diff options
Diffstat (limited to 'fvc/n4.lyx')
| -rw-r--r-- | fvc/n4.lyx | 50 | 
1 files changed, 25 insertions, 25 deletions
| @@ -108,7 +108,7 @@ Toda curva  Demostración:  \series default   Sean  -\begin_inset Formula $\rho:=\min_{t\in[a,b]}|\gamma(t)|>0$ +\begin_inset Formula $\rho\coloneqq \min_{t\in[a,b]}|\gamma(t)|>0$  \end_inset  ,  @@ -140,7 +140,7 @@ Demostración:  \end_inset   y  -\begin_inset Formula $D_{k}:=D(\gamma(t_{k}),\rho)$ +\begin_inset Formula $D_{k}\coloneqq D(\gamma(t_{k}),\rho)$  \end_inset  . @@ -180,11 +180,11 @@ Demostración:  .   Sean ahora  -\begin_inset Formula $\theta_{k}(t):=A_{k}(\gamma(t))\in\text{Arg}(\gamma(t))$ +\begin_inset Formula $\theta_{k}(t)\coloneqq A_{k}(\gamma(t))\in\text{Arg}(\gamma(t))$  \end_inset   y  -\begin_inset Formula $m_{k}:=\theta_{k}(t_{k})-\theta_{k+1}(t_{k})$ +\begin_inset Formula $m_{k}\coloneqq \theta_{k}(t_{k})-\theta_{k+1}(t_{k})$  \end_inset  , y definimos  @@ -192,7 +192,7 @@ Demostración:  \end_inset   como  -\begin_inset Formula $\theta(t):=\theta_{k}(t)+\sum_{i=0}^{k-1}m_{k}$ +\begin_inset Formula $\theta(t)\coloneqq \theta_{k}(t)+\sum_{i=0}^{k-1}m_{k}$  \end_inset   para  @@ -334,7 +334,7 @@ Sean  \end_inset  ,  -\begin_inset Formula $\rho:=\min_{t\in[a,b]}|\gamma(t)-z_{0}|>0$ +\begin_inset Formula $\rho\coloneqq \min_{t\in[a,b]}|\gamma(t)-z_{0}|>0$  \end_inset   y  @@ -371,7 +371,7 @@ Sean  \end_inset  , tenemos que  -\begin_inset Formula $\theta(t):=\theta_{0}(t)+\arg\frac{\gamma(t)-z}{\gamma(t)-z_{0}}$ +\begin_inset Formula $\theta(t)\coloneqq \theta_{0}(t)+\arg\frac{\gamma(t)-z}{\gamma(t)-z_{0}}$  \end_inset   es un argumento continuo de  @@ -499,7 +499,7 @@ Demostración:  \end_inset  , entonces  -\begin_inset Formula $\varphi(t):=\log|\gamma(t)-z|+i\theta(t)$ +\begin_inset Formula $\varphi(t)\coloneqq \log|\gamma(t)-z|+i\theta(t)$  \end_inset   es un logaritmo continuo de  @@ -525,7 +525,7 @@ Demostración:   es derivable.   Entonces  -\begin_inset Formula $\varphi_{k}:=\varphi|_{[t_{k-1},t_{k}]}$ +\begin_inset Formula $\varphi_{k}\coloneqq \varphi|_{[t_{k-1},t_{k}]}$  \end_inset   también lo es y  @@ -560,7 +560,7 @@ Una  cadena  \series default   es una expresión de la forma  -\begin_inset Formula $\Gamma:=m_{1}\gamma_{1}+\dots+m_{q}\gamma_{q}$ +\begin_inset Formula $\Gamma\coloneqq m_{1}\gamma_{1}+\dots+m_{q}\gamma_{q}$  \end_inset   donde los  @@ -581,7 +581,7 @@ soporte  \end_inset   a  -\begin_inset Formula $\Gamma^{*}:=\bigcup_{k}\gamma_{k}^{*}$ +\begin_inset Formula $\Gamma^{*}\coloneqq \bigcup_{k}\gamma_{k}^{*}$  \end_inset   y  @@ -593,16 +593,16 @@ longitud  \end_inset   a  -\begin_inset Formula $\ell(\Gamma):=\sum_{k}|m_{k}|\ell(\gamma_{k})$ +\begin_inset Formula $\ell(\Gamma)\coloneqq \sum_{k}|m_{k}|\ell(\gamma_{k})$  \end_inset  .   