diff options
Diffstat (limited to 'ealg/n2.lyx')
| -rw-r--r-- | ealg/n2.lyx | 304 | 
1 files changed, 297 insertions, 7 deletions
| diff --git a/ealg/n2.lyx b/ealg/n2.lyx index b2edddd..49dbf78 100644 --- a/ealg/n2.lyx +++ b/ealg/n2.lyx @@ -3728,8 +3728,210 @@ grupo de Klein  \end_inset  . +\begin_inset Note Comment +status open + +\begin_layout Plain Layout +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +sremember{GyA} +\end_layout + +\end_inset + + +\begin_inset Note Note +status open + +\begin_layout Plain Layout +\begin_inset Note Comment +status open + +\begin_layout Plain Layout +Necesario para las demostraciones comentadas. +\end_layout + +\end_inset + + +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Plain Layout +Dado un grupo  +\begin_inset Formula $G$ +\end_inset + +, llamamos  +\series bold +exponente +\series default + o  +\series bold +periodo +\series default + de  +\begin_inset Formula $G$ +\end_inset + +,  +\begin_inset Formula $\text{Exp}(G)$ +\end_inset + +, al menor  +\begin_inset Formula $n\in\mathbb{N}^{*}$ +\end_inset + + tal que  +\begin_inset Formula $\forall g\in G,g^{n}=1$ +\end_inset + +, o a  +\begin_inset Formula $\infty$ +\end_inset + + si este no existe. + [...] Si un grupo es finito tiene periodo finito [...]. +\end_layout + +\begin_layout Plain Layout +[...] Una  +\series bold +descomposición primaria +\series default + o  +\series bold +indescomponible +\series default + de un grupo abeliano finito  +\begin_inset Formula $A$ +\end_inset + + es una expresión de la forma +\begin_inset Formula  +\begin{align*} +A= & \langle a_{11}\rangle_{p_{1}^{\alpha_{11}}}\oplus\dots\oplus\langle a_{1m_{1}}\rangle_{p_{1}^{\alpha_{1m_{1}}}}\oplus\\ + & \dots\oplus\\ + & \langle a_{k1}\rangle_{p_{k}^{\alpha_{k1}}}\oplus\dots\oplus\langle a_{km_{k}}\rangle_{p_{k}^{\alpha_{km_{k}}}}, +\end{align*} + +\end_inset + +donde  +\begin_inset Formula $p_{1}<\dots<p_{k}$ +\end_inset + + son los primos que dividen a  +\begin_inset Formula $|A|$ +\end_inset + + y  +\begin_inset Formula $\alpha_{i1}\geq\dots\geq\alpha_{im_{i}}\geq1$ +\end_inset + + para cada  +\begin_inset Formula $i\in\{1,\dots,k\}$ +\end_inset + +. +\end_layout + +\begin_layout Plain Layout +Como  +\series bold +teorema +\series default +, todo grupo abeliano tiene una descomposición primaria [...]. +\end_layout + +\begin_layout Plain Layout +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +eremember +\end_layout + +\end_inset + + +\end_layout + +\end_inset + + Para todo grupo finito  +\begin_inset Formula $G$ +\end_inset + +,  +\begin_inset Formula $\text{Exp}G\mid|G|$ +\end_inset + +, y en particular, para  +\begin_inset Formula $g\in G$ +\end_inset + +,  +\begin_inset Formula $g^{|G|}=1$ +\end_inset + +. +  +\begin_inset Note Comment +status open + +\begin_layout Plain Layout +En efecto,  +\begin_inset Formula $\text{Exp}G=\text{mcm}_{g\in G}|g|$ +\end_inset + +, pero como para todo  +\begin_inset Formula $g\in G$ +\end_inset + +,  +\begin_inset Formula $\langle g\rangle$ +\end_inset + + es un subgrupo de  +\begin_inset Formula $G$ +\end_inset + +,  +\begin_inset Formula $|g|\mid|G|$ +\end_inset + +, luego  +\begin_inset Formula $|G|$ +\end_inset + + es múltiplo de todo  +\begin_inset Formula $|g|$ +\end_inset + + y por tanto lo es de  +\begin_inset Formula $\text{Exp}G$ +\end_inset + +. +\end_layout + +\end_inset +   Dado un cuerpo  -\begin_inset Formula $K$ +\begin_inset Formula $K\neq0$  \end_inset  , todo subgrupo finito de  @@ -3746,6 +3948,98 @@ grupo de Klein  \end_inset   es cíclico. +\begin_inset Note Comment +status open + +\begin_layout Plain Layout + +\series bold +Demostración:  +\series default +Llamando  +\begin_inset Formula $m:=\text{Exp}K^{*}$ +\end_inset + +,  +\begin_inset Formula $K^{*}$ +\end_inset + + está formado por raíces de  +\begin_inset Formula $X^{m}-1$ +\end_inset + +, de modo que  +\begin_inset Formula $|K^{*}|\leq m$ +\end_inset + + y, como  +\begin_inset Formula $m\mid|K^{*}|>0$ +\end_inset + + ( +\begin_inset Formula $1\in K^{*}$ +\end_inset + +),  +\begin_inset Formula $m=|K^{*}|$ +\end_inset + +. + Entonces  +\begin_inset Formula $K^{*}$ +\end_inset + + tiene una descomposición primaria de la forma  +\begin_inset Formula $\langle a_{1}\rangle_{p_{1}^{\alpha_{1}}}\oplus\dots\oplus\langle a_{k}\rangle_{p_{k}^{\alpha_{k}}}$ +\end_inset + + con cada  +\begin_inset Formula $p_{i}$ +\end_inset + + distinto, pues si su descomposición primaria es  +\begin_inset Formula $\bigoplus_{i=1}^{k}\bigoplus_{j=1}^{m_{i}}\langle a_{ij}\rangle_{p_{i}^{\alpha_{ij}}}$ +\end_inset + +, el orden es  +\begin_inset Formula $\prod_{i,j}p_{i}^{\alpha_{ij}}$ +\end_inset + + y el exponente es  +\begin_inset Formula $\prod_{i}p_{i}^{\alpha_{i1}}$ +\end_inset + +, dado que  +\begin_inset Formula $p_{i}^{\alpha_{ij}}\mid p_{i}^{\alpha_{i1}}$ +\end_inset + + para todo  +\begin_inset Formula $j$ +\end_inset + +, y para que estos coincidan debe ser cada  +\begin_inset Formula $m_{i}=1$ +\end_inset + +. + Entonces el orden de  +\begin_inset Formula $a:=a_{1}+\dots+a_{k}$ +\end_inset + + es  +\begin_inset Formula $m$ +\end_inset + +, luego  +\begin_inset Formula $\langle a\rangle=K^{*}$ +\end_inset + + es cíclico. +\end_layout + +\end_inset + +  \end_layout  \begin_layout Standard @@ -4244,7 +4538,7 @@ status open  \begin_inset Formula $\alpha\in M$  \end_inset - y por tanto  + y   \begin_inset Formula $\alpha$  \end_inset @@ -4345,10 +4639,6 @@ Para  \end_layout  \end_deeper -\begin_layout Enumerate -Ser finitamente generada. -\end_layout -  \begin_layout Standard  Una propiedad relativa a extensiones es   \series bold @@ -4426,7 +4716,7 @@ LM=LK(\alpha_{1},\dots,\alpha_{n})=L(\alpha_{1},\dots,\alpha_{m}),  \end_inset - pues  +pues   \begin_inset Formula $LK(\alpha_{1},\dots,\alpha_{n})$  \end_inset | 
