aboutsummaryrefslogtreecommitdiff
path: root/ga/n1.lyx
diff options
context:
space:
mode:
Diffstat (limited to 'ga/n1.lyx')
-rw-r--r--ga/n1.lyx506
1 files changed, 365 insertions, 141 deletions
diff --git a/ga/n1.lyx b/ga/n1.lyx
index 8457ada..94f9570 100644
--- a/ga/n1.lyx
+++ b/ga/n1.lyx
@@ -349,10 +349,10 @@ Ejemplos:
\end_inset
son grupos abelianos.
-\end_layout
+\begin_inset Note Comment
+status open
-\begin_deeper
-\begin_layout Standard
+\begin_layout Plain Layout
La suma es asociativa y conmutativa con elemento neutro 0, y todo elemento
\begin_inset Formula $a$
@@ -369,7 +369,11 @@ La suma es asociativa y conmutativa con elemento neutro 0, y todo elemento
solo el 0 tiene opuesto.
\end_layout
-\end_deeper
+\end_inset
+
+
+\end_layout
+
\begin_layout Enumerate
\begin_inset Formula $\mathbb{N}$
\end_inset
@@ -391,15 +395,19 @@ La suma es asociativa y conmutativa con elemento neutro 0, y todo elemento
\end_inset
son monoides conmutativos con el producto.
-\end_layout
+\begin_inset Note Comment
+status open
-\begin_deeper
-\begin_layout Standard
+\begin_layout Plain Layout
El producto es asociativo y conmutativo con neutro 1, pero el 0 nunca tiene
opuesto.
\end_layout
-\end_deeper
+\end_inset
+
+
+\end_layout
+
\begin_layout Enumerate
Llamamos
\begin_inset Formula $Y^{X}$
@@ -423,10 +431,10 @@ Llamamos
\end_inset
es un monoide, pero no es conmutativo si hay al menos dos elementos.
-\end_layout
+\begin_inset Note Comment
+status open
-\begin_deeper
-\begin_layout Standard
+\begin_layout Plain Layout
Claramente
\begin_inset Formula $\circ$
\end_inset
@@ -471,7 +479,11 @@ Claramente
.
\end_layout
-\end_deeper
+\end_inset
+
+
+\end_layout
+
\begin_layout Enumerate
Llamamos
\series bold
@@ -499,14 +511,18 @@ grupo simétrico
\end_inset
es un grupo.
-\end_layout
+\begin_inset Note Comment
+status open
-\begin_deeper
-\begin_layout Standard
+\begin_layout Plain Layout
Es asociativa, tiene como neutro la identidad y todo elemento es invertible.
\end_layout
-\end_deeper
+\end_inset
+
+
+\end_layout
+
\begin_layout Enumerate
Sea
\begin_inset Formula $X$
@@ -530,10 +546,10 @@ Sea
es un monoide conmutativo cuyos elementos invertibles son las funciones
que no se anulan.
-\end_layout
+\begin_inset Note Comment
+status open
-\begin_deeper
-\begin_layout Standard
+\begin_layout Plain Layout
Ambas operaciones son conmutativas y asociativas, la suma tiene como neutro
la función constante 0 y el producto la función constante 1.
El inverso de una función
@@ -563,7 +579,11 @@ Ambas operaciones son conmutativas y asociativas, la suma tiene como neutro
no se anula.
\end_layout
-\end_deeper
+\end_inset
+
+
+\end_layout
+
\begin_layout Standard
Dada una operación
\begin_inset Formula $*$
@@ -605,17 +625,21 @@ Si
\end_inset
tiene a lo sumo un neutro.
-\end_layout
+\begin_inset Note Comment
+status open
-\begin_deeper
-\begin_layout Standard
+\begin_layout Plain Layout
\begin_inset Formula $f=e*f=e$
\end_inset
.
\end_layout
-\end_deeper
+\end_inset
+
+
+\end_layout
+
\begin_layout Standard
Dado un monoide
\begin_inset Formula $(X,*)$
@@ -655,17 +679,21 @@ Si
\end_inset
tiene a lo sumo un simétrico.
