aboutsummaryrefslogtreecommitdiff
path: root/ealg/n2.lyx
diff options
context:
space:
mode:
Diffstat (limited to 'ealg/n2.lyx')
-rw-r--r--ealg/n2.lyx304
1 files changed, 297 insertions, 7 deletions
diff --git a/ealg/n2.lyx b/ealg/n2.lyx
index b2edddd..49dbf78 100644
--- a/ealg/n2.lyx
+++ b/ealg/n2.lyx
@@ -3728,8 +3728,210 @@ grupo de Klein
\end_inset
.
+\begin_inset Note Comment
+status open
+
+\begin_layout Plain Layout
+\begin_inset ERT
+status open
+
+\begin_layout Plain Layout
+
+
+\backslash
+sremember{GyA}
+\end_layout
+
+\end_inset
+
+
+\begin_inset Note Note
+status open
+
+\begin_layout Plain Layout
+\begin_inset Note Comment
+status open
+
+\begin_layout Plain Layout
+Necesario para las demostraciones comentadas.
+\end_layout
+
+\end_inset
+
+
+\end_layout
+
+\end_inset
+
+
+\end_layout
+
+\begin_layout Plain Layout
+Dado un grupo
+\begin_inset Formula $G$
+\end_inset
+
+, llamamos
+\series bold
+exponente
+\series default
+ o
+\series bold
+periodo
+\series default
+ de
+\begin_inset Formula $G$
+\end_inset
+
+,
+\begin_inset Formula $\text{Exp}(G)$
+\end_inset
+
+, al menor
+\begin_inset Formula $n\in\mathbb{N}^{*}$
+\end_inset
+
+ tal que
+\begin_inset Formula $\forall g\in G,g^{n}=1$
+\end_inset
+
+, o a
+\begin_inset Formula $\infty$
+\end_inset
+
+ si este no existe.
+ [...] Si un grupo es finito tiene periodo finito [...].
+\end_layout
+
+\begin_layout Plain Layout
+[...] Una
+\series bold
+descomposición primaria
+\series default
+ o
+\series bold
+indescomponible
+\series default
+ de un grupo abeliano finito
+\begin_inset Formula $A$
+\end_inset
+
+ es una expresión de la forma
+\begin_inset Formula
+\begin{align*}
+A= & \langle a_{11}\rangle_{p_{1}^{\alpha_{11}}}\oplus\dots\oplus\langle a_{1m_{1}}\rangle_{p_{1}^{\alpha_{1m_{1}}}}\oplus\\
+ & \dots\oplus\\
+ & \langle a_{k1}\rangle_{p_{k}^{\alpha_{k1}}}\oplus\dots\oplus\langle a_{km_{k}}\rangle_{p_{k}^{\alpha_{km_{k}}}},
+\end{align*}
+
+\end_inset
+
+donde
+\begin_inset Formula $p_{1}<\dots<p_{k}$
+\end_inset
+
+ son los primos que dividen a
+\begin_inset Formula $|A|$
+\end_inset
+
+ y
+\begin_inset Formula $\alpha_{i1}\geq\dots\geq\alpha_{im_{i}}\geq1$
+\end_inset
+
+ para cada
+\begin_inset Formula $i\in\{1,\dots,k\}$
+\end_inset
+
+.
+\end_layout
+
+\begin_layout Plain Layout
+Como
+\series bold
+teorema
+\series default
+, todo grupo abeliano tiene una descomposición primaria [...].
+\end_layout
+
+\begin_layout Plain Layout
+\begin_inset ERT
+status open
+
+\begin_layout Plain Layout
+
+
+\backslash
+eremember
+\end_layout
+
+\end_inset
+
+
+\end_layout
+
+\end_inset
+
+ Para todo grupo finito
+\begin_inset Formula $G$
+\end_inset
+
+,
+\begin_inset Formula $\text{Exp}G\mid|G|$
+\end_inset
+
+, y en particular, para
+\begin_inset Formula $g\in G$
+\end_inset
+
+,
+\begin_inset Formula $g^{|G|}=1$
+\end_inset
+
+.
