aboutsummaryrefslogtreecommitdiff
path: root/ga/n1.lyx
diff options
context:
space:
mode:
Diffstat (limited to 'ga/n1.lyx')
-rw-r--r--ga/n1.lyx18
1 files changed, 9 insertions, 9 deletions
diff --git a/ga/n1.lyx b/ga/n1.lyx
index 16a9bef..d1b406c 100644
--- a/ga/n1.lyx
+++ b/ga/n1.lyx
@@ -2271,7 +2271,7 @@ Dado un espacio topológico
\end_inset
,
-\begin_inset Formula $\{f\in\mathbb{R}^{X}:f\text{ continua}\}$
+\begin_inset Formula $\{f\in\mathbb{R}^{X}\mid f\text{ continua}\}$
\end_inset
es un subanillo de
@@ -2287,7 +2287,7 @@ Dado un espacio vectorial
\end_inset
,
-\begin_inset Formula $\{f\in V^{V}:f\text{ lineal}\}$
+\begin_inset Formula $\{f\in V^{V}\mid f\text{ lineal}\}$
\end_inset
es un subanillo de
@@ -2307,7 +2307,7 @@ Dado un anillo
\end_inset
,
-\begin_inset Formula $\{f\in A^{X}:f\text{ constante}\}$
+\begin_inset Formula $\{f\in A^{X}\mid f\text{ constante}\}$
\end_inset
es un subanillo de
@@ -3944,7 +3944,7 @@ Demostración:
\end_inset
, pues
-\begin_inset Formula $\pi^{-1}(J/I)=\{x:\pi(x)=[x]\in J/I\}$
+\begin_inset Formula $\pi^{-1}(J/I)=\{x\mid\pi(x)=[x]\in J/I\}$
\end_inset
, pero si
@@ -4005,7 +4005,7 @@ Ahora vemos que, dado un ideal
\end_inset
,
-\begin_inset Formula $\pi^{-1}(X)=\{x:[x]\in X\}\ni0$
+\begin_inset Formula $\pi^{-1}(X)=\{x\mid[x]\in X\}\ni0$
\end_inset
; para
@@ -4058,7 +4058,7 @@ Ahora vemos que, dado un ideal
.
Además,
-\begin_inset Formula $\pi^{-1}(X)/I=\{x:[x]\in X\}/I=\{[x]:[x]\in X\}=X$
+\begin_inset Formula $\pi^{-1}(X)/I=\{x\mid[x]\in X\}/I=\{[x]\mid[x]\in X\}=X$
\end_inset
.
@@ -4185,8 +4185,8 @@ La intersección de una familia de ideales de
, definimos los ideales
\begin_inset Formula
\begin{eqnarray*}
-\sum_{x\in X}I_{x} & := & \left\{ \sum_{x\in S}a_{x}:S\subseteq X\text{ finito},a_{x}\in I_{x}\right\} ,\\
-\prod_{x\in X}I_{x} & := & \left\{ \sum_{k=1}^{n}\prod_{x\in S}a_{kx}:n\in\mathbb{N},S\subseteq X\text{ finito},a_{kx}\in I_{x}\right\} .
+\sum_{x\in X}I_{x} & := & \left\{ \sum_{x\in S}a_{x}\;\middle|\;S\subseteq X\text{ finito},a_{x}\in I_{x}\right\} ,\\
+\prod_{x\in X}I_{x} & := & \left\{ \sum_{k=1}^{n}\prod_{x\in S}a_{kx}\;\middle|\;n\in\mathbb{N},S\subseteq X\text{ finito},a_{kx}\in I_{x}\right\} .
\end{eqnarray*}
\end_inset
@@ -4257,7 +4257,7 @@ En efecto,
\end_inset
,
-\begin_inset Formula $(n)\cap(m)=\{k\in\mathbb{Z}:n,m|k\}=\{k:\text{mcm}(n,m)|k\}=(\text{mcm}(n,m))$
+\begin_inset Formula $(n)\cap(m)=\{k\in\mathbb{Z}\mid n,m|k\}=\{k\mid\text{mcm}(n,m)|k\}=(\text{mcm}(n,m))$
\end_inset
y