-\end_layout
+\begin_inset Note Comment
+status open
-\begin_deeper
-\begin_layout Standard
+\begin_layout Plain Layout
\begin_inset Formula $y=e*y=(x*a)*y=x*(a*y)=x*e=x$
\end_inset
.
\end_layout
-\end_deeper
+\end_inset
+
+
+\end_layout
+
\begin_layout Enumerate
Si
\begin_inset Formula $a$
@@ -673,10 +701,10 @@ Si
tiene simétrico por un lado, es cancelable por dicho lado.
En particular, todo elemento invertible es cancelable.
-\end_layout
+\begin_inset Note Comment
+status open
-\begin_deeper
-\begin_layout Standard
+\begin_layout Plain Layout
Si, por ejemplo,
\begin_inset Formula $a$
\end_inset
@@ -696,7 +724,11 @@ Si, por ejemplo,
.
\end_layout
-\end_deeper
+\end_inset
+
+
+\end_layout
+
\begin_layout Section
Anillos
\end_layout
@@ -979,10 +1011,10 @@ Todo elemento invertible es regular.
.
En particular, el 0 y el 1 son únicos.
-\end_layout
+\begin_inset Note Comment
+status open
-\begin_deeper
-\begin_layout Standard
+\begin_layout Plain Layout
\begin_inset Formula $b+a=a\implies b=b+(a-a)=(b+a)-a=a-a=0$
\end_inset
@@ -993,7 +1025,11 @@ Todo elemento invertible es regular.
.
\end_layout
-\end_deeper
+\end_inset
+
+
+\end_layout
+
\begin_layout Enumerate
El opuesto de
\begin_inset Formula $a$
@@ -1011,10 +1047,10 @@ El opuesto de
\end_inset
.
-\end_layout
+\begin_inset Note Comment
+status open
-\begin_deeper
-\begin_layout Standard
+\begin_layout Plain Layout
\begin_inset Formula $0a+0a=(0+0)a=0a=0a+0\implies0a=0$
\end_inset
@@ -1025,16 +1061,20 @@ El opuesto de
se prueba análogamente.
\end_layout
-\end_deeper
+\end_inset
+
+
+\end_layout
+
\begin_layout Enumerate
\begin_inset Formula $a(-b)=(-a)b=-(ab)$
\end_inset
.
-\end_layout
+\begin_inset Note Comment
+status open
-\begin_deeper
-\begin_layout Standard
+\begin_layout Plain Layout
\begin_inset Formula $a(-b)+ab=a(-b+b)=a0=0$
\end_inset
@@ -1058,23 +1098,31 @@ El opuesto de
se prueba análogamente.
\end_layout
-\end_deeper
+\end_inset
+
+
+\end_layout
+
\begin_layout Enumerate
\begin_inset Formula $a(b-c)=ab-ac$
\end_inset
.
-\end_layout
+\begin_inset Note Comment
+status open
-\begin_deeper
-\begin_layout Standard
+\begin_layout Plain Layout
\begin_inset Formula $a(b-c)=a(b+(-c))=ab+a(-c)=ab+(-ac)=ab-ac$
\end_inset
.
\end_layout
-\end_deeper
+\end_inset
+
+
+\end_layout
+
\begin_layout Enumerate
\begin_inset Formula $a$
\end_inset
@@ -1096,9 +1144,9 @@ El opuesto de
\end_inset
.
-\end_layout
+\begin_inset Note Comment
+status open
-\begin_deeper
\begin_layout Enumerate
\begin_inset Argument item:1
status open
@@ -1119,6 +1167,7 @@ Basta ver que
.
\end_layout
+\begin_deeper
\begin_layout Enumerate
\begin_inset Argument item:1
status open
@@ -1169,6 +1218,11 @@ Tenemos
\end_layout
\end_deeper
+\end_inset
+
+
+\end_layout
+
\begin_layout Enumerate
Si
\begin_inset Formula $0=1$
@@ -1179,17 +1233,21 @@ Si
\end_inset
.
-\end_layout
+\begin_inset Note Comment
+status open
-\begin_deeper
-\begin_layout Standard
+\begin_layout Plain Layout
\begin_inset Formula $a\in A\implies a=a1=a0=0$
\end_inset
.
