diff options
Diffstat (limited to 'ga')
| -rw-r--r-- | ga/n2.lyx | 4753 |
1 files changed, 4753 insertions, 0 deletions
diff --git a/ga/n2.lyx b/ga/n2.lyx new file mode 100644 index 0000000..d288366 --- /dev/null +++ b/ga/n2.lyx @@ -0,0 +1,4753 @@ +#LyX 2.3 created this file. For more info see http://www.lyx.org/ +\lyxformat 544 +\begin_document +\begin_header +\save_transient_properties true +\origin unavailable +\textclass book +\use_default_options true +\maintain_unincluded_children false +\language spanish +\language_package default +\inputencoding auto +\fontencoding global +\font_roman "default" "default" +\font_sans "default" "default" +\font_typewriter "default" "default" +\font_math "auto" "auto" +\font_default_family default +\use_non_tex_fonts false +\font_sc false +\font_osf false +\font_sf_scale 100 100 +\font_tt_scale 100 100 +\use_microtype false +\use_dash_ligatures true +\graphics default +\default_output_format default +\output_sync 0 +\bibtex_command default +\index_command default +\paperfontsize default +\spacing single +\use_hyperref false +\papersize default +\use_geometry false +\use_package amsmath 1 +\use_package amssymb 1 +\use_package cancel 1 +\use_package esint 1 +\use_package mathdots 1 +\use_package mathtools 1 +\use_package mhchem 1 +\use_package stackrel 1 +\use_package stmaryrd 1 +\use_package undertilde 1 +\cite_engine basic +\cite_engine_type default +\biblio_style plain +\use_bibtopic false +\use_indices false +\paperorientation portrait +\suppress_date false +\justification true +\use_refstyle 1 +\use_minted 0 +\index Index +\shortcut idx +\color #008000 +\end_index +\secnumdepth 3 +\tocdepth 3 +\paragraph_separation indent +\paragraph_indentation default +\is_math_indent 0 +\math_numbering_side default +\quotes_style french +\dynamic_quotes 0 +\papercolumns 1 +\papersides 1 +\paperpagestyle default +\tracking_changes false +\output_changes false +\html_math_output 0 +\html_css_as_file 0 +\html_be_strict false +\end_header + +\begin_body + +\begin_layout Standard +Un +\series bold +dominio +\series default + ( +\series bold +de integridad +\series default +) es un anillo conmutativo en que todos los elementos no nulos son regulares, + y un +\series bold +cuerpo +\series default + es uno en que todos los elementos no nulos son invertibles. + Un +\series bold +subdominio +\series default + es un subanillo de un dominio que es dominio, y un +\series bold +subcuerpo +\series default + es un subanillo de un cuerpo que es cuerpo. + Todo cuerpo es un dominio. + Si +\begin_inset Formula $A$ +\end_inset + + es un anillo conmutativo: +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $A$ +\end_inset + + es un cuerpo si y sólo si los únicos ideales de +\begin_inset Formula $A$ +\end_inset + + son 0 y +\begin_inset Formula $A$ +\end_inset + +, si y sólo si todo homomorfismo de anillos +\begin_inset Formula $A\to B$ +\end_inset + + con +\begin_inset Formula $B\neq0$ +\end_inset + + es inyectivo. +\end_layout + +\begin_deeper +\begin_layout Description +\begin_inset Formula $[1\implies2]$ +\end_inset + + Sean +\begin_inset Formula $I\neq0$ +\end_inset + + un ideal de +\begin_inset Formula $A$ +\end_inset + + y +\begin_inset Formula $a\in I\setminus0$ +\end_inset + +, como +\begin_inset Formula $A$ +\end_inset + + es cuerpo, +\begin_inset Formula $a$ +\end_inset + + es invertible, luego +\begin_inset Formula $I=A$ +\end_inset + +. +\end_layout + +\begin_layout Description +\begin_inset Formula $[2\implies1]$ +\end_inset + + Si +\begin_inset Formula $A$ +\end_inset + + no fuera cuerpo, habría +\begin_inset Formula $a\in A\setminus0$ +\end_inset + + no invertible, luego +\begin_inset Formula $0\neq(a)\neq A\#$ +\end_inset + +. +\end_layout + +\begin_layout Description +\begin_inset Formula $[2\implies3]$ +\end_inset + + Sea +\begin_inset Formula $f:A\to B\neq0$ +\end_inset + + un homomorfismo de anillos, +\begin_inset Formula $f(1_{A})=1_{B}\neq0$ +\end_inset + +, luego +\begin_inset Formula $\ker f\neq A$ +\end_inset + +, pero como +\begin_inset Formula $\ker f$ +\end_inset + + es un ideal de +\begin_inset Formula $A$ +\end_inset + +, +\begin_inset Formula $\ker f=0$ +\end_inset + + y +\begin_inset Formula $f$ +\end_inset + + es inyectivo. +\end_layout + +\begin_layout Description +\begin_inset Formula $[3\implies2]$ +\end_inset + + Si hubiera un ideal +\begin_inset Formula $I$ +\end_inset + + propio no nulo de +\begin_inset Formula $A$ +\end_inset + +, +\begin_inset Formula $A/I\neq0$ +\end_inset + + y el homomorfismo proyección +\begin_inset Formula $A\to A/I$ +\end_inset + + no es inyectivo porque su núcleo no es nulo. +\begin_inset Formula $\#$ +\end_inset + + +\end_layout + +\end_deeper +\begin_layout Enumerate +Un elemento +\begin_inset Formula $a\in A$ +\end_inset + + es regular si y sólo si +\begin_inset Formula $\forall b\in A,(ab=0\implies b=0)$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Enumerate +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\implies]$ +\end_inset + + +\end_layout + +\end_inset + + +\begin_inset Formula $ab=0\implies ab=a0\implies b=0$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\impliedby]$ +\end_inset + + +\end_layout + +\end_inset + +Si +\begin_inset Formula $a$ +\end_inset + + no fuera regular, existirían +\begin_inset Formula $b,c\in A$ +\end_inset + +, +\begin_inset Formula $b\neq c$ +\end_inset + +, con +\begin_inset Formula $ab=ac$ +\end_inset + +, luego +\begin_inset Formula $a(b-c)=ab-ac=0$ +\end_inset + + pero +\begin_inset Formula $b-c\neq0\#$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Enumerate +\begin_inset CommandInset label +LatexCommand label +name "enu:char-domain" + +\end_inset + + +\begin_inset Formula $A$ +\end_inset + + es un dominio si y sólo si +\begin_inset Formula $\forall a,b\in A\setminus\{0\},ab\neq0$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Standard +Consecuencia de lo anterior. +\end_layout + +\end_deeper +\begin_layout Enumerate +Todo subanillo de un dominio es un dominio. +\end_layout + +\begin_layout Enumerate +La característica de un dominio no trivial es 0 o un número primo. +\end_layout + +\begin_deeper +\begin_layout Standard +Si la característica de +\begin_inset Formula $A$ +\end_inset + + es 1, +\begin_inset Formula $1=0$ +\end_inset + + y +\begin_inset Formula $A=0\#$ +\end_inset + +. + Si es +\begin_inset Formula $n>1$ +\end_inset + + no primo, pongamos +\begin_inset Formula $n=pq$ +\end_inset + + con +\begin_inset Formula $0<p\neq n$ +\end_inset + + primo, entonces +\begin_inset Formula $p1\neq0$ +\end_inset + + y +\begin_inset Formula $q1\neq0$ +\end_inset + +, pero +\begin_inset Formula $(p1)(q1)=((p1)q)1=(pq)1=0$ +\end_inset + +, luego por +\begin_inset CommandInset ref +LatexCommand ref +reference "enu:char-domain" +plural "false" +caps "false" +noprefix "false" + +\end_inset + +, +\begin_inset Formula $A$ +\end_inset + + no es un dominio. +\begin_inset Formula $\#$ +\end_inset + + +\end_layout + +\end_deeper +\begin_layout Standard +\begin_inset Newpage pagebreak +\end_inset + + +\end_layout + +\begin_layout Standard +Algunos dominios: +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\mathbb{Z}$ +\end_inset + + es un dominio no cuerpo, y +\begin_inset Formula $\mathbb{Q}$ +\end_inset + +, +\begin_inset