +\end_inset + + y  +\begin_inset Formula $K\subseteq L'$ +\end_inset + + son extensiones finitas y  +\begin_inset Formula $\sigma:L\to L'$ +\end_inset + + es un  +\begin_inset Formula $K$ +\end_inset + +-encaje, entonces  +\begin_inset Formula $[L:K]\mid[L':K]$ +\end_inset + +, con igualdad si y solo si  +\begin_inset Formula $\sigma$ +\end_inset + + es un  +\begin_inset Formula $K$ +\end_inset + +-isomorfismo. + En efecto,  +\begin_inset Formula $K=\sigma(K)\subseteq\sigma(L)\subseteq L'$ +\end_inset + + y se tiene  +\begin_inset Formula $[\sigma(L):K]\mid[L':K]$ +\end_inset + +, con igualdad si y solo si  +\begin_inset Formula $[L':\sigma(L)]=1$ +\end_inset + +, si y solo si  +\begin_inset Formula $L'=\sigma(L)$ +\end_inset + +, y  +\begin_inset Formula $[L:K]=[\sigma(L):K]$ +\end_inset + + porque  +\begin_inset Formula $\sigma:L\to\sigma(L)$ +\end_inset + + es un isomorfismo de espacios vectoriales. +\end_layout + +\begin_layout Standard +Así, dos extensiones finitas  +\begin_inset Formula $K$ +\end_inset + +-isomorfas tienen el mismo grado. + El recíproco no es cierto. + Por ejemplo,  +\begin_inset Formula $[\mathbb{Q}(i):\mathbb{Q}]=[\mathbb{Q}(\sqrt{2}):\mathbb{Q}]=2$ +\end_inset + +, pero si hubiese un  +\begin_inset Formula $\mathbb{Q}$ +\end_inset + +-isomorfismo  +\begin_inset Formula $\sigma:\mathbb{Q}(i)\to\mathbb{Q}(\sqrt{2})$ +\end_inset + + sería  +\begin_inset Formula $\sigma(i)\in\mathbb{Q}(\sqrt{2})\subseteq\mathbb{R}$ +\end_inset + + y  +\begin_inset Formula $\sigma(i)^{2}=\sigma(i^{2})=\sigma(-1)=-1\#$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Un  +\series bold + +\begin_inset Formula $K$ +\end_inset + +-automorfismo +\series default + de una extensión  +\begin_inset Formula $K\subseteq L$ +\end_inset + + es un  +\begin_inset Formula $K$ +\end_inset + +-isomorfismo  +\begin_inset Formula $L\to L$ +\end_inset + +. + El conjunto de todos los  +\begin_inset Formula $K$ +\end_inset + +-automorfismos en  +\begin_inset Formula $L$ +\end_inset + + es un grupo con la composición de aplicaciones y con elemento neutro  +\begin_inset Formula $1_{L}$ +\end_inset + +, llamado  +\series bold +grupo de Galois +\series default + de  +\begin_inset Formula $L$ +\end_inset + + sobre  +\begin_inset Formula $K$ +\end_inset + + o de la extensión  +\begin_inset Formula $K\subseteq L$ +\end_inset + +, y denotado  +\begin_inset Formula $\text{Gal}(L/K)$ +\end_inset + + o  +\begin_inset Formula $\text{Aut}_{K}(L)$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Ejemplos: +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\text{Gal}(K/K)=\{1_{L}\}$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\text{Gal}(\mathbb{C}/\mathbb{R})=\{1_{L},(z\mapsto\overline{z})\}\cong C_{2}$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Standard +Sea  +\begin_inset Formula $\sigma\in\text{Gal}(\mathbb{C}/\mathbb{R})$ +\end_inset + +, como  +\begin_inset Formula $(1,i)$ +\end_inset + + es base de  +\begin_inset Formula $\mathbb{C}$ +\end_inset + + sobre  +\begin_inset Formula $\mathbb{R}$ +\end_inset + + y  +\begin_inset Formula $\sigma(1)=1$ +\end_inset + +, basta ver cómo actúa  +\begin_inset Formula $\sigma(i)$ +\end_inset + +, pero  +\begin_inset Formula $\sigma(i)^{2}=\sigma(i^{2})=\sigma(-1)=-1$ +\end_inset + + y por tanto  +\begin_inset Formula $\sigma(i)\in\{\pm i\}$ +\end_inset + +, de modo que o bien  +\begin_inset Formula $\sigma(i)=i$ +\end_inset + + y  +\begin_inset Formula $\sigma=1_{L}$ +\end_inset + + o  +\begin_inset Formula $\sigma(i)=-i$ +\end_inset + + y  +\begin_inset Formula $\sigma$ +\end_inset + + es la conjugación. + Finalmente, el único grupo de 2 elementos es  +\begin_inset Formula $C_{2}$ +\end_inset + + y por tanto  +\begin_inset Formula $\text{Gal}(\mathbb{C}/\mathbb{R})\cong C_{2}$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +sremember{GyA} +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Si  +\begin_inset Formula $D$ +\end_inset + + es un DIP y  +\begin_inset Formula $a\in D\setminus(D^{*}\cup\{0\})$ +\end_inset + +,  +\begin_inset Formula $a$ +\end_inset + + es irreducible si y solo si  +\begin_inset Formula $(a)$ +\end_inset + + es un ideal maximal, si y solo si  +\begin_inset Formula $\frac{A}{(a)}$ +\end_inset + + es un cuerpo +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +eremember +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard + +\series bold +Teorema de Kronecker: +\series default + Sean  +\begin_inset Formula $K$ +\end_inset + + un cuerpo y  +\begin_inset Formula $f\in K[X]\setminus K$ +\end_inset + +, existe una extensión  +\begin_inset Formula $L$ +\end_inset + + de  +\begin_inset Formula $K$ +\end_inset + + en la que  +\begin_inset Formula $f$ +\end_inset + + tiene una raíz. + Si  +\begin_inset Formula $g$ +\end_inset + + es un factor irreducible de  +\begin_inset Formula $f$ +\end_inset + +, la extensión podría ser  +\begin_inset Formula $K[X]/(g)$ +\end_inset + + y una raíz es  +\begin_inset Formula $X+(g)$ +\end_inset + +. +\begin_inset Foot +status open + +\begin_layout Plain Layout +Para esto se usa el transporte de estructuras. + Sea  +\begin_inset Formula $\varphi:K\to(L_{0}:=K[X]/(g))$ +\end_inset + + el homomorfismo  +\begin_inset Formula $\varphi(a):=a+(g)$ +\end_inset + +, definimos  +\begin_inset Formula $L:=K\amalg(L_{0}\setminus\varphi(K))$ +\end_inset + + y las operaciones en  +\begin_inset Formula $L$ +\end_inset + +  +\begin_inset Formula $a+b:=\psi^{-1}(\psi(a)+\psi(b))$ +\end_inset + + y  +\begin_inset Formula $ab:=(\psi(a)\psi(b))$ +\end_inset + +, donde  +\begin_inset Formula $\psi:L\to L_{0}$ +\end_inset + + viene dado por  +\begin_inset Formula $\psi(a):=\varphi(a)$ +\end_inset + + para  +\begin_inset Formula $a\in K$ +\end_inset + + y  +\begin_inset Formula $\psi(a):=a$ +\end_inset + + para  +\begin_inset Formula $a\in L_{0}\setminus\varphi(K)$ +\end_inset + +. + Esto nos da una  +\begin_inset Quotes cld +\end_inset + +copia +\begin_inset Quotes crd +\end_inset + + de  +\begin_inset Formula $L_{0}$ +\end_inset + + que es una extensión de  +\begin_inset Formula $K$ +\end_inset + +. +\end_layout + +\end_inset + +  +\series bold +Demostración: +\series default + Como  +\begin_inset Formula $K[X]$ +\end_inset + + es un DFU y  +\begin_inset Formula $f\notin K$ +\end_inset + +,  +\begin_inset Formula $f$ +\end_inset + + tiene un factor irreducible  +\begin_inset Formula $g$ +\end_inset + + y las raíces de  +\begin_inset Formula $g$ +\end_inset + + lo serán de  +\begin_inset Formula $f$ +\end_inset + +. + Al ser  +\begin_inset Formula $g$ +\end_inset + + irreducible en el DIP  +\begin_inset Formula $K[X]$ +\end_inset + +,  +\begin_inset Formula $L:=K[X]/(g)$ +\end_inset + + es un cuerpo. + Como la inclusión  +\begin_inset Formula $i:K\to K[X]$ +\end_inset + + y la proyección  +\begin_inset Formula $[\cdot]:K[X]\to L$ +\end_inset + + son homomorfismos y  +\begin_inset Formula $[\cdot]\circ i$ +\end_inset + + es inyectivo por ser  +\begin_inset Formula $K$ +\end_inset + + un cuerpo, podemos identificar  +\begin_inset Formula $a\in K$ +\end_inset + + con  +\begin_inset Formula $[i(a)]\in L$ +\end_inset + + y  +\begin_inset Formula $K\subseteq L$ +\end_inset + +, de modo que, usando la evaluación  +\begin_inset Formula $S_{\alpha}:K[X]\to L$ +\end_inset + + y que  +\begin_inset Formula $[\cdot]$ +\end_inset + + es un homomorfismo,  +\begin_inset Formula  +\[ +S_{\alpha}(g)=g(\alpha)=g([X])=\sum_{i}g_{i}[X]^{i}=\left[\sum_{i}g_{i}X^{i}\right]=[g]=[0]. +\] + +\end_inset + + +\end_layout + +\begin_layout Standard +Por inducción, dados un cuerpo  +\begin_inset Formula $K$ +\end_inset + + y  +\begin_inset Formula $f\in K[X]\setminus K$ +\end_inset + +, existe una extensión  +\begin_inset Formula $L$ +\end_inset + + de  +\begin_inset Formula $K$ +\end_inset + + en la que  +\begin_inset Formula $f$ +\end_inset + + tiene todas sus raíces. +\end_layout + +\begin_layout Section +Extensiones algebraicas +\end_layout + +\begin_layout Standard +Sean  +\begin_inset Formula $K\subseteq L$ +\end_inset + + una extensión y  +\begin_inset Formula $\alpha\in L$ +\end_inset + +: +\end_layout + +\begin_layout Enumerate +Si  +\begin_inset Formula $\alpha$ +\end_inset + + es algebraico sobre  +\begin_inset Formula $K$ +\end_inset + +, también lo es sobre cualquier cuerpo entre  +\begin_inset Formula $K$ +\end_inset + + y  +\begin_inset Formula $L$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Standard +Un  +\begin_inset Formula $f\in K[X]\setminus0$ +\end_inset + + con  +\begin_inset Formula $f(\alpha)=0$ +\end_inset + + sirve igual en el cuerpo intermedio. +\end_layout + +\end_deeper +\begin_layout Enumerate +\begin_inset Formula $\alpha$ +\end_inset + + es trascendente sobre  +\begin_inset Formula $K$ +\end_inset + + si y solo si  +\begin_inset Formula $\{\alpha^{n}\}_{n\in\mathbb{N}}$ +\end_inset + + es linealmente independiente sobre  +\begin_inset Formula $K$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Enumerate +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\implies]$ +\end_inset + + +\end_layout + +\end_inset + +Entonces  +\begin_inset Formula $K[X]\cong K[\alpha]$ +\end_inset + + por el isomorfismo de evaluación, que al ser un  +\begin_inset Formula $K$ +\end_inset + +-encaje es  +\begin_inset Formula $K$ +\end_inset + +-lineal, y como  +\begin_inset Formula $\{X^{n}\}_{n\in\mathbb{N}}$ +\end_inset + + es linealmente independiente sobre  +\begin_inset Formula $K$ +\end_inset + +,  +\begin_inset Formula $\{\alpha^{n}\}_{n\in\mathbb{N}}$ +\end_inset + + también lo es. +\end_layout + +\begin_layout Enumerate +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\impliedby]$ +\end_inset + + +\end_layout + +\end_inset + +Si  +\begin_inset Formula $\alpha$ +\end_inset + + fuera algebraico, existe  +\begin_inset Formula $f\in K[X]\setminus0$ +\end_inset + + con  +\begin_inset Formula $f(\alpha)=\sum_{i}f_{i}\alpha^{i}=0$ +\end_inset + + y esta es una dependencia lineal. +\begin_inset Formula $\#$ +\end_inset + + +\end_layout + +\end_deeper +\begin_layout Enumerate +\begin_inset Note Note +status open + +\begin_layout Plain Layout +a1::CUARENTAYDOS +\end_layout + +\end_inset + + +\end_layout +  \end_body  \end_document | 