\end_layout
-\end_deeper
+\end_inset
+
+
+\end_layout
+
\begin_layout Standard
Dado un anillo
\begin_inset Formula $A$
@@ -1278,10 +1336,10 @@ Propiedades: Dados un anillo
\end_inset
.
-\end_layout
+\begin_inset Note Comment
+status open
-\begin_deeper
-\begin_layout Standard
+\begin_layout Plain Layout
Para
\begin_inset Formula $n=0$
\end_inset
@@ -1315,16 +1373,20 @@ Para
.
\end_layout
-\end_deeper
+\end_inset
+
+
+\end_layout
+
\begin_layout Enumerate
\begin_inset Formula $(n+m)a=na+ma$
\end_inset
.
-\end_layout
+\begin_inset Note Comment
+status open
-\begin_deeper
-\begin_layout Standard
+\begin_layout Plain Layout
Para
\begin_inset Formula $m=0$
\end_inset
@@ -1358,16 +1420,20 @@ Para
.
\end_layout
-\end_deeper
+\end_inset
+
+
+\end_layout
+
\begin_layout Enumerate
\begin_inset Formula $n(ma)=(nm)a$
\end_inset
.
-\end_layout
+\begin_inset Note Comment
+status open
-\begin_deeper
-\begin_layout Standard
+\begin_layout Plain Layout
Para
\begin_inset Formula $n=0$
\end_inset
@@ -1392,7 +1458,11 @@ Para
.
\end_layout
-\end_deeper
+\end_inset
+
+
+\end_layout
+
\begin_layout Enumerate
Si
\begin_inset Formula $n,m\geq0$
@@ -1415,10 +1485,10 @@ Si
\end_inset
enteros arbitrarios.
-\end_layout
+\begin_inset Note Comment
+status open
-\begin_deeper
-\begin_layout Standard
+\begin_layout Plain Layout
Para
\begin_inset Formula $m=0$
\end_inset
@@ -1453,7 +1523,7 @@ Para
\end_layout
-\begin_layout Standard
+\begin_layout Plain Layout
Primero vemos que, para
\begin_inset Formula $m>0$
\end_inset
@@ -1502,7 +1572,7 @@ Primero vemos que, para
.
\end_layout
-\begin_layout Standard
+\begin_layout Plain Layout
Con esto, sea
\begin_inset Formula $m>0$
\end_inset
@@ -1518,7 +1588,11 @@ Con esto, sea
.
\end_layout
-\end_deeper
+\end_inset
+
+
+\end_layout
+
\begin_layout Enumerate
Si
\begin_inset Formula $A$
@@ -1545,10 +1619,10 @@ Si
\end_inset
.
-\end_layout
+\begin_inset Note Comment
+status open
-\begin_deeper
-\begin_layout Standard
+\begin_layout Plain Layout
Para
\begin_inset Formula $n=0$
\end_inset
@@ -1586,7 +1660,11 @@ Para
.
\end_layout
-\end_deeper
+\end_inset
+
+
+\end_layout
+
\begin_layout Section
Subanillos
\end_layout
@@ -1769,7 +1847,8 @@ Para que
\end_inset
.
-\end_layout
+\begin_inset Note Comment
+status open
\begin_layout Description
\begin_inset Formula $[1\implies2]$
@@ -1862,6 +1941,11 @@ Para que
, luego es cerrado para sumas.
\end_layout
+\end_inset
+
+
+\end_layout
+
\begin_layout Standard
Algunos subanillos:
\end_layout
@@ -1915,9 +1999,9 @@ Cada uno de
\end_inset
.
-\end_layout
+\begin_inset Note Comment
+status open
-\begin_deeper
\begin_layout Enumerate
\begin_inset Argument item:1
status open
@@ -1950,6 +2034,7 @@ Si
.
\end_layout
+\begin_deeper
\begin_layout Enumerate
\begin_inset Argument item:1
status open
@@ -1967,6 +2052,11 @@ Obvio.
\end_layout
\end_deeper
+\end_inset
+
+
+\end_layout
+
\begin_layout Enumerate
Llamamos
\series bold
@@ -1985,10 +2075,10 @@ subanillo primo
\end_inset
.