Formula $\mathbb{R}$ +\end_inset + + y +\begin_inset Formula $\mathbb{C}$ +\end_inset + + son cuerpos. +\end_layout + +\begin_layout Enumerate +Para +\begin_inset Formula $n\geq2$ +\end_inset + +, +\begin_inset Formula $\mathbb{Z}_{n}$ +\end_inset + + es un dominio si y sólo si es un cuerpo, si y sólo si +\begin_inset Formula $n$ +\end_inset + + es primo. +\end_layout + +\begin_deeper +\begin_layout Description +\begin_inset Formula $[1\implies3]$ +\end_inset + + +\begin_inset Formula $\mathbb{Z}_{n}$ +\end_inset + + tiene característica +\begin_inset Formula $n$ +\end_inset + +. +\end_layout + +\begin_layout Description +\begin_inset Formula $[3\implies2]$ +\end_inset + + Por el teorema de Euler en teoría de números, para +\begin_inset Formula $a\in\{0,\dots,n-1\}$ +\end_inset + +, como +\begin_inset Formula $a$ +\end_inset + + y +\begin_inset Formula $n$ +\end_inset + + son coprimos, +\begin_inset Formula $a^{\varphi(n)}\equiv1\pmod n$ +\end_inset + +, con +\begin_inset Formula $\varphi(n)=n-1$ +\end_inset + +, luego +\begin_inset Formula $a^{n-2}$ +\end_inset + + es inverso de +\begin_inset Formula $[a]$ +\end_inset + + en +\begin_inset Formula $\mathbb{Z}^{n}$ +\end_inset + +. +\end_layout + +\begin_layout Description +\begin_inset Formula $[2\implies1]$ +\end_inset + + Obvio. +\end_layout + +\end_deeper +\begin_layout Enumerate +Si +\begin_inset Formula $m\in\mathbb{Z}$ +\end_inset + + no es cuadrado de entero, +\begin_inset Formula $\mathbb{Z}[\sqrt{m}]$ +\end_inset + + es un dominio no cuerpo y +\begin_inset Formula $\mathbb{Q}[\sqrt{m}]$ +\end_inset + + es cuerpo. +\end_layout + +\begin_deeper +\begin_layout Standard +Ambos son subanillos de +\begin_inset Formula $\mathbb{C}$ +\end_inset + + y por tanto subdominios. + +\begin_inset Formula $\mathbb{Z}[\sqrt{m}]$ +\end_inset + + no es un cuerpo porque +\begin_inset Formula $\frac{1}{2}\notin\mathbb{Z}[\sqrt{m}]$ +\end_inset + + y por tanto 2 no tiene inverso, pero +\begin_inset Formula $\mathbb{Q}[\sqrt{m}]$ +\end_inset + + sí lo es porque, para +\begin_inset Formula $a,b\in\mathbb{Q}$ +\end_inset + +, +\begin_inset Formula $(a+b\sqrt{m})(a-b\sqrt{m})=a^{2}-b^{2}m=:q\in\mathbb{Z}\setminus\{0\}$ +\end_inset + + y +\begin_inset Formula $aq^{-1}-bq^{-1}\sqrt{m}$ +\end_inset + + es el inverso de +\begin_inset Formula $a+b\sqrt{m}$ +\end_inset + +. + Para ver que +\begin_inset Formula $q\neq0$ +\end_inset + +, vemos que si fuera +\begin_inset Formula $a^{2}-b^{2}m=0$ +\end_inset + + sería +\begin_inset Formula $m=\frac{a^{2}}{b^{2}}=\left(\frac{a}{b}\right)^{2}$ +\end_inset + + y +\begin_inset Formula $m$ +\end_inset + + sería cuadrado de racional, pero si llamamos +\begin_inset Formula $\frac{p}{q}:=\frac{a}{b}$ +\end_inset + + como fracción irreducible, +\begin_inset Formula $\frac{p^{2}}{q^{2}}$ +\end_inset + + también es irreducible y debe ser +\begin_inset Formula $q^{2}=1$ +\end_inset + +, luego +\begin_inset Formula $\frac{a}{b}=\frac{p}{q}\in\mathbb{Z}$ +\end_inset + + y +\begin_inset Formula $m$ +\end_inset + + es cuadrado de entero. +\begin_inset Formula $\#$ +\end_inset + + +\end_layout + +\end_deeper +\begin_layout Enumerate +Un producto de anillos no triviales nunca es un dominio. +\end_layout + +\begin_deeper +\begin_layout Standard +\begin_inset Formula $(1,0)(0,1)=(0,0)$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Enumerate +\begin_inset Formula $A[X]$ +\end_inset + + es un dominio si y sólo si lo es +\begin_inset Formula $A$ +\end_inset + +, pero no es un cuerpo. +\end_layout + +\begin_deeper +\begin_layout Enumerate +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\implies]$ +\end_inset + + +\end_layout + +\end_inset + + +\begin_inset Formula $A$ +\end_inset + + es subanillo de +\begin_inset Formula $A[X]$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\impliedby]$ +\end_inset + + +\end_layout + +\end_inset + +Sean +\begin_inset Formula $P,Q\in A[X]$ +\end_inset + + no nulos, como los coeficientes principales respectivos de +\begin_inset Formula $P$ +\end_inset + + y +\begin_inset Formula $Q$ +\end_inset + + no son nulos y +\begin_inset Formula $A$ +\end_inset + + es un dominio, el de +\begin_inset Formula $PQ$ +\end_inset + + tampoco lo es. +\end_layout + +\begin_layout Standard +\begin_inset Formula $A[X]$ +\end_inset + + no es un cuerpo porque +\begin_inset Formula $(X)$ +\end_inset + + es un ideal propio no nulo. +\end_layout + +\end_deeper +\begin_layout Section +Ideales maximales y primos +\end_layout + +\begin_layout Standard +Un ideal +\begin_inset Formula $I$ +\end_inset + + del anillo +\begin_inset Formula $A$ +\end_inset + + es +\series bold +maximal +\series default + si no está contenido estrictamente en ningún ideal propio de +\begin_inset Formula $A$ +\end_inset + +, y es +\series bold +primo +\series default + si +\begin_inset Formula $\forall a,b\in A,(ab\in I\implies a\in I\lor b\in I)$ +\end_inset + +. + Sea +\begin_inset Formula $I$ +\end_inset + + un ideal propio de +\begin_inset Formula $A$ +\end_inset + +: +\end_layout + +\begin_layout Enumerate +\begin_inset CommandInset label +LatexCommand label +name "enu:char-maximal" + +\end_inset + + +\begin_inset Formula $I$ +\end_inset + + es maximal si y sólo si +\begin_inset Formula $A/I$ +\end_inset + + es un cuerpo. +\end_layout + +\begin_deeper +\begin_layout Enumerate +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\implies]$ +\end_inset + + +\end_layout + +\end_inset + +Si +\begin_inset Formula $A/I$ +\end_inset + + no fuera un cuerpo, existiría un ideal +\begin_inset Formula $K$ +\end_inset + + de +\begin_inset Formula $A/I$ +\end_inset + + con +\begin_inset Formula $0\subsetneq K\subsetneq A/I$ +\end_inset + + y, por el teorema de la correspondencia, un ideal +\begin_inset Formula $J$ +\end_inset + + de +\begin_inset Formula $A$ +\end_inset + + con +\begin_inset Formula $J/I=K$ +\end_inset + +, pero entonces +\begin_inset Formula $I\subsetneq J\subsetneq A$ +\end_inset + +, luego +\begin_inset Formula $I$ +\end_inset + + no es maximal. +\begin_inset Formula $\#$ +\end_inset + + +\end_layout + +\begin_layout Enumerate +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\impliedby]$ +\end_inset + + +\end_layout + +\end_inset + +Los únicos ideales de +\begin_inset Formula $A/I$ +\end_inset + + son 0 y +\begin_inset Formula $A/I$ +\end_inset + +, y por el teorema de la correspondencia, los únicos ideales de +\begin_inset Formula $A$ +\end_inset + + que contienen a +\begin_inset Formula $I$ +\end_inset + + son +\begin_inset Formula $I$ +\end_inset + + y +\begin_inset Formula $A$ +\end_inset + +, luego +\begin_inset Formula $I$ +\end_inset + + es maximal. +\end_layout + +\end_deeper +\begin_layout Enumerate +\begin_inset CommandInset label +LatexCommand label +name "enu:char-prime" + +\end_inset + + +\begin_inset Formula $I$ +\end_inset + + es primo si y sólo si +\begin_inset Formula $A/I$ +\end_inset + + es un dominio. +\end_layout + +\begin_deeper +\begin_layout Enumerate +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\implies]$ +\end_inset + + +\end_layout + +\end_inset + +Sean +\begin_inset Formula $[a],[b]\in A/I\setminus0$ +\end_inset + +, entonces +\begin_inset Formula $a,b\notin I$ +\end_inset + + y por tanto +\begin_inset Formula $ab\notin I$ +\end_inset + +, luego +\begin_inset Formula $[a][b]=[ab]\neq0$ +\end_inset + + y +\begin_inset Formula $A/I$ +\end_inset + + es un dominio. +\end_layout + +\begin_layout Enumerate +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\impliedby]$ +\end_inset + + +\end_layout + +\end_inset + +Sean +\begin_inset Formula $a,b\in A$ +\end_inset + + con +\begin_inset Formula $ab\in I$ +\end_inset + +, entonces +\begin_inset Formula $[ab]=[a][b]=0$ +\end_inset + +, luego +\begin_inset Formula $[a]=0$ +\end_inset + + y por tanto +\begin_inset Formula $a\in I$ +\end_inset + + o +\begin_inset Formula $[b]=0$ +\end_inset + + y +\begin_inset Formula $b\in I$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Enumerate +Si +\begin_inset Formula $I$ +\end_inset + + es maximal, es primo. +\end_layout + +\begin_deeper +\begin_layout Standard +Si es maximal, +\begin_inset Formula $A/I$ +\end_inset + + es cuerpo y por tanto dominio, luego +\begin_inset Formula $I$ +\end_inset + + es primo. +\end_layout + +\end_deeper +\begin_layout Enumerate +\begin_inset Formula $A$ +\end_inset + + es cuerpo si y sólo si 0 es maximal. +\end_layout + +\begin_deeper +\begin_layout Standard +\begin_inset Formula $A\cong A/0$ +\end_inset + + y se aplica el punto +\begin_inset CommandInset ref +LatexCommand ref +reference "enu:char-maximal" +plural "false" +caps "false" +noprefix "false" + +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Enumerate +\begin_inset Formula $A$ +\end_inset + + es dominio si y sólo si 0 es primo. +\end_layout + +\begin_deeper +\begin_layout Standard +\begin_inset Formula $A\cong A/0$ +\end_inset + + y se aplica el punto +\begin_inset CommandInset ref +LatexCommand ref +reference "enu:char-prime" +plural "false" +caps "false" +noprefix "false" + +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Standard +Dado un conjunto +\begin_inset Formula $S$ +\end_inset + + con un orden parcial, una +\series bold +cadena +\series default + de +\begin_inset Formula $S$ +\end_inset + + es un subconjunto totalmente ordenado. + +\begin_inset Formula $S$ +\end_inset + + es +\series bold +inductivo +\series default + si toda cadena suya tiene supremo. + Del axioma de elección se deduce el +\series bold +lema de Zorn: +\series default + Todo conjunto inductivo tiene un elemento maximal. +\end_layout + +\begin_layout Standard +Todo ideal propio de un anillo está contenido en un ideal maximal. + +\series bold +Demostración: +\series default + Sean +\begin_inset Formula $I$ +\end_inset + + un ideal propio de +\begin_inset Formula $A$ +\end_inset + + y +\begin_inset Formula $\Omega$ +\end_inset + + el conjunto de los ideales propios de +\begin_inset Formula $A$ +\end_inset + +. + La unión de los elementos de una cadena +\begin_inset Formula $\{A_{i}\}_{i\in I}$ +\end_inset + + del conjunto parcialmente ordenado +\begin_inset Formula $(\Omega,\subseteq)$ +\end_inset + + es un ideal, pues para +\begin_inset Formula $x\in A_{i}$ +\end_inset + + e +\begin_inset Formula $y\in A_{j}$ +\end_inset + +, bien +\begin_inset Formula $A_{i}\subseteq A_{j}$ +\end_inset + + y +\begin_inset Formula $x\in A_{j}$ +\end_inset + + o, análogamente, +\begin_inset Formula $y\in A_{i}$ +\end_inset + +, luego +\begin_inset Formula $x+y\in A_{i}\cup A_{j}$ +\end_inset + +, y para +\begin_inset Formula $x\in A_{i}$ +\end_inset + + y +\begin_inset Formula $a\in A$ +\end_inset + +, +\begin_inset Formula $ax\in A_{i}$ +\end_inset + +. + Además es propio, pues de lo contrario contendría al 1 y existiría +\begin_inset Formula $i\in I$ +\end_inset + + con +\begin_inset Formula $1\in A_{i}$ +\end_inset + +, pero +\begin_inset Formula $A_{i}$ +\end_inset + + es propio. +\begin_inset Formula $\#$ +\end_inset + + Por tanto +\begin_inset Formula $\Omega$ +\end_inset + + es inductivo y, por el lema de Zorn, tiene un elemento maximal, que es + un ideal maximal de +\begin_inset Formula $A$ +\end_inset + + que contiene a +\begin_inset Formula $I$ +\end_inset + +. +\end_layout + +\begin_layout Section +Divisibilidad +\end_layout + +\begin_layout Standard +Dados un anillo conmutativo +\begin_inset Formula $A$ +\end_inset + + y +\begin_inset Formula $a,b\in A$ +\end_inset + +, +\begin_inset Formula $a$ +\end_inset + + +\series bold +divide +\series default + a +\begin_inset Formula $b$ +\end_inset + +, es un +\series bold +divisor +\series default + de +\begin_inset Formula $b$ +\end_inset + + o +\begin_inset Formula $b$ +\end_inset + + es un +\series bold +múltiplo +\series default + de +\begin_inset Formula $a$ +\end_inset + + en +\begin_inset Formula $A$ +\end_inset + +, +\begin_inset Formula $a\mid b$ +\end_inset + +, si existe +\begin_inset Formula $c\in A$ +\end_inset + + tal que +\begin_inset Formula $b=ac$ +\end_inset + +. + Propiedades: +\begin_inset Formula $\forall a\in A$ +\end_inset + +: +\end_layout + +\begin_layout Enumerate +Reflexiva. +\end_layout + +\begin_layout Enumerate +Transitiva. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $1\mid a\mid0$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $0\mid a\iff a=0$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $a\mid1$ +\end_inset + + si y sólo si +\begin_inset Formula $a$ +\end_inset + + es unidad, en cuyo caso +\begin_inset Formula $\forall x\in A,a\mid x$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $a$ +\end_inset + + divide a ciertos elementos, divide a cualquier combinación lineal de estos + con coeficientes en +\begin_inset Formula $A$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $c$ +\end_inset + + es regular y +\begin_inset Formula $ac\mid bc$ +\end_inset + +, +\begin_inset Formula $a\mid b$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Standard +Sea +\begin_inset Formula $x$ +\end_inset + + tal que +\begin_inset Formula $xac=bc$ +\end_inset + +, como +\begin_inset Formula $c$ +\end_inset + + es regular, +\begin_inset Formula $xa=b$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Standard +Dos elementos +\begin_inset Formula $a,b\in A$ +\end_inset + + son +\series bold +asociados +\series default + en +\begin_inset Formula $A$ +\end_inset + + si +\begin_inset Formula $a\mid b\mid a$ +\end_inset + + en +\begin_inset Formula $A$ +\end_inset + +, si y sólo si tienen los mismos divisores, si y sólo si tienen los mismos + múltiplos. + Esta relación es de equivalencia. