diff options
Diffstat (limited to 'ga/n3.lyx')
| -rw-r--r-- | ga/n3.lyx | 476 |
1 files changed, 317 insertions, 159 deletions
@@ -269,10 +269,10 @@ Si \end_inset . -\end_layout +\begin_inset Note Comment +status open -\begin_deeper -\begin_layout Standard +\begin_layout Plain Layout Sean \begin_inset Formula $P=:\sum_{k}a_{k}X^{k}$ \end_inset @@ -353,6 +353,7 @@ Si la desigualdad es estricta, . \end_layout +\begin_deeper \begin_layout Enumerate \begin_inset Argument item:1 status open @@ -382,6 +383,11 @@ El coeficiente de grado \end_layout \end_deeper +\end_inset + + +\end_layout + \begin_layout Enumerate \begin_inset Formula $\text{gr}(PQ)\leq\text{gr}(P)+\text{gr}(Q)$ \end_inset @@ -391,10 +397,10 @@ El coeficiente de grado \end_inset . -\end_layout +\begin_inset Note Comment +status open -\begin_deeper -\begin_layout Standard +\begin_layout Plain Layout Para \begin_inset Formula $N>n+m$ \end_inset @@ -418,7 +424,7 @@ Para \end_layout -\begin_layout Standard +\begin_layout Plain Layout El coeficiente de grado \begin_inset Formula $n+m$ \end_inset @@ -434,7 +440,11 @@ El coeficiente de grado , luego la igualdad se da si y sólo si esto es no nulo. \end_layout -\end_deeper +\end_inset + + +\end_layout + \begin_layout Standard \begin_inset Formula $A[X]$ \end_inset @@ -461,7 +471,8 @@ cuerpo de las funciones racionales \end_inset . -\end_layout +\begin_inset Note Comment +status open \begin_layout Enumerate \begin_inset Argument item:1 @@ -523,6 +534,11 @@ Sean tampoco lo es. \end_layout +\end_inset + + +\end_layout + \begin_layout Section Propiedad universal \end_layout @@ -581,10 +597,10 @@ PUAP \end_inset -\end_layout +\begin_inset Note Comment +status open -\begin_deeper -\begin_layout Standard +\begin_layout Plain Layout Si \begin_inset Formula $\tilde{f}$ \end_inset @@ -620,7 +636,11 @@ lo que prueba la unicidad. \end_layout -\end_deeper +\end_inset + + +\end_layout + \begin_layout Enumerate \begin_inset Formula $A[X]$ \end_inset @@ -671,10 +691,10 @@ lo que prueba la unicidad. \end_inset . -\end_layout +\begin_inset Note Comment +status open -\begin_deeper -\begin_layout Standard +\begin_layout Plain Layout Tomando \begin_inset Formula $v$ \end_inset @@ -740,7 +760,11 @@ Tomando es el isomorfismo buscado. \end_layout -\end_deeper +\end_inset + + +\end_layout + \begin_layout Standard Así: \end_layout @@ -808,17 +832,21 @@ función polinómica \end_inset . -\end_layout +\begin_inset Note Comment +status open -\begin_deeper -\begin_layout Standard +\begin_layout Plain Layout \begin_inset Formula $S_{b}$ \end_inset se obtiene al aplicar la PUAP a la inclusión. \end_layout -\end_deeper +\end_inset + + +\end_layout + \begin_layout Enumerate Dado \begin_inset Formula $a\in A$ @@ -837,10 +865,10 @@ Dado \end_inset . -\end_layout +\begin_inset Note Comment +status open -\begin_deeper -\begin_layout Standard +\begin_layout Plain Layout \begin_inset Formula $S_{X-a}(S_{X+a}(X))=S_{X-a}(X+a)=X$ \end_inset @@ -872,7 +900,11 @@ Dado . \end_layout -\end_deeper +\end_inset + + +\end_layout + \begin_layout Enumerate Si \begin_inset Formula $A$ @@ -883,10 +915,10 @@ Si \end_inset . -\end_layout +\begin_inset Note Comment +status open -\begin_deeper -\begin_layout Standard +\begin_layout Plain Layout El homomorfismo \begin_inset Formula $A[X]\to A$ \end_inset @@ -898,7 +930,11 @@ El homomorfismo , y basta aplicar el primer teorema de isomorfía. \end_layout -\end_deeper +\end_inset + + +\end_layout + \begin_layout Enumerate Todo homomorfismo de anillos \begin_inset Formula $f:A\to B$ @@ -921,10 +957,10 @@ que es inyectivo o suprayectivo si lo es \end_inset . -\end_layout +\begin_inset Note Comment +status open -\begin_deeper -\begin_layout Standard +\begin_layout Plain Layout Se obtiene de aplicar la PUAP a la composición de la inclusión \begin_inset Formula $B\to B[X]$ \end_inset @@ -936,7 +972,11 @@ Se obtiene de aplicar la PUAP a la composición de la inclusión . \end_layout -\end_deeper +\end_inset + + +\end_layout + \begin_layout Enumerate Si \begin_inset Formula $A$ @@ -955,14 +995,18 @@ Si \end_inset . -\end_layout +\begin_inset Note Comment +status open -\begin_deeper -\begin_layout Standard +\begin_layout Plain Layout Basta aplicar lo anterior al homomorfismo inyectivo inclusión. \end_layout -\end_deeper +\end_inset + + +\end_layout + \begin_layout Enumerate Si \begin_inset Formula $I$ @@ -1001,10 +1045,10 @@ Su núcleo es \end_inset . -\end_layout +\begin_inset Note Comment +status open -\begin_deeper -\begin_layout Standard +\begin_layout Plain Layout Se obtiene de aplicar la PUAP a la proyección \begin_inset Formula $A\to A/I$ \end_inset @@ -1017,7 +1061,11 @@ Se obtiene de aplicar la PUAP a la proyección es un ideal, y entonces basta aplicar el primer teorema de isomorfía. \end_layout -\end_deeper +\end_inset + + +\end_layout + \begin_layout Section Raíces de polinomios \end_layout @@ -1078,7 +1126,11 @@ noprefix "false" \end_inset . - +\begin_inset Note Comment +status open + +\begin_layout Plain Layout + \series bold Demostración: \series default @@ -1205,6 +1257,11 @@ Demostración: . \end_layout +\end_inset + + +\end_layout + \begin_layout Standard \begin_inset Float algorithm wide false @@ -1368,7 +1425,11 @@ Teorema del resto: \end_inset . - En efecto, si +\begin_inset Note Comment +status open + +\begin_layout Plain Layout +En efecto, si \begin_inset Formula $f=q(X-a)+r$ \end_inset @@ -1389,6 +1450,10 @@ Teorema del resto: \end_inset . +\end_layout + +\end_inset + De aquí se obtiene el \series bold teorema de Ruffini @@ -1528,7 +1593,11 @@ La multiplicidad de \end_inset no es raíz. - +\begin_inset Note Comment +status open + +\begin_layout Plain Layout + \series bold Demostración: \series default @@ -1601,6 +1670,11 @@ Demostración: . \end_layout +\end_inset + + +\end_layout + \begin_layout Standard Si \begin_inset Formula $D$ @@ -1651,7 +1725,11 @@ Si \end_inset . - +\begin_inset Note Comment +status open + +\begin_layout Plain Layout + \series bold Demostración: \series default @@ -1725,6 +1803,11 @@ Demostración: \end_layout +\end_inset + + +\end_layout + \begin_layout Standard \series bold @@ -1767,10 +1850,10 @@ Para \end_inset son iguales. -\end_layout +\begin_inset Note Comment +status open -\begin_deeper -\begin_layout Standard +\begin_layout Plain Layout Sean \begin_inset Formula $a_{1},\dots,a_{m}$ \end_inset @@ -1790,7 +1873,11 @@ Sean . \end_layout -\end_deeper +\end_inset + + +\end_layout + \begin_layout Enumerate \begin_inset Formula $D$ \end_inset @@ -1804,9 +1891,9 @@ Sean \end_inset . -\end_layout +\begin_inset Note Comment +status open -\begin_deeper \begin_layout Enumerate \begin_inset Argument item:1 status open @@ -1832,6 +1919,7 @@ Si hubiera . \end_layout +\begin_deeper \begin_layout Enumerate \begin_inset Argument item:1 status open @@ -1854,6 +1942,11 @@ Si \end_layout \end_deeper +\end_inset + + +\end_layout + \begin_layout Standard Como ejemplo de lo anterior, por el teorema pequeño de Fermat, dado un primo @@ -1913,10 +2006,10 @@ derivada \end_inset . -\end_layout +\begin_inset Note Comment +status open -\begin_deeper -\begin_layout Standard +\begin_layout Plain Layout \begin_inset Formula \begin{multline*} D(aP+bQ)=D\left(a\sum_{k}p_{k}X^{k}+b\sum_{k}q_{k}X^{k}\right)=D\left(\sum_{k}(ap_{k}+bq_{k})X^{k}\right)=\\ @@ -1928,16 +2021,20 @@ D(aP+bQ)=D\left(a\sum_{k}p_{k}X^{k}+b\sum_{k}q_{k}X^{k}\right)=D\left(\sum_{k}(a \end_layout -\end_deeper +\end_inset + + +\end_layout + \begin_layout Enumerate \begin_inset Formula $(PQ)'=P'Q+PQ'$ \end_inset . -\end_layout +\begin_inset Note Comment +status open -\begin_deeper -\begin_layout Standard +\begin_layout Plain Layout \begin_inset Formula \begin{multline*} D(PQ)=D\left(\left(\sum_{k}p_{k}X^{k}\right)\left(\sum_{k}q_{k}X^{k}\right)\right)=D\left(\sum_{k}\left(\sum_{i=0}^{k}p_{i}q_{k-i}\right)X^{k}\right)=\\ @@ -1951,16 +2048,20 @@ D(PQ)=D\left(\left(\sum_{k}p_{k}X^{k}\right)\left(\sum_{k}q_{k}X^{k}\right)\righ \end_layout -\end_deeper +\end_inset + + +\end_layout + \begin_layout Enumerate \begin_inset Formula $(P^{n})'=nP^{n-1}P'$ \end_inset . -\end_layout +\begin_inset Note Comment +status open -\begin_deeper -\begin_layout Standard +\begin_layout Plain Layout \begin_inset Formula $P^{n-1}$ \end_inset @@ -1993,7 +2094,11 @@ D(PQ)=D\left(\left(\sum_{k}p_{k}X^{k}\right)\left(\sum_{k}q_{k}X^{k}\right)\righ . \end_layout -\end_deeper +\end_inset + + +\end_layout + \begin_layout Standard Dados un dominio \begin_inset Formula $D$ @@ -2024,7 +2129,11 @@ Dados un dominio \end_inset . - +\begin_inset Note Comment +status open + +\begin_layout Plain Layout + \series bold Demostración: \series default @@ -2137,6 +2246,11 @@ Demostración: . \end_layout +\end_inset + + +\end_layout + \begin_layout Section Divisibilidad en anillos de polinomios \end_layout @@ -2155,7 +2269,8 @@ Dado un anillo \end_inset es un cuerpo. -\end_layout +\begin_inset Note Comment +status open \begin_layout Description \begin_inset Formula $1\implies2]$ @@ -2270,6 +2385,11 @@ Dado un anillo son invertibles. \end_layout +\end_inset + + +\end_layout + \begin_layout Standard Sean \begin_inset Formula $D$ @@ -3150,22 +3270,6 @@ status open \end_layout \begin_layout Standard -\begin_inset ERT -status open - -\begin_layout Plain Layout - - -\backslash -begin{samepage} -\end_layout - -\end_inset - - -\end_layout - -\begin_layout