-\end_layout
+\begin_inset Note Comment
+status open
-\begin_deeper
-\begin_layout Standard
+\begin_layout Plain Layout
Claramente
\begin_inset Formula $\mathbb{Z}1$
\end_inset
@@ -2039,7 +2129,11 @@ Claramente
.
\end_layout
-\end_deeper
+\end_inset
+
+
+\end_layout
+
\begin_layout Enumerate
Si
\begin_inset Formula $A$
@@ -2062,14 +2156,18 @@ Si
\end_inset
.
-\end_layout
+\begin_inset Note Comment
+status open
-\begin_deeper
-\begin_layout Standard
+\begin_layout Plain Layout
No contiene al 1.
\end_layout
-\end_deeper
+\end_inset
+
+
+\end_layout
+
\begin_layout Enumerate
Dado
\begin_inset Formula $z\in\mathbb{C}$
@@ -2277,49 +2375,61 @@ Propiedades: Sean
\end_inset
.
-\end_layout
+\begin_inset Note Comment
+status open
-\begin_deeper
-\begin_layout Standard
+\begin_layout Plain Layout
\begin_inset Formula $0+f(0)=f(0)=f(0+0)=f(0)+f(0)\implies0=f(0)$
\end_inset
.
\end_layout
-\end_deeper
+\end_inset
+
+
+\end_layout
+
\begin_layout Enumerate
\begin_inset Formula $f(-a)=-f(a)$
\end_inset
.
-\end_layout
+\begin_inset Note Comment
+status open
-\begin_deeper
-\begin_layout Standard
+\begin_layout Plain Layout
\begin_inset Formula $f(a)+f(-a)=f(a+(-a))=f(0)=0$
\end_inset
.
\end_layout
-\end_deeper
+\end_inset
+
+
+\end_layout
+
\begin_layout Enumerate
\begin_inset Formula $f(a-b)=f(a)-f(b)$
\end_inset
.
-\end_layout
+\begin_inset Note Comment
+status open
-\begin_deeper
-\begin_layout Standard
+\begin_layout Plain Layout
\begin_inset Formula $f(a-b)=f(a)+f(-b)=f(a)-f(b)$
\end_inset
.
\end_layout
-\end_deeper
+\end_inset
+
+
+\end_layout
+
\begin_layout Enumerate
\begin_inset Formula $f(a_{1}+\dots+a_{n})=f(a_{1})+\dots+f(a_{n})$
\end_inset
@@ -2332,10 +2442,10 @@ Propiedades: Sean
\end_inset
.
-\end_layout
+\begin_inset Note Comment
+status open
-\begin_deeper
-\begin_layout Standard
+\begin_layout Plain Layout
Para
\begin_inset Formula $n=0$
\end_inset
@@ -2347,7 +2457,11 @@ Para
.
\end_layout
-\end_deeper
+\end_inset
+
+
+\end_layout
+
\begin_layout Enumerate
Si
\begin_inset Formula $a$
@@ -2362,10 +2476,10 @@ Si
\end_inset
.
-\end_layout
+\begin_inset Note Comment
+status open
-\begin_deeper
-\begin_layout Standard
+\begin_layout Plain Layout
\begin_inset Formula $f(a)f(a^{-1})=f(aa^{-1})=f(1)=1$
\end_inset
@@ -2376,7 +2490,11 @@ Si
.
\end_layout
-\end_deeper
+\end_inset
+
+
+\end_layout
+
\begin_layout Enumerate
\begin_inset Formula $f(a_{1}\cdots a_{n})=f(a_{1})\cdots f(a_{n})$
\end_inset
@@ -2402,10 +2520,10 @@ Si
\end_inset
.
-\end_layout
+\begin_inset Note Comment
+status open
-\begin_deeper
-\begin_layout Standard
+\begin_layout Plain Layout
\begin_inset Formula $1=f(1)\in f(A')$
\end_inset
@@ -2437,7 +2555,11 @@ Si
.
\end_layout
-\end_deeper
+\end_inset
+
+
+\end_layout
+
\begin_layout Enumerate
Si
\begin_inset Formula $B'$
@@ -2456,10 +2578,10 @@ Si
\end_inset
.