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +begin{samepage} +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Si +\begin_inset Formula $D$ +\end_inset + + es un dominio, +\begin_inset Formula $a,b\in D$ +\end_inset + + son asociados en +\begin_inset Formula $D$ +\end_inset + + si y sólo si existe una unidad +\begin_inset Formula $u$ +\end_inset + + de +\begin_inset Formula $D$ +\end_inset + + con +\begin_inset Formula $b=au$ +\end_inset + +. +\end_layout + +\begin_layout Itemize +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\implies]$ +\end_inset + + +\end_layout + +\end_inset + +Si +\begin_inset Formula $a=0$ +\end_inset + +, +\begin_inset Formula $b=0$ +\end_inset + + y es obvio. + De lo contrario, sean +\begin_inset Formula $x,y\in D$ +\end_inset + + con +\begin_inset Formula $ax=b$ +\end_inset + + y +\begin_inset Formula $by=a$ +\end_inset + +, +\begin_inset Formula $a=by=axy$ +\end_inset + + y, como +\begin_inset Formula $a$ +\end_inset + + es cancelable, +\begin_inset Formula $xy=1$ +\end_inset + +, luego +\begin_inset Formula $y$ +\end_inset + + es inverso de +\begin_inset Formula $x$ +\end_inset + + y en particular +\begin_inset Formula $x$ +\end_inset + + es unidad con +\begin_inset Formula $b=ax$ +\end_inset + +. +\end_layout + +\begin_layout Itemize +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\impliedby]$ +\end_inset + + +\end_layout + +\end_inset + +Claramente +\begin_inset Formula $a\mid b$ +\end_inset + + y, como +\begin_inset Formula $a=bu^{-1}$ +\end_inset + +, +\begin_inset Formula $b\mid a$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +end{samepage} +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Sean +\begin_inset Formula $A$ +\end_inset + + un anillo conmutativo y +\begin_inset Formula $a\in A\setminus(A^{*}\cup\{0\})$ +\end_inset + +, +\begin_inset Formula $a$ +\end_inset + + es +\series bold +irreducible +\series default + en +\begin_inset Formula $A$ +\end_inset + + si +\begin_inset Formula $\forall b,c\in A,(a=bc\implies b\in A^{*}\lor c\in A^{*})$ +\end_inset + +, y es +\series bold +primo +\series default + en +\begin_inset Formula $A$ +\end_inset + + si +\begin_inset Formula $\forall b,c\in A,(a\mid bc\implies a\mid b\lor a\mid c)$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Si +\begin_inset Formula $A$ +\end_inset + + es un dominio, todo primo es irreducible. + +\series bold +Demostración: +\series default + Sean +\begin_inset Formula $p$ +\end_inset + + primo en +\begin_inset Formula $A$ +\end_inset + + y +\begin_inset Formula $a,b\in A$ +\end_inset + + con +\begin_inset Formula $p=ab$ +\end_inset + +, entonces +\begin_inset Formula $p\mid a$ +\end_inset + + o +\begin_inset Formula $p|b$ +\end_inset + +. + Si +\begin_inset Formula $p\mid a$ +\end_inset + +, como +\begin_inset Formula $a\mid p$ +\end_inset + +, +\begin_inset Formula $a$ +\end_inset + + y +\begin_inset Formula $p$ +\end_inset + + son asociados, luego existe una unidad +\begin_inset Formula $u$ +\end_inset + + de +\begin_inset Formula $A$ +\end_inset + + con +\begin_inset Formula $p=ab=au$ +\end_inset + + y, como +\begin_inset Formula $a\neq0$ +\end_inset + + porque de lo contrario sería +\begin_inset Formula $p=0$ +\end_inset + +, queda +\begin_inset Formula $b=u$ +\end_inset + +. + El caso en que +\begin_inset Formula $p\mid b$ +\end_inset + + es análogo. +\end_layout + +\begin_layout Standard +Irreducible en un dominio no implica primo. + +\series bold +Demostración: +\series default + Primero vemos que +\begin_inset Formula $2$ +\end_inset + + es irreducible en el dominio +\begin_inset Formula $\mathbb{Z}[\sqrt{-5}]$ +\end_inset + +. + El cuadrado del módulo de un elemento del dominio en +\begin_inset Formula $\mathbb{Z}[\sqrt{-5}]$ +\end_inset + + es +\begin_inset Formula $|a+b\sqrt{-5}|^{2}=a^{2}+5b^{2}\in\mathbb{Z}$ +\end_inset + +. + Así, sean +\begin_inset Formula $x,y\in\mathbb{Z}[\sqrt{-5}]$ +\end_inset + + con +\begin_inset Formula $xy=2$ +\end_inset + +, +\begin_inset Formula $|xy|^{2}=|x|^{2}|y|^{2}=4$ +\end_inset + +, luego o +\begin_inset Formula $|x|^{2}=1$ +\end_inset + + o +\begin_inset Formula $|y|^{2}=1$ +\end_inset + +. + Si, por ejemplo, +\begin_inset Formula $|x|^{2}=1$ +\end_inset + +, sea +\begin_inset Formula $x=:a+b\sqrt{-5}$ +\end_inset + +, despejando, +\begin_inset Formula $0\leq a^{2}=1-5b^{2}$ +\end_inset + +, luego +\begin_inset Formula $b=0$ +\end_inset + + y +\begin_inset Formula $a\in\{1,-1\}$ +\end_inset + +, con lo que +\begin_inset Formula $x\in\{-1,1\}$ +\end_inset + + es unidad de +\begin_inset Formula $\mathbb{Z}[\sqrt{-5}]$ +\end_inset + +. + Pero +\begin_inset Formula $2$ +\end_inset + + no es primo, pues +\begin_inset Formula $2|6=(1+\sqrt{-5})(1-\sqrt{-5})$ +\end_inset + + y es claro que +\begin_inset Formula $2\mid6=(1+\sqrt{-5})(1-\sqrt{-5})$ +\end_inset + + pero +\begin_inset Formula $2\nmid1+\sqrt{-5},1-\sqrt{-5}$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Sean +\begin_inset Formula $A$ +\end_inset + + un anillo conmutativo y +\begin_inset Formula $a,b\in A$ +\end_inset + +: +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $a=0\iff(a)=0$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $a\in A^{*}\iff(a)=A$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $a\mid b\iff(b)\subseteq(a)\iff b\in(a)$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Description +\begin_inset Formula $[1\implies2]$ +\end_inset + + Sea +\begin_inset Formula $c\in A$ +\end_inset + + con +\begin_inset Formula $b=ac$ +\end_inset + +, para +\begin_inset Formula $d\in(b)$ +\end_inset + +, sea +\begin_inset Formula $t\in A$ +\end_inset + + con +\begin_inset Formula $d=bt$ +\end_inset + +, +\begin_inset Formula $d=act\in(a)$ +\end_inset + +. +\end_layout + +\begin_layout Description +\begin_inset Formula $[2\implies3\implies1]$ +\end_inset + + Obvio. +\end_layout + +\end_deeper +\begin_layout Enumerate +\begin_inset Formula $a$ +\end_inset + + y +\begin_inset Formula $b$ +\end_inset + + son asociados si y sólo si +\begin_inset Formula $(a)=(b)$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $a$ +\end_inset + + es primo si y sólo si +\begin_inset Formula $(a)$ +\end_inset + + es un ideal primo no nulo de +\begin_inset Formula $A$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Standard +\begin_inset Formula $a$ +\end_inset + + es primo si y sólo si +\begin_inset Formula $a\notin A^{*}\cup\{0\}$ +\end_inset + + y +\begin_inset Formula $\forall b,c\in A,(a\mid bc\implies a\mid b\lor a\mid c)$ +\end_inset + +, pero +\begin_inset Formula $a\mid x$ +\end_inset + + si y sólo si +\begin_inset Formula $x\in(a)$ +\end_inset + +, luego +\begin_inset Quotes cld +\end_inset + +traduciendo +\begin_inset Quotes crd +\end_inset + +, esto ocurre si y sólo si +\begin_inset Formula $(a)\neq A^{*},0$ +\end_inset + + y +\begin_inset Formula $\forall b,c\in A,(bc\in(a)\implies b\in(a)\lor c\in(a))$ +\end_inset + +, si y sólo si +\begin_inset Formula $(a)$ +\end_inset + + es un ideal primo no nulo de +\begin_inset Formula $A$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Enumerate +Si +\begin_inset Formula $A$ +\end_inset + + es un dominio, +\begin_inset Formula $a$ +\end_inset + + es irreducible si y sólo si +\begin_inset Formula $(a)$ +\end_inset + + es maximal entre los ideales principales no nulos de +\begin_inset Formula $A$ +\end_inset + +, es decir, si +\begin_inset Formula $(a)\neq0,A$ +\end_inset + + y +\begin_inset Formula $\forall b\in A,((a)\subseteq(b)\neq A\implies(a)=(b))$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Enumerate +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\implies]$ +\end_inset + + +\end_layout + +\end_inset + +Como +\begin_inset Formula $a\notin\{0\},A^{*}$ +\end_inset + +, +\begin_inset Formula $(a)\neq0,A$ +\end_inset + +. + Si +\begin_inset Formula $b\in A$ +\end_inset + + es tal que +\begin_inset Formula $(a)\subseteq(b)$ +\end_inset + +, entonces +\begin_inset Formula $b\mid a$ +\end_inset + +, esto es, existe +\begin_inset Formula $c\in A$ +\end_inset + + con +\begin_inset Formula $a=bc$ +\end_inset + +, y como +\begin_inset Formula $a$ +\end_inset + + es irreducible, o +\begin_inset Formula $b$ +\end_inset + + es unidad y entonces +\begin_inset Formula $(b)\in A$ +\end_inset + +, o +\begin_inset