diff options
Diffstat (limited to 'fvc/n2.lyx')
| -rw-r--r-- | fvc/n2.lyx | 44 | 
1 files changed, 22 insertions, 22 deletions
| @@ -91,7 +91,7 @@ Teorema de Cauchy-Goursat:  \end_inset   y  -\begin_inset Formula $\Delta(a,b,c):=\{\mu a+\lambda b+\gamma c\mid \mu+\lambda+\gamma=1;\mu,\lambda,\gamma\geq0\}\subseteq\Omega$ +\begin_inset Formula $\Delta(a,b,c)\coloneqq \{\mu a+\lambda b+\gamma c\mid \mu+\lambda+\gamma=1;\mu,\lambda,\gamma\geq0\}\subseteq\Omega$  \end_inset  , entonces @@ -111,23 +111,23 @@ Teorema de Cauchy-Goursat:  Demostración:  \series default   Sean  -\begin_inset Formula $\gamma:=[a,b,c,a]$ +\begin_inset Formula $\gamma\coloneqq [a,b,c,a]$  \end_inset  ,  -\begin_inset Formula $\Delta:=\Delta(a,b,c)$ +\begin_inset Formula $\Delta\coloneqq \Delta(a,b,c)$  \end_inset  ,  -\begin_inset Formula $a':=\frac{b+c}{2}$ +\begin_inset Formula $a'\coloneqq \frac{b+c}{2}$  \end_inset  ,  -\begin_inset Formula $b':=\frac{a+c}{2}$ +\begin_inset Formula $b'\coloneqq \frac{a+c}{2}$  \end_inset  ,  -\begin_inset Formula $c':=\frac{a+b}{2}$ +\begin_inset Formula $c'\coloneqq \frac{a+b}{2}$  \end_inset   e @@ -156,7 +156,7 @@ Sean  \begin_layout Itemize  Si  -\begin_inset Formula $|J_{k}|:=\max_{i}|J_{i}|$ +\begin_inset Formula $|J_{k}|\coloneqq \max_{i}|J_{i}|$  \end_inset  ,  @@ -206,7 +206,7 @@ Para  \end_inset  ,  -\begin_inset Formula $F(x):=\frac{x+a}{2}$ +\begin_inset Formula $F(x)\coloneqq \frac{x+a}{2}$  \end_inset   es una biyección de  @@ -218,11 +218,11 @@ Para  \end_inset  , pues si  -\begin_inset Formula $x:=ra+sb+tc$ +\begin_inset Formula $x\coloneqq ra+sb+tc$  \end_inset  ,  -\begin_inset Formula $F(x):=\frac{ra+sb+tc+a}{2}=\frac{ra+sb+tc+(r+s+t)a}{2}=ra+s\frac{a+b}{2}+t\frac{a+c}{2}=ra+sc'+tb'$ +\begin_inset Formula $F(x)\coloneqq \frac{ra+sb+tc+a}{2}=\frac{ra+sb+tc+(r+s+t)a}{2}=ra+s\frac{a+b}{2}+t\frac{a+c}{2}=ra+sc'+tb'$  \end_inset  . @@ -236,7 +236,7 @@ Para  \end_inset   la biyección  -\begin_inset Formula $F(x):=\frac{a+b+c-x}{2}$ +\begin_inset Formula $F(x)\coloneqq \frac{a+b+c-x}{2}$  \end_inset  . @@ -245,11 +245,11 @@ Para  \end_deeper  \begin_layout Standard  Sean entonces  -\begin_inset Formula $I_{1}:=\max_{i}|J_{i}|$ +\begin_inset Formula $I_{1}\coloneqq \max_{i}|J_{i}|$  \end_inset  ,  -\begin_inset Formula $\gamma_{1}:=[a_{1},b_{1},c_{1},a_{1}]$ +\begin_inset Formula $\gamma_{1}\coloneqq [a_{1},b_{1},c_{1},a_{1}]$  \end_inset   la curva correspondiente a  @@ -257,7 +257,7 @@ Sean entonces  \end_inset   y  -\begin_inset Formula $\Delta_{1}:=\Delta(a_{1},b_{1},c_{1})$ +\begin_inset Formula $\Delta_{1}\coloneqq \Delta(a_{1},b_{1},c_{1})$  \end_inset  , con lo que  @@ -297,7 +297,7 @@ Sean entonces  .   Sea  -\begin_inset Formula $p(z):=f(\alpha)+f'(\alpha)(z-\alpha)$ +\begin_inset Formula $p(z)\coloneqq f(\alpha)+f'(\alpha)(z-\alpha)$  \end_inset   una función polinómica y por tanto con primitiva, entonces @@ -539,11 +539,11 @@ Si  \end_inset  , sean  -\begin_inset Formula $c_{\rho}:=(1-\rho)a+\rho b$ +\begin_inset Formula $c_{\rho}\coloneqq (1-\rho)a+\rho b$  \end_inset   y  -\begin_inset Formula $b_{\rho}:=(1-\rho)a+\rho c$ +\begin_inset Formula $b_{\rho}\coloneqq (1-\rho)a+\rho c$  \end_inset   para  @@ -1221,7 +1221,7 @@ Demostración:  .   Sea  -\begin_inset Formula $f(z):=\frac{1}{p(z)}$ +\begin_inset Formula $f(z)\coloneqq \frac{1}{p(z)}$  \end_inset  ,  @@ -1279,7 +1279,7 @@ Demostración:  .   Sea entonces  -\begin_inset Formula $g(z):=\frac{1}{f(z)-\alpha}$ +\begin_inset Formula $g(z)\coloneqq \frac{1}{f(z)-\alpha}$  \end_inset   una función entera, como  @@ -1393,7 +1393,7 @@ luego  \end_inset  , por el teorema de Taylor, sea  -\begin_inset Formula $c_{n}:=\frac{F^{(n)}(\alpha)}{n!}$ +\begin_inset Formula $c_{n}\coloneqq \frac{F^{(n)}(\alpha)}{n!}$  \end_inset  , como  @@ -1473,7 +1473,7 @@ Teorema de convergencia de Weierstrass:  \end_inset   y  -\begin_inset Formula $f(z):=\lim_{n}f_{n}(z)$ +\begin_inset Formula $f(z)\coloneqq \lim_{n}f_{n}(z)$  \end_inset   para  @@ -1583,7 +1583,7 @@ Sean  \end_inset   y  -\begin_inset Formula $H:=\{z\in\mathbb{C}\mid d(z,K)\leq\rho\}$ +\begin_inset Formula $H\coloneqq \{z\in\mathbb{C}\mid d(z,K)\leq\rho\}$  \end_inset  , con lo que  | 
