diff options
Diffstat (limited to 'fuvr1/n3.lyx')
| -rw-r--r-- | fuvr1/n3.lyx | 36 | 
1 files changed, 18 insertions, 18 deletions
| diff --git a/fuvr1/n3.lyx b/fuvr1/n3.lyx index e8b4534..ad71d13 100644 --- a/fuvr1/n3.lyx +++ b/fuvr1/n3.lyx @@ -108,7 +108,7 @@ Una función es una terna  recta real ampliada  \series default   al conjunto  -\begin_inset Formula $\overline{\mathbb{R}}:=\mathbb{R}\cup\{+\infty,-\infty\}$ +\begin_inset Formula $\overline{\mathbb{R}}\coloneqq \mathbb{R}\cup\{+\infty,-\infty\}$  \end_inset  . @@ -363,7 +363,7 @@ status open  \end_inset  Sea  -\begin_inset Formula $L:=\lim_{x\rightarrow c}f(x)$ +\begin_inset Formula $L\coloneqq \lim_{x\rightarrow c}f(x)$  \end_inset  . @@ -463,7 +463,7 @@ Fijado  \end_inset   es de Cauchy y por tanto convergente, por lo que existe  -\begin_inset Formula $L:=\lim_{n}f(x_{n})$ +\begin_inset Formula $L\coloneqq \lim_{n}f(x_{n})$  \end_inset   y solo queda probar que  @@ -488,7 +488,7 @@ Fijado  \end_inset   y  -\begin_inset Formula $L^{\prime}:=\lim_{n}f(x_{n}^{\prime})$ +\begin_inset Formula $L^{\prime}\coloneqq \lim_{n}f(x_{n}^{\prime})$  \end_inset   se tendría  @@ -674,7 +674,7 @@ status open  \begin_layout Plain Layout  Si fuera  -\begin_inset Formula $L:=\lim_{x\rightarrow0}\sin\frac{1}{x}$ +\begin_inset Formula $L\coloneqq \lim_{x\rightarrow0}\sin\frac{1}{x}$  \end_inset  , se tendría que para toda  @@ -902,7 +902,7 @@ límite por la derecha  \end_inset   a  -\begin_inset Formula $f(c^{+})=\lim_{x\rightarrow c^{+}}f(x):=\lim_{x\rightarrow c}g(x)$ +\begin_inset Formula $f(c^{+})=\lim_{x\rightarrow c^{+}}f(x)\coloneqq \lim_{x\rightarrow c}g(x)$  \end_inset   con  @@ -926,7 +926,7 @@ límite por la izquierda  \end_inset   a  -\begin_inset Formula $f(c^{-})=\lim_{x\rightarrow c^{-}}f(x):=\lim_{x\rightarrow c}g(x)$ +\begin_inset Formula $f(c^{-})=\lim_{x\rightarrow c^{-}}f(x)\coloneqq \lim_{x\rightarrow c}g(x)$  \end_inset   con  @@ -1431,7 +1431,7 @@ Existen  \end_inset  Si  -\begin_inset Formula $\alpha:=\sup\{f(x)\mid x\in[a,b]\}$ +\begin_inset Formula $\alpha\coloneqq \sup\{f(x)\mid x\in[a,b]\}$  \end_inset  , existe  @@ -1506,15 +1506,15 @@ Demostración:  \end_inset   y sean  -\begin_inset Formula $a_{0}:=a$ +\begin_inset Formula $a_{0}\coloneqq a$  \end_inset  ,  -\begin_inset Formula $b_{0}:=b$ +\begin_inset Formula $b_{0}\coloneqq b$  \end_inset   y  -\begin_inset Formula $m:=\frac{a+b}{2}$ +\begin_inset Formula $m\coloneqq \frac{a+b}{2}$  \end_inset  . @@ -1528,11 +1528,11 @@ Demostración:  \end_inset  , llamamos  -\begin_inset Formula $a_{1}:=a_{0}$ +\begin_inset Formula $a_{1}\coloneqq a_{0}$  \end_inset   y  -\begin_inset Formula $b_{1}:=m$ +\begin_inset Formula $b_{1}\coloneqq m$  \end_inset  , y si  @@ -1540,11 +1540,11 @@ Demostración:  \end_inset   entonces  -\begin_inset Formula $a_{1}:=m$ +\begin_inset Formula $a_{1}\coloneqq m$  \end_inset   y  -\begin_inset Formula $b_{1}:=b_{0}$ +\begin_inset Formula $b_{1}\coloneqq b_{0}$  \end_inset  . @@ -1922,7 +1922,7 @@ Al ser  \end_inset   estrictamente monótona es inyectiva, y al ser  -\begin_inset Formula $J:=f(I)$ +\begin_inset Formula $J\coloneqq f(I)$  \end_inset   un intervalo, existe la inversa  @@ -1969,7 +1969,7 @@ Al ser  \end_inset   estrictamente creciente,  -\begin_inset Formula $d:=f(c)\in(f(c-\varepsilon^{\prime}),f(c+\varepsilon^{\prime}))=f((c-\varepsilon^{\prime},c+\varepsilon^{\prime}))$ +\begin_inset Formula $d\coloneqq f(c)\in(f(c-\varepsilon^{\prime}),f(c+\varepsilon^{\prime}))=f((c-\varepsilon^{\prime},c+\varepsilon^{\prime}))$  \end_inset  , por lo que existe  @@ -2002,7 +2002,7 @@ Al ser  \end_inset   y  -\begin_inset Formula $c:=f^{-1}(d)$ +\begin_inset Formula $c\coloneqq f^{-1}(d)$  \end_inset   lo es por tanto de  | 