Formula $c$ +\end_inset + + es unidad y entonces +\begin_inset Formula $(a)=\{ax=bcx\}_{x\in A}=\{bx\}_{x\in(c)=A}=(b)$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\impliedby]$ +\end_inset + + +\end_layout + +\end_inset + +Como +\begin_inset Formula $(a)\neq0,A$ +\end_inset + +, +\begin_inset Formula $a\notin\{0\},A^{*}$ +\end_inset + +. + Si +\begin_inset Formula $b,c\in A$ +\end_inset + + cumplen +\begin_inset Formula $a=bc$ +\end_inset + + y +\begin_inset Formula $b$ +\end_inset + + no es unidad, como +\begin_inset Formula $b\mid a$ +\end_inset + +, +\begin_inset Formula $(a)\subseteq(b)\neq A$ +\end_inset + +, luego +\begin_inset Formula $(a)=(b)$ +\end_inset + + y +\begin_inset Formula $a$ +\end_inset + + y +\begin_inset Formula $b$ +\end_inset + + son asociados. + Entonces, como +\begin_inset Formula $A$ +\end_inset + + es dominio, existe una unidad +\begin_inset Formula $u$ +\end_inset + + con +\begin_inset Formula $a=bc=bu$ +\end_inset + + y, como +\begin_inset Formula $b\neq0$ +\end_inset + + porque +\begin_inset Formula $a\neq0$ +\end_inset + +, +\begin_inset Formula $c=u$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Standard +Dados un anillo conmutativo +\begin_inset Formula $A$ +\end_inset + + y +\begin_inset Formula $S\subseteq A$ +\end_inset + +, +\begin_inset Formula $a\in A$ +\end_inset + + es un +\series bold +máximo común divisor +\series default + de +\begin_inset Formula $S$ +\end_inset + + en +\begin_inset Formula $A$ +\end_inset + +, +\begin_inset Formula $a=\text{mcm}S$ +\end_inset + +, si divide a cada elemento de +\begin_inset Formula $S$ +\end_inset + + y es múltiplo de cada elemento que cumple esto, y es un +\series bold +mínimo común múltiplo +\series default + de +\begin_inset Formula $S$ +\end_inset + + en +\begin_inset Formula $A$ +\end_inset + +, +\begin_inset Formula $a=\text{mcd}S$ +\end_inset + +, si es múltiplo de cada elemento de +\begin_inset Formula $S$ +\end_inset + + y divide a cada elemento que cumple esto. + Para +\begin_inset Formula $a,b\in A$ +\end_inset + +: +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $a=\text{mcd}S$ +\end_inset + + si y solo si +\begin_inset Formula $(a)$ +\end_inset + + es el menor ideal principal de +\begin_inset Formula $A$ +\end_inset + + que contiene a +\begin_inset Formula $S$ +\end_inset + +. + En particular, si +\begin_inset Formula $(a)=(S)$ +\end_inset + +, +\begin_inset Formula $a=\text{mcd}S$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Standard +\begin_inset Formula $a$ +\end_inset + + divide a cada elemento de +\begin_inset Formula $S$ +\end_inset + + si y sólo si +\begin_inset Formula $\forall x\in S,(x)\subseteq(a)$ +\end_inset + +, si y sólo si +\begin_inset Formula $S\subseteq(a)$ +\end_inset + +. + Además, +\begin_inset Formula $a$ +\end_inset + + es múltiplo de cada +\begin_inset Formula $b\in A$ +\end_inset + + que cumple esto, esto es, que cumple +\begin_inset Formula $S\subseteq(b)$ +\end_inset + +, si y sólo si +\begin_inset Formula $\forall b\in A,(S\subseteq(b)\implies(a)\subseteq(b))$ +\end_inset + +. + Juntando ambos se obtiene el resultado. +\end_layout + +\end_deeper +\begin_layout Enumerate +\begin_inset Formula $a=\text{mcm}S$ +\end_inset + + si y sólo si +\begin_inset Formula $(a)$ +\end_inset + + es el mayor ideal principal de +\begin_inset Formula $A$ +\end_inset + + contenido en +\begin_inset Formula $\bigcap_{s\in S}(s)$ +\end_inset + +. + En particular, si +\begin_inset Formula $(a)=\bigcap_{s\in S}(s)$ +\end_inset + +, +\begin_inset Formula $a=\text{mcm}S$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Standard +\begin_inset Formula $a$ +\end_inset + + es múltiplo de cada elemento de +\begin_inset Formula $S$ +\end_inset + + si y sólo si +\begin_inset Formula $\forall s\in S,(a)\subseteq(s)$ +\end_inset + +, si y sólo si +\begin_inset Formula $(a)\subseteq\bigcap_{s\in S}(s)$ +\end_inset + +. + Además, +\begin_inset Formula $a$ +\end_inset + + divide a cada +\begin_inset Formula $b\in A$ +\end_inset + + que cumple esto si y sólo si +\begin_inset Formula $\forall b\in A,((b)\subseteq\bigcap_{s\in S}(s)\implies(b)\subseteq(a))$ +\end_inset + +. + Juntando ambos se obtiene el resultado. +\end_layout + +\end_deeper +\begin_layout Enumerate +Si +\begin_inset Formula $a=\text{mcd}S$ +\end_inset + +, +\begin_inset Formula $b=\text{mcd}S$ +\end_inset + + si y sólo si +\begin_inset Formula $a$ +\end_inset + + y +\begin_inset Formula $b$ +\end_inset + + son asociados en +\begin_inset Formula $A$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Standard +Se obtiene de la caracterización de máximo común divisor y la de asociados + por ideales principales. +\end_layout + +\end_deeper +\begin_layout Enumerate +Si +\begin_inset Formula $a=\text{mcm}S$ +\end_inset + +, +\begin_inset Formula $b=\text{mcm}S$ +\end_inset + + si y sólo si +\begin_inset Formula $a$ +\end_inset + + y +\begin_inset Formula $b$ +\end_inset + + son asociados en +\begin_inset Formula $A$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Standard +Análogo. +\end_layout + +\end_deeper +\begin_layout Enumerate +\begin_inset CommandInset label +LatexCommand label +name "enu:case-gcd" + +\end_inset + +Si +\begin_inset Formula $a$ +\end_inset + + divide a todo elemento de +\begin_inset Formula $S$ +\end_inset + + y +\begin_inset Formula $a\in(S)$ +\end_inset + +, entonces +\begin_inset Formula $a=\text{mcd}S$ +\end_inset + +. + En tal caso llamamos +\series bold +identidad de Bézout +\series default + a una expresión de la forma +\begin_inset Formula $a=a_{1}s_{1}+\dots+a_{n}s_{n}$ +\end_inset + + con +\begin_inset Formula $a_{1},\dots,a_{n}\in A$ +\end_inset + + y +\begin_inset Formula $s_{1},\dots,s_{n}\in S$ +\end_inset + +, que existe porque +\begin_inset Formula $a\in(S)$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Standard +Si +\begin_inset Formula $b\in A$ +\end_inset + + divide a todos los elementos de +\begin_inset Formula $S$ +\end_inset + +, +\begin_inset Formula $b\mid a_{1}s_{1}+\dots+a_{n}s_{n}=a$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Enumerate +\begin_inset Formula $\text{mcd}S=1$ +\end_inset + + si y sólo si los únicos divisores comunes de los elementos de +\begin_inset Formula $S$ +\end_inset + + son las unidades de +\begin_inset Formula $A$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Enumerate +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\implies]$ +\end_inset + + +\end_layout + +\end_inset + +Si hubiera un divisor común +\begin_inset Formula $b\in A\setminus A^{*}$ +\end_inset + +, como +\begin_inset Formula $b\nmid1$ +\end_inset + +, 1 no sería múltiplo de todos los divisores comunes a los elementos de + +\begin_inset Formula $S\#$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\impliedby]$ +\end_inset + + +\end_layout + +\end_inset + +1 es divisor de todos y múltiplo de las unidades de +\begin_inset Formula $A$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Enumerate +Si +\begin_inset Formula $1\in(S)$ +\end_inset + +, +\begin_inset Formula $\text{mcd}S=1$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Standard +Basta aplicar +\begin_inset CommandInset ref +LatexCommand ref +reference "enu:case-gcd" +plural "false" +caps "false" +noprefix "false" + +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Section +Dominios de factorización única +\end_layout + +\begin_layout Standard +Dado un dominio +\begin_inset Formula $D$ +\end_inset + +, una +\series bold +factorización en producto de irreducibles +\series default + de +\begin_inset Formula $a\in D$ +\end_inset + + es una expresión de la forma +\begin_inset Formula $a=up_{1}\cdots p_{n}$ +\end_inset + +, donde +\begin_inset Formula $u$ +\end_inset + + es una unidad de +\begin_inset Formula $D$ +\end_inset + + y +\begin_inset Formula $p_{1},\dots,p_{n}$ +\end_inset + + son irreducibles en +\begin_inset Formula $D$ +\end_inset + +. + Dos factorizaciones en producto de irreducibles de +\begin_inset Formula $a\in D$ +\end_inset + +, +\begin_inset Formula $a=up_{1}\cdots p_{n}$ +\end_inset + + y +\begin_inset Formula $a=vq_{1}\cdots q_{n}$ +\end_inset + +, son +\series bold +equivalentes +\series default + si +\begin_inset Formula $m=n$ +\end_inset + + y existe una permutación +\begin_inset Formula $\sigma$ +\end_inset + + de +\begin_inset Formula $\mathbb{N}_{n}:=\{1,\dots,n\}$ +\end_inset + + tal que para +\begin_inset Formula $k\in\mathbb{N}_{n}$ +\end_inset + +, +\begin_inset Formula $p_{k}$ +\end_inset + + y +\begin_inset Formula $q_{\sigma(k)}$ +\end_inset + + son asociados, en cuyo caso +\begin_inset Formula $u$ +\end_inset + + y +\begin_inset Formula $v$ +\end_inset + + también lo son. +\end_layout + +\begin_layout Standard +\begin_inset Formula $D$ +\end_inset + + es un +\series bold +dominio de factorización +\series default + ( +\series bold +DF +\series default +) si todo elemento no nulo de +\begin_inset Formula $D$ +\end_inset + + admite una factorización en producto de irreducibles, y es un +\series bold +dominio de factorización única +\series default + ( +\series bold +DFU +\series default + o +\series bold +UFD +\series default +) si, además, todas las factorizaciones de un mismo elemento son equivalentes. + Ejemplos: +\end_layout + +\begin_layout Enumerate + +\series bold +Teorema Fundamental de la Aritmética: +\series default + +\begin_inset Formula $\mathbb{Z}$ +\end_inset + + es un DFU. +\end_layout + +\begin_layout Enumerate +Dado +\begin_inset Formula $m\in\mathbb{Z}^{+}$ +\end_inset + +, +\begin_inset Formula $\mathbb{Z}[\sqrt{m}]$ +\end_inset + + es un DF. +\end_layout + +\begin_deeper +\begin_layout Standard +Si +\begin_inset Formula $m$ +\end_inset + + es un cuadrado en +\begin_inset Formula $\mathbb{Z}$ +\end_inset + +, +\begin_inset Formula $\mathbb{Z}[\sqrt{m}]=\mathbb{Z}$ +\end_inset + + es un DF. + Supongamos que no lo es. + Consideramos la norma +\begin_inset Formula $N:\mathbb{Z}[\sqrt{m}]\to\mathbb{Z}$ +\end_inset + + dada por +\begin_inset Formula $N(x)=x\overline{x}$ +\end_inset + +, siendo +\begin_inset Formula $\overline{x}$ +\end_inset + + el conjugado de +\begin_inset Formula $x$ +\end_inset + +, y como la conjugación es un homomorfismo, +\begin_inset Formula $N(xy)=xy\overline{xy}=xy\overline{x}\,\overline{y}=x\overline{x}y\overline{y}=N(x)N(y)$ +\end_inset + +. + Veamos que +\begin_inset Formula $\mathbb{Z}[\sqrt{m}]^{*}=\{x:|N(x)|=1\}$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\subseteq]$ +\end_inset + + +\end_layout + +\end_inset + +Si +\begin_inset Formula $x$ +\end_inset + + es invertible, +\begin_inset Formula $1=N(1)=N(xx^{-1})$ +\end_inset + +, pero luego +\begin_inset Formula $1=N(xx^{-1})=N(x)N(x^{-1})$ +\end_inset + + y +\begin_inset Formula $N(x)$ +\end_inset + + es invertible en +\begin_inset Formula $\mathbb{Z}$ +\end_inset + +, esto es, +\begin_inset Formula $N(x)\in\{-1,1\}$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\supseteq]$ +\end_inset + + +\end_layout + +\end_inset + +Si +\begin_inset Formula $N(x)=x\overline{x}\in\{-1,1\}$ +\end_inset + +, +\begin_inset Formula $x$ +\end_inset + + es invertible con inverso +\begin_inset Formula $-\overline{x}$ +\end_inset + + o +\begin_inset Formula $\overline{x}$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Sea ahora +\begin_inset Formula $x=a+b\sqrt{m}\neq0$ +\end_inset + + y queremos ver que +\begin_inset Formula $x$ +\end_inset + + tiene una factorización en +\begin_inset Formula $\mathbb{Z}[\sqrt{m}]$ +\end_inset + +. + +\begin_inset Formula $|N(x)|\neq0$ +\end_inset + +, pues si fuera 0 sería +\begin_inset Formula $a^{2}=b^{2}m$ +\end_inset + + y, como +\begin_inset Formula $x\neq0$ +\end_inset + +, +\begin_inset Formula $m$ +\end_inset + + sería un cuadrado en +\begin_inset Formula $\mathbb{Z}\#$ +\end_inset + +. + Para +\begin_inset Formula $|N(x)|=1$ +\end_inset + +, +\begin_inset Formula $x$ +\end_inset + + es unidad y por tanto tiene una factorización. + Para +\begin_inset Formula $|N(x)|=k>1$ +\end_inset + +, supuesta probada la propiedad para +\begin_inset Formula $|N(x)|<k$ +\end_inset + +, podemos suponer que +\begin_inset Formula $x$ +\end_inset + + no es irreducible, pues de serlo ya sabemos que tiene una factorización. + Entonces existen +\begin_inset Formula $p,q\in\mathbb{Z}[\sqrt{m}]$ +\end_inset + + con +\begin_inset Formula $x=pq$ +\end_inset + + y +\begin_inset Formula $p$ +\end_inset + + y +\begin_inset Formula $q$ +\end_inset + + no unidades, con lo que +\begin_inset Formula $|N(p)|$ +\end_inset + + y +\begin_inset Formula $|N(q)|$ +\end_inset + + son divisores propios de +\begin_inset Formula $|N(x)|$ +\end_inset + + y, por la hipótesis de inducción, +\begin_inset Formula $p$ +\end_inset + + y +\begin_inset Formula $q$ +\end_inset + + son producto de irreducibles por alguna unidad, luego +\begin_inset Formula $x$ +\end_inset + + también lo es. +\end_layout + +\end_deeper +\begin_layout Standard +Un dominio +\begin_inset Formula $D$ +\end_inset + + es un DFU si y sólo si todo elemento no nulo de +\begin_inset Formula $D$ +\end_inset + + es producto de una unidad por primos, si y sólo si +\begin_inset Formula $D$ +\end_inset + + es un dominio de factorización en el que todo elemento irreducible es primo. +\end_layout + +\begin_layout Description +\begin_inset Formula $1\implies2]$ +\end_inset + + Todo elemento no nulo de +\begin_inset Formula $D$ +\end_inset + + puede expresarse como producto de una unidad por irreducibles. + Ahora bien, sea +\begin_inset Formula $p\in D$ +\end_inset + + irreducible, queremos ver que +\begin_inset Formula $p$ +\end_inset + + es primo, esto es, que para +\begin_inset Formula $a,b\in D$ +\end_inset + + con +\begin_inset Formula $p\mid ab$ +\end_inset + +, +\begin_inset Formula $p\mid a$ +\end_inset + + o +\begin_inset Formula $p\mid b$ +\end_inset + +. + Para +\begin_inset Formula $a=0$ +\end_inset + + o +\begin_inset Formula $b=0$ +\end_inset + + esto es claro, por lo que suponemos +\begin_inset Formula $a,b\neq0$ +\end_inset + +. + Sea +\begin_inset Formula $t\in D$ +\end_inset + + con +\begin_inset Formula $pt=ab$ +\end_inset + +, si +\begin_inset Formula $t=up_{1}\cdots p_{n}$ +\end_inset + +, +\begin_inset Formula $a=vq_{1}\cdots q_{m}$ +\end_inset + + y +\begin_inset Formula $b=wr_{1}\cdots r_{k}$ +\end_inset + + son las factorizaciones en irreducibles de +\begin_inset Formula $t$ +\end_inset + +, +\begin_inset Formula $a$ +\end_inset + + y +\begin_inset Formula $b$ +\end_inset + +, entonces +\begin_inset Formula $upp_{1}\cdots p_{n}=(vw)q_{1}\cdots q_{m}r_{1}\cdots r_{k}$ +\end_inset + +, y por la