diff options
Diffstat (limited to 'fvv2/n1.lyx')
| -rw-r--r-- | fvv2/n1.lyx | 10 |
1 files changed, 5 insertions, 5 deletions
diff --git a/fvv2/n1.lyx b/fvv2/n1.lyx index 7f67d1f..e7eda47 100644 --- a/fvv2/n1.lyx +++ b/fvv2/n1.lyx @@ -208,7 +208,7 @@ gráfica a \begin_inset Formula \[ -\text{graf}(f):=\{(x_{1},\dots,x_{n},y)\in\mathbb{R}^{n+1}:(x_{1},\dots,x_{n})\in[a_{1},b_{1}]\times\dots\times[a_{n},b_{n}]\land y=f(x_{1},\dots,x_{n})\} +\text{graf}(f):=\{(x_{1},\dots,x_{n},y)\in\mathbb{R}^{n+1}\mid (x_{1},\dots,x_{n})\in[a_{1},b_{1}]\times\dots\times[a_{n},b_{n}]\land y=f(x_{1},\dots,x_{n})\} \] \end_inset @@ -221,7 +221,7 @@ subgrafo \begin_inset Formula \begin{multline*} \text{subgraf}(f):=\\ -\{(x_{1},\dots,x_{n},y)\in\mathbb{R}^{n+1}:(x_{1},\dots,x_{n})\in[a_{1},b_{1}]\times\dots\times[a_{n},b_{n}]\land0\leq y\leq f(x_{1},\dots,x_{n})\} +\{(x_{1},\dots,x_{n},y)\in\mathbb{R}^{n+1}\mid (x_{1},\dots,x_{n})\in[a_{1},b_{1}]\times\dots\times[a_{n},b_{n}]\land0\leq y\leq f(x_{1},\dots,x_{n})\} \end{multline*} \end_inset @@ -1452,7 +1452,7 @@ Sea \end_inset , -\begin_inset Formula $B:=\{x\in A:\text{osc}(f,x)\geq\varepsilon\}$ +\begin_inset Formula $B:=\{x\in A\mid \text{osc}(f,x)\geq\varepsilon\}$ \end_inset es cerrado. @@ -1539,7 +1539,7 @@ teorema de Lebesgue de caracterización de las funciones integrables \end_inset si y sólo si -\begin_inset Formula $B:=\{x\in R:f\text{ no es continua en }x\}$ +\begin_inset Formula $B:=\{x\in R\mid f\text{ no es continua en }x\}$ \end_inset tiene medida nula. @@ -1559,7 +1559,7 @@ status open \end_inset Sea -\begin_inset Formula $B_{k}:=\{x\in R:o(f,x)\geq\frac{1}{k}\}$ +\begin_inset Formula $B_{k}:=\{x\in R\mid o(f,x)\geq\frac{1}{k}\}$ \end_inset , basta probar que cada |