Standard Si \begin_inset Formula $D$ \end_inset @@ -3208,7 +3312,12 @@ Si \end_inset . - Esto está bien definido, pues si + Esto está bien definido +\begin_inset Note Comment +status open + +\begin_layout Plain Layout +, pues si \begin_inset Formula $b_{1}\sim b_{2}$ \end_inset @@ -3220,28 +3329,17 @@ Si \begin_inset Formula $(ab_{2})D^{*}=(aub_{1})D^{*}=\{ab_{1}uv\}_{v\in D^{*}}=\{ab_{1}v\}_{v\in D^{*}}=(ab_{1})D^{*}$ \end_inset -. - Además, -\begin_inset Formula $a(b(cD^{*}))=(ab)(cD^{*})$ -\end_inset - -. -\end_layout - -\begin_layout Standard -\begin_inset ERT -status open -\begin_layout Plain Layout - - -\backslash -end{samepage} \end_layout \end_inset +. + Además, +\begin_inset Formula $a(b(cD^{*}))=(ab)(cD^{*})$ +\end_inset +. \end_layout \begin_layout Standard @@ -3274,7 +3372,12 @@ Definimos \end_inset . - Esto está bien definido, pues si + Esto está bien definido +\begin_inset Note Comment +status open + +\begin_layout Plain Layout +, pues si \begin_inset Formula $a_{1}p,a_{2}p\in D[X]$ \end_inset @@ -3286,6 +3389,11 @@ Definimos \begin_inset Formula $a_{1}^{-1}c(a_{1}p)=a_{2}^{-1}c(a_{2}p)$ \end_inset + +\end_layout + +\end_inset + . Si \begin_inset Formula $c(p)=aD^{*}$ @@ -3344,10 +3452,10 @@ Si \end_inset . -\end_layout +\begin_inset Note Comment +status open -\begin_deeper -\begin_layout Standard +\begin_layout Plain Layout \begin_inset Formula $a\mid p$ \end_inset @@ -3370,16 +3478,20 @@ Si . \end_layout -\end_deeper +\end_inset + + +\end_layout + \begin_layout Enumerate \begin_inset Formula $c(ap)=ac(p)$ \end_inset . -\end_layout +\begin_inset Note Comment +status open -\begin_deeper -\begin_layout Standard +\begin_layout Plain Layout Si \begin_inset Formula $a\in D$ \end_inset @@ -3404,15 +3516,19 @@ Si . \end_layout -\end_deeper +\end_inset + + +\end_layout + \begin_layout Enumerate \begin_inset Formula $p\in D[X]\iff c(p)\in D$ \end_inset . -\end_layout +\begin_inset Note Comment +status open -\begin_deeper \begin_layout Enumerate \begin_inset Argument item:1 status open @@ -3429,6 +3545,7 @@ status open Obvio. \end_layout +\begin_deeper \begin_layout Enumerate \begin_inset Argument item:1 status open @@ -3572,6 +3689,11 @@ Sea \end_layout \end_deeper +\end_inset + + +\end_layout + \begin_layout Standard Un polinomio \begin_inset Formula $p$ @@ -3810,10 +3932,10 @@ Si \end_inset . -\end_layout +\begin_inset Note Comment +status open -\begin_deeper -\begin_layout Standard +\begin_layout Plain Layout Sean \begin_inset Formula $g,h\in K[X]$ \end_inset @@ -3833,7 +3955,11 @@ Sean es unidad. \end_layout -\end_deeper +\end_inset + + +\end_layout + \begin_layout Enumerate Si \begin_inset Formula $\text{gr}(f)>1$ @@ -3856,10 +3982,10 @@ Si \end_inset . -\end_layout +\begin_inset Note Comment +status open -\begin_deeper -\begin_layout Standard +\begin_layout Plain Layout Sean \begin_inset Formula $a$ \end_inset @@ -3887,7 +4013,11 @@ Sean son unidades. \end_layout -\end_deeper +\end_inset + + +\end_layout + \begin_layout Enumerate Si \begin_inset Formula $\text{gr}(f)\in\{2,3\}$ @@ -3906,9 +4036,9 @@ Si \end_inset . -\end_layout +\begin_inset Note