-\end_layout
+\begin_inset Note Comment
+status open
-\begin_deeper
-\begin_layout Standard
+\begin_layout Plain Layout
\begin_inset Formula $1\in f^{-1}(1)\in f^{-1}(B')$
\end_inset
@@ -2491,7 +2613,11 @@ Si
.
\end_layout
-\end_deeper
+\end_inset
+
+
+\end_layout
+
\begin_layout Enumerate
Si
\begin_inset Formula $f$
@@ -2502,10 +2628,10 @@ Si
\end_inset
también.
-\end_layout
+\begin_inset Note Comment
+status open
-\begin_deeper
-\begin_layout Standard
+\begin_layout Plain Layout
\begin_inset Formula $f^{-1}(1)=1$
\end_inset
@@ -2545,7 +2671,11 @@ Si
.
\end_layout
-\end_deeper
+\end_inset
+
+
+\end_layout
+
\begin_layout Standard
Ejemplos:
\end_layout
@@ -2572,9 +2702,9 @@ Dados anillos
\end_inset
.
-\end_layout
+\begin_inset Note Comment
+status open
-\begin_deeper
\begin_layout Enumerate
\begin_inset Argument item:1
status open
@@ -2595,6 +2725,7 @@ status open
.
\end_layout
+\begin_deeper
\begin_layout Enumerate
\begin_inset Argument item:1
status open
@@ -2624,6 +2755,11 @@ status open
\end_layout
\end_deeper
+\end_inset
+
+
+\end_layout
+
\begin_layout Enumerate
Sea
\begin_inset Formula $B$
@@ -2662,10 +2798,10 @@ Dado un anillo
\end_inset
.
-\end_layout
+\begin_inset Note Comment
+status open
-\begin_deeper
-\begin_layout Standard
+\begin_layout Plain Layout
\begin_inset Formula $\mu(1)=1$
\end_inset
@@ -2701,7 +2837,11 @@ Dado un anillo
.
\end_layout
-\end_deeper
+\end_inset
+
+
+\end_layout
+
\begin_layout Enumerate
Dada una familia de anillos
\begin_inset Formula $(A_{i})_{i\in I}$
@@ -2810,7 +2950,12 @@ ideal
\end_inset
.
- Todo ideal contiene al 0, pues tomando
+ Todo ideal contiene al 0
+\begin_inset Note Comment
+status open
+
+\begin_layout Plain Layout
+, pues tomando
\begin_inset Formula $a\in I$
\end_inset
@@ -2818,6 +2963,11 @@ ideal
\begin_inset Formula $0=a+(-1)a\in I$
\end_inset
+
+\end_layout
+
+\end_inset
+
.
\end_layout
@@ -2905,10 +3055,10 @@ ideal principal
\end_inset
son de esta forma.
-\end_layout
+\begin_inset Note Comment
+status open
-\begin_deeper
-\begin_layout Standard
+\begin_layout Plain Layout
Sea
\begin_inset Formula $I$
\end_inset
@@ -2984,7 +3134,11 @@ Sea
.
\end_layout
-\end_deeper
+\end_inset
+
+
+\end_layout
+
\begin_layout Enumerate
Sean
\begin_inset Formula $I$
@@ -3092,7 +3246,11 @@ anillo cociente de
\series default
.
-
+\begin_inset Note Comment
+status open
+
+\begin_layout Plain Layout
+
\series bold
Demostración:
\series default
@@ -3173,6 +3331,11 @@ Demostración:
.
\end_layout
+\end_inset
+
+
+\end_layout
+
\begin_layout Standard
Es claro que
\begin_inset Formula $A/0\cong A$
@@ -3192,7 +3355,11 @@ Es claro que
\end_inset
.
- En efecto, dado
+\begin_inset Note Comment
+status open
+
+\begin_layout Plain Layout
+En efecto, dado
\begin_inset Formula $a\in\mathbb{Z}$
\end_inset
@@ -3217,12 +3384,17 @@ Es claro que
\end_inset
,
-\begin_inset Formula $a\equiv b\iff a-b\in n\mathbb{Z}\iff n|a-b\overset{|a-b|<n}{\iff}a=b$
+\begin_inset Formula $a\equiv b\iff a-b\in n\mathbb{Z}\iff n\mid a-b\overset{|a-b|<n}{\iff}a=b$
\end_inset
.
