aboutsummaryrefslogtreecommitdiff
path: root/fvv2/n1.lyx
diff options
context:
space:
mode:
Diffstat (limited to 'fvv2/n1.lyx')
-rw-r--r--fvv2/n1.lyx10
1 files changed, 5 insertions, 5 deletions
diff --git a/fvv2/n1.lyx b/fvv2/n1.lyx
index 7f67d1f..e7eda47 100644
--- a/fvv2/n1.lyx
+++ b/fvv2/n1.lyx
@@ -208,7 +208,7 @@ gráfica
a
\begin_inset Formula
\[
-\text{graf}(f):=\{(x_{1},\dots,x_{n},y)\in\mathbb{R}^{n+1}:(x_{1},\dots,x_{n})\in[a_{1},b_{1}]\times\dots\times[a_{n},b_{n}]\land y=f(x_{1},\dots,x_{n})\}
+\text{graf}(f):=\{(x_{1},\dots,x_{n},y)\in\mathbb{R}^{n+1}\mid (x_{1},\dots,x_{n})\in[a_{1},b_{1}]\times\dots\times[a_{n},b_{n}]\land y=f(x_{1},\dots,x_{n})\}
\]
\end_inset
@@ -221,7 +221,7 @@ subgrafo
\begin_inset Formula
\begin{multline*}
\text{subgraf}(f):=\\
-\{(x_{1},\dots,x_{n},y)\in\mathbb{R}^{n+1}:(x_{1},\dots,x_{n})\in[a_{1},b_{1}]\times\dots\times[a_{n},b_{n}]\land0\leq y\leq f(x_{1},\dots,x_{n})\}
+\{(x_{1},\dots,x_{n},y)\in\mathbb{R}^{n+1}\mid (x_{1},\dots,x_{n})\in[a_{1},b_{1}]\times\dots\times[a_{n},b_{n}]\land0\leq y\leq f(x_{1},\dots,x_{n})\}
\end{multline*}
\end_inset
@@ -1452,7 +1452,7 @@ Sea
\end_inset
,
-\begin_inset Formula $B:=\{x\in A:\text{osc}(f,x)\geq\varepsilon\}$
+\begin_inset Formula $B:=\{x\in A\mid \text{osc}(f,x)\geq\varepsilon\}$
\end_inset
es cerrado.
@@ -1539,7 +1539,7 @@ teorema de Lebesgue de caracterización de las funciones integrables
\end_inset
si y sólo si
-\begin_inset Formula $B:=\{x\in R:f\text{ no es continua en }x\}$
+\begin_inset Formula $B:=\{x\in R\mid f\text{ no es continua en }x\}$
\end_inset
tiene medida nula.
@@ -1559,7 +1559,7 @@ status open
\end_inset
Sea
-\begin_inset Formula $B_{k}:=\{x\in R:o(f,x)\geq\frac{1}{k}\}$
+\begin_inset Formula $B_{k}:=\{x\in R\mid o(f,x)\geq\frac{1}{k}\}$
\end_inset
, basta probar que cada