diff options
Diffstat (limited to 'ga/n4.lyx')
| -rw-r--r-- | ga/n4.lyx | 20 | 
1 files changed, 10 insertions, 10 deletions
| @@ -745,7 +745,7 @@ Si  \end_inset   es una familia de grupos,  -\begin_inset Formula $\bigoplus_{i\in I}G_{i}:=\{(g_{i})_{i\in I}\in\prod_{i\in I}G_{i}:\{i\in I:g_{i}\ne1\}\text{ es finito}\}$ +\begin_inset Formula $\bigoplus_{i\in I}G_{i}:=\{(g_{i})_{i\in I}\in\prod_{i\in I}G_{i}\mid \{i\in I\mid g_{i}\ne1\}\text{ es finito}\}$  \end_inset   es un subgrupo de  @@ -773,7 +773,7 @@ centralizador  \end_inset   es el subgrupo  -\begin_inset Formula $C_{G}(x):=\{g\in G:gx=xg\}$ +\begin_inset Formula $C_{G}(x):=\{g\in G\mid gx=xg\}$  \end_inset  , y el  @@ -785,7 +785,7 @@ centro  \end_inset   es el subgrupo abeliano  -\begin_inset Formula $Z(G):=\{g\in G:\forall x\in G,gx=xg\}=\bigcap_{x\in X}C_{G}(x)$ +\begin_inset Formula $Z(G):=\{g\in G\mid \forall x\in G,gx=xg\}=\bigcap_{x\in X}C_{G}(x)$  \end_inset  . @@ -2973,7 +2973,7 @@ estabilizador  \end_inset   a  -\begin_inset Formula $\text{Estab}_{G}(x):=\{g\in G:g\cdot x=x\}$ +\begin_inset Formula $\text{Estab}_{G}(x):=\{g\in G\mid g\cdot x=x\}$  \end_inset  . @@ -3014,7 +3014,7 @@ estabilizador  \end_inset   a  -\begin_inset Formula $\text{Estab}_{G}(x):=\{g\in G:x\cdot g=x\}$ +\begin_inset Formula $\text{Estab}_{G}(x):=\{g\in G\mid x\cdot g=x\}$  \end_inset  . @@ -3050,7 +3050,7 @@ acción por translación a la izquierda   y   \begin_inset Formula   \[ -\text{Estab}_{G}(xH)=\{g\in G:gxH=xH\}=\{g\in G:x^{-1}gx\in H\}=xHx^{-1}=H^{x^{-1}}. +\text{Estab}_{G}(xH)=\{g\in G\mid gxH=xH\}=\{g\in G\mid x^{-1}gx\in H\}=xHx^{-1}=H^{x^{-1}}.  \]  \end_inset @@ -3170,7 +3170,7 @@ normalizador  \end_inset   es  -\begin_inset Formula $N_{G}(H):=\text{Estab}_{G}(H)=\{g\in G:H^{g}=H\}$ +\begin_inset Formula $N_{G}(H):=\text{Estab}_{G}(H)=\{g\in G\mid H^{g}=H\}$  \end_inset  , el mayor subgrupo de  @@ -3393,12 +3393,12 @@ status open  \begin_layout Plain Layout  Si la acción es por la izquierda,  -\begin_inset Formula $\text{Estab}_{G}(x)^{g^{-1}}=\{ghg^{-1}:h\cdot x=x\}=\{p\in G:g^{-1}pg\cdot x=x\}=\{p\in G:p\cdot(g\cdot x)=g\cdot x\}=\text{Estab}_{G}(g\cdot x)$ +\begin_inset Formula $\text{Estab}_{G}(x)^{g^{-1}}=\{ghg^{-1}\mid h\cdot x=x\}=\{p\in G\mid g^{-1}pg\cdot x=x\}=\{p\in G\mid p\cdot(g\cdot x)=g\cdot x\}=\text{Estab}_{G}(g\cdot x)$  \end_inset  .   Si es por la derecha,  -\begin_inset Formula $\text{Estab}_{G}(x)^{g}=\{g^{-1}hg:x\cdot h=x\}=\{p\in G:x\cdot gpg^{-1}=x\}=\{p\in G:(x\cdot g)\cdot p=x\cdot g\}$ +\begin_inset Formula $\text{Estab}_{G}(x)^{g}=\{g^{-1}hg\mid x\cdot h=x\}=\{p\in G\mid x\cdot gpg^{-1}=x\}=\{p\in G\mid (x\cdot g)\cdot p=x\cdot g\}$  \end_inset  . @@ -3606,7 +3606,7 @@ status open  Demostración:  \series default   Sea  -\begin_inset Formula $X:=\{(g_{1},\dots,g_{p})\in G^{p}:g_{1}\cdots g_{p}=1\}$ +\begin_inset Formula $X:=\{(g_{1},\dots,g_{p})\in G^{p}\mid g_{1}\cdots g_{p}=1\}$  \end_inset  ,  | 