Comment +status open -\begin_deeper \begin_layout Enumerate \begin_inset Argument item:1 status open @@ -3925,6 +4055,7 @@ status open Es el contrarrecíproco de lo anterior. \end_layout +\begin_deeper \begin_layout Enumerate \begin_inset Argument item:1 status open @@ -3983,6 +4114,11 @@ De haber \end_layout \end_deeper +\end_inset + + +\end_layout + \begin_layout Standard Si \begin_inset Formula $D$ @@ -4021,7 +4157,11 @@ Si \end_inset . - En efecto, sea +\begin_inset Note Comment +status open + +\begin_layout Plain Layout +En efecto, sea \begin_inset Formula $t=\frac{r}{s}$ \end_inset @@ -4072,6 +4212,11 @@ Si . \end_layout +\end_inset + + +\end_layout + \begin_layout Standard \series bold @@ -4126,7 +4271,11 @@ Criterio de reducción: \end_inset . - +\begin_inset Note Comment +status open + +\begin_layout Plain Layout + \series bold Demostración: \series default @@ -4202,6 +4351,11 @@ Demostración: \end_layout +\end_inset + + +\end_layout + \begin_layout Standard En particular, si \begin_inset Formula $p\in\mathbb{Z}$ @@ -4276,7 +4430,11 @@ Criterio de Eisenstein: \end_inset . - +\begin_inset Note Comment +status open + +\begin_layout Plain Layout + \series bold Demostración: \series default @@ -4353,6 +4511,11 @@ Demostración: es análogo. \end_layout +\end_inset + + +\end_layout + \begin_layout Standard Así: \end_layout @@ -4375,10 +4538,10 @@ Si \end_inset es irreducible. -\end_layout +\begin_inset Note Comment +status open -\begin_deeper -\begin_layout Standard +\begin_layout Plain Layout \begin_inset Formula $X^{n}-a$ \end_inset @@ -4393,7 +4556,11 @@ Si . \end_layout -\end_deeper +\end_inset + + +\end_layout + \begin_layout Enumerate Para \begin_inset Formula $n\geq3$ @@ -4474,10 +4641,10 @@ de 1 \end_inset es irreducible. -\end_layout +\begin_inset Note Comment +status open -\begin_deeper -\begin_layout Standard +\begin_layout Plain Layout Usando el automorfismo de sustitución en \begin_inset Formula $X+1$ \end_inset @@ -4521,7 +4688,11 @@ Entonces y podemos aplicar el criterio de Eisenstein. \end_layout -\end_deeper +\end_inset + + +\end_layout + \begin_layout Section Polinomios en varias indeterminadas \end_layout @@ -4581,7 +4752,17 @@ polinomios en \begin_inset Formula $n\in\mathbb{N}^{*}$ \end_inset -, por inducción: + +\begin_inset Note Comment +status open + +\begin_layout Plain Layout +, por inducción +\end_layout + +\end_inset + +: \end_layout \begin_layout Enumerate @@ -4691,7 +4872,11 @@ con \end_inset . - +\begin_inset Note Comment +status open + +\begin_layout Plain Layout + \series bold Demostración: \series default @@ -4772,17 +4957,6 @@ p=\sum_{i\in\mathbb{N}^{n}}p_{i}X_{1}^{i_{1}}\cdots X_{n}^{i_{n}}=\sum_{i\in\mat . \end_layout -\begin_layout Standard -\begin_inset ERT -status open - -\begin_layout Plain Layout - - -\backslash -begin{samepage} -\end_layout - \end_inset @@ -4897,22 +5071,6 @@ Dados un anillo conmutativo \end_layout \begin_layout Standard -\begin_inset ERT -status open - -\begin_layout Plain Layout - - -\backslash -end{samepage} -\end_layout - -\end_inset - - -\end_layout - -\begin_layout Standard Así: \end_layout |