+
+\begin_inset Note Comment
+status open
+
+\begin_layout Plain Layout
+En efecto,
+\begin_inset Formula $\text{Exp}G=\text{mcm}_{g\in G}|g|$
+\end_inset
+
+, pero como para todo
+\begin_inset Formula $g\in G$
+\end_inset
+
+,
+\begin_inset Formula $\langle g\rangle$
+\end_inset
+
+ es un subgrupo de
+\begin_inset Formula $G$
+\end_inset
+
+,
+\begin_inset Formula $|g|\mid|G|$
+\end_inset
+
+, luego
+\begin_inset Formula $|G|$
+\end_inset
+
+ es múltiplo de todo
+\begin_inset Formula $|g|$
+\end_inset
+
+ y por tanto lo es de
+\begin_inset Formula $\text{Exp}G$
+\end_inset
+
+.
+\end_layout
+
+\end_inset
+
Dado un cuerpo
-\begin_inset Formula $K$
+\begin_inset Formula $K\neq0$
\end_inset
, todo subgrupo finito de
@@ -3746,6 +3948,98 @@ grupo de Klein
\end_inset
es cíclico.
+\begin_inset Note Comment
+status open
+
+\begin_layout Plain Layout
+
+\series bold
+Demostración:
+\series default
+Llamando
+\begin_inset Formula $m:=\text{Exp}K^{*}$
+\end_inset
+
+,
+\begin_inset Formula $K^{*}$
+\end_inset
+
+ está formado por raíces de
+\begin_inset Formula $X^{m}-1$
+\end_inset
+
+, de modo que
+\begin_inset Formula $|K^{*}|\leq m$
+\end_inset
+
+ y, como
+\begin_inset Formula $m\mid|K^{*}|>0$
+\end_inset
+
+ (
+\begin_inset Formula $1\in K^{*}$
+\end_inset
+
+),
+\begin_inset Formula $m=|K^{*}|$
+\end_inset
+
+.
+ Entonces
+\begin_inset Formula $K^{*}$
+\end_inset
+
+ tiene una descomposición primaria de la forma
+\begin_inset Formula $\langle a_{1}\rangle_{p_{1}^{\alpha_{1}}}\oplus\dots\oplus\langle a_{k}\rangle_{p_{k}^{\alpha_{k}}}$
+\end_inset
+
+ con cada
+\begin_inset Formula $p_{i}$
+\end_inset
+
+ distinto, pues si su descomposición primaria es
+\begin_inset Formula $\bigoplus_{i=1}^{k}\bigoplus_{j=1}^{m_{i}}\langle a_{ij}\rangle_{p_{i}^{\alpha_{ij}}}$
+\end_inset
+
+, el orden es
+\begin_inset Formula $\prod_{i,j}p_{i}^{\alpha_{ij}}$
+\end_inset
+
+ y el exponente es
+\begin_inset Formula $\prod_{i}p_{i}^{\alpha_{i1}}$
+\end_inset
+
+, dado que
+\begin_inset Formula $p_{i}^{\alpha_{ij}}\mid p_{i}^{\alpha_{i1}}$
+\end_inset
+
+ para todo
+\begin_inset Formula $j$
+\end_inset
+
+, y para que estos coincidan debe ser cada
+\begin_inset Formula $m_{i}=1$
+\end_inset
+
+.
+ Entonces el orden de
+\begin_inset Formula $a:=a_{1}+\dots+a_{k}$
+\end_inset
+
+ es
+\begin_inset Formula $m$
+\end_inset
+
+, luego
+\begin_inset Formula $\langle a\rangle=K^{*}$
+\end_inset
+
+ es cíclico.
+\end_layout
+
+\end_inset
+
+
\end_layout
\begin_layout Standard
@@ -4244,7 +4538,7 @@ status open
\begin_inset Formula $\alpha\in M$
\end_inset
- y por tanto
+ y
\begin_inset Formula $\alpha$
\end_inset
@@ -4345,10 +4639,6 @@ Para
\end_layout
\end_deeper
-\begin_layout Enumerate
-Ser finitamente generada.
-\end_layout
-
\begin_layout Standard
Una propiedad relativa a extensiones es
\series bold
@@ -4426,7 +4716,7 @@ LM=LK(\alpha_{1},\dots,\alpha_{n})=L(\alpha_{1},\dots,\alpha_{m}),
\end_inset
- pues
+pues
\begin_inset Formula $LK(\alpha_{1},\dots,\alpha_{n})$
\end_inset