\end_layout
+\end_inset
+
+
+\end_layout
+
\begin_layout Standard
Dado un anillo conmutativo
\begin_inset Formula $A$
@@ -3240,9 +3412,9 @@ Dado un anillo conmutativo
\end_inset
.
-\end_layout
+\begin_inset Note Comment
+status open
-\begin_deeper
\begin_layout Enumerate
\begin_inset Argument item:1
status open
@@ -3267,6 +3439,7 @@ Dado
.
\end_layout
+\begin_deeper
\begin_layout Enumerate
\begin_inset Argument item:1
status open
@@ -3296,6 +3469,11 @@ En particular
\end_layout
\end_deeper
+\end_inset
+
+
+\end_layout
+
\begin_layout Enumerate
Un ideal
\begin_inset Formula $I$
@@ -3318,9 +3496,9 @@ Un ideal
\end_inset
.
-\end_layout
+\begin_inset Note Comment
+status open
-\begin_deeper
\begin_layout Description
\begin_inset Formula $[1\implies2\implies3]$
\end_inset
@@ -3328,6 +3506,7 @@ Un ideal
Obvio.
\end_layout
+\begin_deeper
\begin_layout Description
\begin_inset Formula $[3\implies1]$
\end_inset
@@ -3356,6 +3535,11 @@ Un ideal
\end_layout
\end_deeper
+\end_inset
+
+
+\end_layout
+
\begin_layout Standard
Sea
\begin_inset Formula $f:A\to B$
@@ -3391,7 +3575,11 @@ núcleo
\end_inset
.
-
+\begin_inset Note Comment
+status open
+
+\begin_layout Plain Layout
+
\series bold
Demostración:
\series default
@@ -3472,6 +3660,11 @@ Demostración:
.
\end_layout
+\end_inset
+
+
+\end_layout
+
\begin_layout Standard
Un homomorfismo de anillos
\begin_inset Formula $f:A\to B$
@@ -3482,7 +3675,8 @@ Un homomorfismo de anillos
\end_inset
.
-\end_layout
+\begin_inset Note Comment
+status open
\begin_layout Itemize
\begin_inset Argument item:1
@@ -3548,6 +3742,11 @@ Sean
es inyectiva.
\end_layout
+\end_inset
+
+
+\end_layout
+
\begin_layout Standard
\series bold
@@ -3947,7 +4146,11 @@ Sean
\end_inset
.
- En efecto,
+\begin_inset Note Comment
+status open
+
+\begin_layout Plain Layout
+En efecto,
\begin_inset Formula $(n)(m)=(\{ab\}_{a\in(n),b\in(m)})=(\{pnqm\}_{p,q\in\mathbb{Z}})=(\{knm\})_{k\in\mathbb{Z}}=(nm)$
\end_inset
@@ -3962,6 +4165,11 @@ Sean
.
\end_layout
+\end_inset
+
+
+\end_layout
+
\begin_layout Section
Teoremas de isomorfía
\end_layout
@@ -4110,6 +4318,11 @@ Así, si
\begin_inset Formula $\frac{A\times B}{0\times B}\cong A$
\end_inset
+
+\begin_inset Note Comment
+status open
+
+\begin_layout Plain Layout
, pues el homomorfismo de proyección
\begin_inset Formula $f:A\times B\to A$
\end_inset
@@ -4122,6 +4335,11 @@ Así, si
\begin_inset Formula $0\times B$
\end_inset
+
+\end_layout
+
+\end_inset
+
.
\end_layout
@@ -4421,7 +4639,8 @@ característica
\end_inset
.
-\end_layout
+\begin_inset Note Comment
+status open
\begin_layout Description
\begin_inset Formula $[1\implies2]$
@@ -4592,6 +4811,11 @@ característica
.
\end_layout
+\end_inset
+
+
+\end_layout
+
\begin_layout Standard
\series bold