diff options
Diffstat (limited to 'fvv2/n3.lyx')
| -rw-r--r-- | fvv2/n3.lyx | 16 |
1 files changed, 8 insertions, 8 deletions
diff --git a/fvv2/n3.lyx b/fvv2/n3.lyx index a35f67f..11ac40c 100644 --- a/fvv2/n3.lyx +++ b/fvv2/n3.lyx @@ -172,7 +172,7 @@ status open \end_inset Sea -\begin_inset Formula ${\cal A}:=\{E\in\Sigma':f^{-1}(E)\in\Sigma\}$ +\begin_inset Formula ${\cal A}:=\{E\in\Sigma'\mid f^{-1}(E)\in\Sigma\}$ \end_inset , vemos que @@ -627,7 +627,7 @@ Una función \end_inset y la notación -\begin_inset Formula $\{f\bullet a\}:=\{\omega\in\Omega:f(\omega)\bullet a\}$ +\begin_inset Formula $\{f\bullet a\}\mid =\{\omega\in\Omega\mid f(\omega)\bullet a\}$ \end_inset . @@ -1554,7 +1554,7 @@ Sea \end_inset y -\begin_inset Formula ${\cal S}(\Omega)^{+}:=\{h\in{\cal S}(\Omega):h\geq0\}$ +\begin_inset Formula ${\cal S}(\Omega)^{+}:=\{h\in{\cal S}(\Omega)\mid h\geq0\}$ \end_inset , llamamos @@ -1719,7 +1719,7 @@ Para medible, se define \begin_inset Formula \[ -\int f\,d\mu:=\sup\left\{ \int s\,d\mu:s\in{\cal S}(\Omega)\land0\leq s\leq f\right\} +\int f\,d\mu:=\sup\left\{ \int s\,d\mu\mid s\in{\cal S}(\Omega)\land0\leq s\leq f\right\} \] \end_inset @@ -2236,7 +2236,7 @@ Una función medible \end_inset , si y sólo si -\begin_inset Formula $f^{+}=\max\{f,0\},f^{-}=\min\{f,0\}:\Omega\rightarrow[-\infty,+\infty]$ +\begin_inset Formula $f^{+}=\max\{f,0\},f^{-}=\min\{f,0\}\mid \Omega\rightarrow[-\infty,+\infty]$ \end_inset son integrables, y definimos @@ -3315,11 +3315,11 @@ Demostración: \end_inset es continua, y como -\begin_inset Formula $\delta:=\min\{d(x,K):x\notin A\}>0$ +\begin_inset Formula $\delta:=\min\{d(x,K)\mid x\notin A\}>0$ \end_inset , -\begin_inset Formula $A_{0}:=\{x:d(x,K)<\frac{\delta}{2}\}$ +\begin_inset Formula $A_{0}:=\{x\mid d(x,K)<\frac{\delta}{2}\}$ \end_inset es un abierto acotado con @@ -3328,7 +3328,7 @@ Demostración: . Tomando -\begin_inset Formula $F_{0}:=\mathbb{R}^{n}\backslash A_{0}=\{x:d(x,K)\geq\frac{\delta}{2}\}$ +\begin_inset Formula $F_{0}:=\mathbb{R}^{n}\backslash A_{0}=\{x\mid d(x,K)\geq\frac{\delta}{2}\}$ \end_inset , podemos definir |