Si  -\begin_inset Formula $\Sigma:=n_{1}\sigma_{1}+\dots+n_{p}\sigma_{p}$ +\begin_inset Formula $\Sigma\coloneqq n_{1}\sigma_{1}+\dots+n_{p}\sigma_{p}$  \end_inset   es otra cadena, llamamos  -\begin_inset Formula $\Gamma+\Sigma:=m_{1}\gamma_{1}+\dots+m_{q}\gamma_{q}+k_{1}\sigma_{1}+\dots+k_{p}\sigma_{p}$ +\begin_inset Formula $\Gamma+\Sigma\coloneqq m_{1}\gamma_{1}+\dots+m_{q}\gamma_{q}+k_{1}\sigma_{1}+\dots+k_{p}\sigma_{p}$  \end_inset  . @@ -647,7 +647,7 @@ ciclo  \end_inset   a  -\begin_inset Formula $\text{Ind}_{\Gamma}(z):=\sum_{k}m_{k}\text{Ind}_{\gamma_{k}}(z)$ +\begin_inset Formula $\text{Ind}_{\Gamma}(z)\coloneqq \sum_{k}m_{k}\text{Ind}_{\gamma_{k}}(z)$  \end_inset  . @@ -806,7 +806,7 @@ es continua en  \end_inset  Como  -\begin_inset Formula $K:=\{\{z_{n}\}_{n}\cup\{a\}\}\times\Gamma^{*}$ +\begin_inset Formula $K\coloneqq \{\{z_{n}\}_{n}\cup\{a\}\}\times\Gamma^{*}$  \end_inset   es compacto por ser producto de compactos,  @@ -889,7 +889,7 @@ Si además, para  \end_inset   dada por  -\begin_inset Formula $F_{w}(z):=F(z,w)$ +\begin_inset Formula $F_{w}(z)\coloneqq F(z,w)$  \end_inset   es holomorfa en  @@ -1059,7 +1059,7 @@ Ahora bien, fijado  \end_inset  , sea  -\begin_inset Formula $F_{w}(z):=F(w,z)$ +\begin_inset Formula $F_{w}(z)\coloneqq F(w,z)$  \end_inset  , es claro que  @@ -1083,7 +1083,7 @@ Ahora bien, fijado  \begin_layout Standard  Sea  -\begin_inset Formula $\Omega_{0}:=\{z\in\mathbb{C}\setminus\Gamma^{*}\mid \text{Ind}_{\Gamma}(z)=0\}$ +\begin_inset Formula $\Omega_{0}\coloneqq \{z\in\mathbb{C}\setminus\Gamma^{*}\mid \text{Ind}_{\Gamma}(z)=0\}$  \end_inset  , que es abierto por ser unión de componentes conexas de  @@ -1123,7 +1123,7 @@ status open  \end_inset   dada por  -\begin_inset Formula $F_{0}(z,w):=\frac{f(w)}{w-z}$ +\begin_inset Formula $F_{0}(z,w)\coloneqq \frac{f(w)}{w-z}$  \end_inset  . @@ -1302,7 +1302,7 @@ forma general del teorema de Cauchy  \end_inset  , aplicando la fórmula integral de Cauchy a  -\begin_inset Formula $g(z):=(z-a)f(z)$ +\begin_inset Formula $g(z)\coloneqq (z-a)f(z)$  \end_inset  , como  @@ -1886,7 +1886,7 @@ status open  .   Sea  -\begin_inset Formula $K:=\mathbb{C}\setminus\Omega_{0}=\Gamma^{*}\cup\{z\in\mathbb{C}\setminus\Gamma^{*}\mid \text{Ind}_{\Gamma}(z)\neq0\}$ +\begin_inset Formula $K\coloneqq \mathbb{C}\setminus\Omega_{0}=\Gamma^{*}\cup\{z\in\mathbb{C}\setminus\Gamma^{*}\mid \text{Ind}_{\Gamma}(z)\neq0\}$  \end_inset  , que es cerrado por ser complementario de un abierto y acotado porque no @@ -1934,15 +1934,15 @@ Sean  \end_inset  ,  -\begin_inset Formula $m_{k}:=\text{Ind}_{\Gamma}(a_{k})$ +\begin_inset Formula $m_{k}\coloneqq \text{Ind}_{\Gamma}(a_{k})$  \end_inset  ,  -\begin_inset Formula $\gamma_{k}:=C(a_{k},\rho)$ +\begin_inset Formula $\gamma_{k}\coloneqq C(a_{k},\rho)$  \end_inset   y  -\begin_inset Formula $\Sigma:=\sum_{k=1}^{q}m_{k}\gamma_{k}$ +\begin_inset Formula $\Sigma\coloneqq \sum_{k=1}^{q}m_{k}\gamma_{k}$  \end_inset  . | 