unicidad de la factorización, +\begin_inset Formula $p$ +\end_inset + + es asociado de algún +\begin_inset Formula $q_{i}$ +\end_inset + +, y entonces +\begin_inset Formula $p\mid a$ +\end_inset + +, o de algún +\begin_inset Formula $r_{i}$ +\end_inset + +, y entonces +\begin_inset Formula $p\mid b$ +\end_inset + +. +\end_layout + +\begin_layout Description +\begin_inset Formula $2\implies3]$ +\end_inset + + Como los primos en un dominio son irreducibles, +\begin_inset Formula $D$ +\end_inset + + es un DF. + Sean +\begin_inset Formula $p\in D$ +\end_inset + + irreducible y sean +\begin_inset Formula $u\in D^{*}$ +\end_inset + + y +\begin_inset Formula $q_{1},\dots,q_{k}\in D$ +\end_inset + + primos con +\begin_inset Formula $p=uq_{1}\cdots q_{k}$ +\end_inset + +. + Entonces o +\begin_inset Formula $q_{1}$ +\end_inset + + es unidad o lo es +\begin_inset Formula $uq_{2}\cdots q_{k}$ +\end_inset + +, pero como +\begin_inset Formula $q_{1}$ +\end_inset + + no lo es, debe ser +\begin_inset Formula $k=1$ +\end_inset + +. + De aquí, +\begin_inset Formula $p$ +\end_inset + + y +\begin_inset Formula $q_{1}$ +\end_inset + + son asociados, y como +\begin_inset Formula $q_{1}$ +\end_inset + + es primo, +\begin_inset Formula $p$ +\end_inset + + también. +\end_layout + +\begin_layout Description +\begin_inset Formula $3\implies1]$ +\end_inset + + Sean +\begin_inset Formula $d=up_{1}\cdots p_{n}=vq_{1}\cdots q_{m}$ +\end_inset + + factorizaciones en producto de irreducibles de un cierto +\begin_inset Formula $d\neq0$ +\end_inset + + y podemos suponer +\begin_inset Formula $n\leq m$ +\end_inset + +. + Si +\begin_inset Formula $n=0$ +\end_inset + +, entonces +\begin_inset Formula $d$ +\end_inset + + es unidad y, como los divisores de unidades son unidades, +\begin_inset Formula $m=0$ +\end_inset + + y las factorizaciones son equivalentes. + Si +\begin_inset Formula $n>0$ +\end_inset + +, supuesto esto probado para +\begin_inset Formula $n-1$ +\end_inset + +, como +\begin_inset Formula $p_{n}$ +\end_inset + + es primo, divide a algún +\begin_inset Formula $q_{i}$ +\end_inset + + y, como +\begin_inset Formula $q_{i}$ +\end_inset + + es irreducible por ser primo, existe +\begin_inset Formula $w\in D^{*}$ +\end_inset + + con +\begin_inset Formula $p_{n}w=q_{i}$ +\end_inset + + y ambos son asociados. + Podemos suponer +\begin_inset Formula $i=m$ +\end_inset + +, y entonces +\begin_inset Formula $up_{1}\cdots p_{n}=vq_{1}\cdots q_{m-1}wp_{n}$ +\end_inset + + y +\begin_inset Formula $up_{1}\cdots p_{n-1}=(vw)q_{1}\cdots q_{m-1}$ +\end_inset + +. + Por la hipótesis de inducción, +\begin_inset Formula $n-1=m-1$ +\end_inset + +, con lo que +\begin_inset Formula $n=m$ +\end_inset + +, y existe una permutación +\begin_inset Formula $\tau$ +\end_inset + + en +\begin_inset Formula $\mathbb{N}_{n-1}$ +\end_inset + + tal que +\begin_inset Formula $p_{i}$ +\end_inset + + y +\begin_inset Formula $q_{\tau(i)}$ +\end_inset + + son asociados para cada +\begin_inset Formula $i$ +\end_inset + +, y obviamente +\begin_inset Formula $\tau$ +\end_inset + + se extiende a una permutación +\begin_inset Formula $\sigma$ +\end_inset + + de +\begin_inset Formula $\mathbb{N}_{n}$ +\end_inset + + con esta propiedad. + Por tanto las factorizaciones iniciales son equivalentes. +\end_layout + +\begin_layout Section +Dominios de ideales principales +\end_layout + +\begin_layout Standard +Un +\series bold +dominio de ideales principales +\series default + ( +\series bold +DIP +\series default + o +\series bold +PID +\series default +) es un dominio en que todos los ideales son principales. + Si +\begin_inset Formula $D$ +\end_inset + + es un DIP y +\begin_inset Formula $a\in D\setminus(D^{*}\cup\{0\})$ +\end_inset + +, +\begin_inset Formula $a$ +\end_inset + + es irreducible si y sólo si +\begin_inset Formula $(a)$ +\end_inset + + es un ideal maximal, si y sólo si +\begin_inset Formula $\frac{A}{(a)}$ +\end_inset + + es un cuerpo, si y sólo si +\begin_inset Formula $a$ +\end_inset + + es primo, si y sólo si +\begin_inset Formula $(a)$ +\end_inset + + es un ideal primo, si y sólo si +\begin_inset Formula $\frac{A}{(a)}$ +\end_inset + + es un dominio. +\end_layout + +\begin_layout Description +\begin_inset Formula $1\iff2]$ +\end_inset + + Sabemos que +\begin_inset Formula $a$ +\end_inset + + es irreducible si y sólo si +\begin_inset Formula $(a)$ +\end_inset + + es maximal entre los ideales principales no nulos de +\begin_inset Formula $D$ +\end_inset + +, pero en un DIP estos son precisamente todos los ideales no nulos de +\begin_inset Formula $D$ +\end_inset + +, y como +\begin_inset Formula $a\neq0$ +\end_inset + +, +\begin_inset Formula $(a)\neq0$ +\end_inset + +. +\end_layout + +\begin_layout Description +\begin_inset Formula $2\iff3]$ +\end_inset + + Visto. +\end_layout + +\begin_layout Description +\begin_inset Formula $1\impliedby4\iff5\iff6]$ +\end_inset + + Visto. +\end_layout + +\begin_layout Description +\begin_inset Formula $3\implies6]$ +\end_inset + + Obvio. +\end_layout + +\begin_layout Standard +Todo DIP es un DFU. + +\series bold +Demostración: +\series default + Supongamos que existe +\begin_inset Formula $a_{0}\in D\setminus\{0\}$ +\end_inset + + que no admite factorización en irreducibles. + Si +\begin_inset Formula $a\in D\setminus\{0\}$ +\end_inset + + no admite factorización, como +\begin_inset Formula $a$ +\end_inset + + no es irreducible ni unidad, existen +\begin_inset Formula $x,y\in D\setminus(D^{*}\cup\{0\})$ +\end_inset + + con +\begin_inset Formula $a=xy$ +\end_inset + +, y al menos +\begin_inset Formula $x$ +\end_inset + + o +\begin_inset Formula $y$ +\end_inset + + (por ejemplo +\begin_inset Formula $x$ +\end_inset + +) no admite factorización, con lo que +\begin_inset Formula $(a)\subsetneq(x)$ +\end_inset + +. + Por inducción existe una sucesión +\begin_inset Formula $(a_{n})_{n\in\mathbb{N}}$ +\end_inset + + en +\begin_inset Formula $D$ +\end_inset + + con +\begin_inset Formula $(a_{0})\subsetneq(a_{1})\subsetneq\dots$ +\end_inset + +. + Sea +\begin_inset Formula $I:=(a_{1},a_{2},\dots)=\bigcup_{n\in\mathbb{N}}(a_{n})$ +\end_inset + +, como +\begin_inset Formula $D$ +\end_inset + + es un DIP, existe +\begin_inset Formula $x\in D$ +\end_inset + + con +\begin_inset Formula $I=(x)$ +\end_inset + +, luego +\begin_inset Formula $x\in\bigcup_{n\in\mathbb{N}}(a_{n})$ +\end_inset + + y existe +\begin_inset Formula $n$ +\end_inset + + con +\begin_inset Formula $x\in(a_{n})$ +\end_inset + +. + Como además +\begin_inset Formula $a_{n}\in I=(x)$ +\end_inset + +, +\begin_inset Formula $(a_{n})=(x)=I$ +\end_inset + + y por tanto +\begin_inset Formula $(a_{n})=(a_{n+1})\#$ +\end_inset + +. +\end_layout + +\begin_layout Section +Dominios euclídeos +\end_layout + +\begin_layout Standard +Dado un dominio +\begin_inset Formula $D\neq0$ +\end_inset + +, una función +\begin_inset Formula $\delta:D\setminus\{0\}\to\mathbb{N}$ +\end_inset + + es +\series bold +euclídea +\series default + si cumple: +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\forall a,b\in D\setminus\{0\},(a\mid b\implies\delta(a)\leq\delta(b))$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\forall a\in D,b\in D\setminus\{0\},\exists q,r\in D:(a=bq+r\land(r=0\lor\delta(r)<\delta(b)))$ +\end_inset + +. + +\end_layout + +\begin_layout Standard +Un +\series bold +dominio euclídeo +\series default + es uno que admite una función euclídea. + Ejemplos: +\end_layout + +\begin_layout Enumerate +El valor absoluto es una función euclídea en +\begin_inset Formula $\mathbb{Z}$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $\mathbb{K}$ +\end_inset + + es un cuerpo, el grado de un polinomio en +\begin_inset Formula $\mathbb{K}[X]$ +\end_inset + + es una función euclídea. +\end_layout + +\begin_deeper +\begin_layout Standard +La primera condición es clara. + Para la segunda, sean +\begin_inset Formula $D:=\mathbb{K}[X]$ +\end_inset + +, +\begin_inset Formula $a,b\in D$ +\end_inset + + y +\begin_inset Formula $b\neq0$ +\end_inset + +. + Si +\begin_inset Formula $a=0$ +\end_inset + +, tomando +\begin_inset Formula $q=r=0$ +\end_inset + + se tiene el resultado. + Sean +\begin_inset Formula $a\neq0$ +\end_inset + +, +\begin_inset Formula $n$ +\end_inset + + el grado de +\begin_inset Formula $a$ +\end_inset + + y +\begin_inset Formula $m$ +\end_inset + + el de +\begin_inset Formula $b$ +\end_inset + +. + Si +\begin_inset Formula $n<m$ +\end_inset + +, tomamos +\begin_inset Formula $q=0$ +\end_inset + + y +\begin_inset Formula $r=a$ +\end_inset + +, y si +\begin_inset Formula $n=m=0$ +\end_inset + +, tomamos +\begin_inset Formula $q=ab^{-1}$ +\end_inset + + y +\begin_inset Formula $r=0$ +\end_inset + +, lo que prueba la condición para +\begin_inset Formula $n=0$ +\end_inset + +. + Si +\begin_inset Formula $n>0$ +\end_inset + +, supuesto esto probado para grado menor que +\begin_inset Formula $n$ +\end_inset + +, sean +\begin_inset Formula $\alpha$ +\end_inset + + el término principal de +\begin_inset Formula $a$ +\end_inset + + y +\begin_inset Formula $\beta$ +\end_inset + + el término principal de +\begin_inset Formula $b$ +\end_inset + +, +\begin_inset Formula $c:=a-\alpha\beta^{-1}X^{n-m}b$ +\end_inset + + tiene grado +\begin_inset Formula $n-m<n$ +\end_inset + + si +\begin_inset Formula $m>0$ +\end_inset + + o +\begin_inset Formula $n-1$ +\end_inset + + si +\begin_inset Formula $m=0$ +\end_inset + +, luego existen +\begin_inset Formula $q',r'\in D$ +\end_inset + + con +\begin_inset Formula $c:=q'b+r$ +\end_inset + + y o bien +\begin_inset Formula $r=0$ +\end_inset + + o +\begin_inset Formula $r$ +\end_inset + + tiene grado menor que +\begin_inset Formula $b$ +\end_inset + +. + Entonces +\begin_inset Formula $a+\alpha\beta^{-1}X^{n-m}b=q'b+r$ +\end_inset + +, y tomando +\begin_inset Formula $q:=q'-\alpha\beta'X^{n-m}$ +\end_inset + + se tiene +\begin_inset Formula $a=qb+r$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Enumerate +El cuadrado del módulo complejo es una función euclídea en +\begin_inset Formula $\mathbb{Z}[i]$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Standard +Si +\begin_inset Formula $x:=a+bi$ +\end_inset + + con +\begin_inset Formula $a,b\in\mathbb{Z}$ +\end_inset + +, +\begin_inset Formula $\delta(x):=|x|^{2}=a^{2}+b^{2}\in\mathbb{N}$ +\end_inset + +. + Además, +\begin_inset Formula $\delta(x)=0\iff x=0$ +\end_inset + + y +\begin_inset Formula $\delta(xy)=\delta(x)\delta(y)$ +\end_inset + +, de donde se obtiene la primera condición. + Sean ahora +\begin_inset Formula $a:=a_{1}+a_{2}i$ +\end_inset + + y +\begin_inset Formula $b:=b_{1}+b_{2}i\neq0$ +\end_inset + + con +\begin_inset Formula $a_{1},a_{2},b_{1},b_{2}\in\mathbb{Z}$ +\end_inset + +, +\begin_inset Formula $x:=x_{1}+x_{2}i:=\frac{a}{b}$ +\end_inset + + con +\begin_inset Formula $x_{1},x_{2}\in\mathbb{R}$ +\end_inset + +, +\begin_inset Formula $q_{1}$ +\end_inset + + y +\begin_inset Formula $q_{2}$ +\end_inset + + los enteros más próximos a +\begin_inset Formula $x_{1}$ +\end_inset + + y +\begin_inset Formula $x_{2}$ +\end_inset + + respectivamente, +\begin_inset Formula $q:=q_{1}+q_{2}i$ +\end_inset + + y +\begin_inset Formula $r:=a-bq$ +\end_inset + +. + Entonces +\begin_inset Formula $a=bq+r$ +\end_inset + + y, como +\begin_inset Formula $|x_{i}-q_{i}|\leq\frac{1}{2}$ +\end_inset + +, +\begin_inset Formula +\begin{multline*} +\delta(r):=|a-bq|^{2}=|b(\frac{a}{b}-q)|^{2}=|b|^{2}|x-q|^{2}=\\ +=\delta(b)((x_{1}-q_{1})^{2}+(x_{2}-q_{2})^{2})\leq\delta(b)\left(\frac{1}{4}+\frac{1}{4}\right)=\frac{\delta(b)}{2}<\delta(b). +\end{multline*} + +\end_inset + + +\end_layout + +\end_deeper +\begin_layout Standard +Sean +\begin_inset Formula $\delta$ +\end_inset + + una función euclídea en +\begin_inset Formula $D$ +\end_inset + +, +\begin_inset Formula $I$ +\end_inset + + un ideal de +\begin_inset Formula $D$ +\end_inset + + y +\begin_inset Formula $a\in I\setminus\{0\}$ +\end_inset + +, entonces +\begin_inset Formula $I=(a)\iff\forall x\in I\setminus\{0\},\delta(a)\leq\delta(x)$ +\end_inset + +. +\end_layout + +\begin_layout Itemize +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\implies]$ +\end_inset + + +\end_layout + +\end_inset + +Dado +\begin_inset Formula $0\neq x\in I=(a)$ +\end_inset + +, como +\begin_inset Formula $a\mid x$ +\end_inset + +, +\begin_inset Formula $\delta(a)\leq\delta(x)$ +\end_inset + +. +\end_layout + +\begin_layout Itemize +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\impliedby]$ +\end_inset + + +\end_layout + +\end_inset + + +\begin_inset Note Note +status open + +\begin_layout Plain Layout + +\end_layout + +\end_inset + + +\end_layout + +\begin_deeper +\begin_layout Itemize +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\supseteq]$ +\end_inset + + +\end_layout + +\end_inset + + +\begin_inset Formula $a\in I\implies(a)\subseteq I$ +\end_inset + +. +\end_layout + +\begin_layout Itemize +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\subseteq]$ +\end_inset + + +\end_layout + +\end_inset + +Sea +\begin_inset Formula $x\in I$ +\end_inset + +, si +\begin_inset Formula $x=0$ +\end_inset + +, +\begin_inset Formula $x\in(a)$ +\end_inset + +. + De lo contrario existen +\begin_inset Formula $q,r\in D$ +\end_inset + + con +\begin_inset Formula $x=aq+r$ +\end_inset + + y o +\begin_inset Formula $r=0$ +\end_inset + + o +\begin_inset Formula $\delta(r)<\delta(a)$ +\end_inset + +. + Entonces +\begin_inset Formula $r=x-aq\in I$ +\end_inset + + y por tanto +\begin_inset Formula $\delta(a)\leq\delta(x)$ +\end_inset + +, luego necesariamente +\begin_inset Formula $r=0$ +\end_inset + + y +\begin_inset Formula $x\in(a)$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Standard +Como +\series bold +teorema +\series default +, todo dominio euclídeo es DIP, pues si +\begin_inset Formula $\delta$ +\end_inset + + es una función euclídea en el dominio e +\begin_inset Formula $I$ +\end_inset + + es un ideal no nulo (el ideal nulo es +\begin_inset Formula $(0)$ +\end_inset + +), +\begin_inset Formula $\delta(I\setminus\{0\})$ +\end_inset + + tendrá un mínimo que se alcanzará para algún +\begin_inset Formula $a\in I\setminus\{0\}$ +\end_inset + + y entonces +\begin_inset Formula $I=(a)$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Si +\begin_inset Formula $\delta$ +\end_inset + + es una función euclídea en +\begin_inset Formula $D$ +\end_inset + +, un elemento +\begin_inset Formula $a\in D$ +\end_inset + + es una unidad si y sólo si +\begin_inset Formula $\delta(a)=\delta(1)$ +\end_inset + +, si y sólo si +\begin_inset Formula $\forall x\in D\setminus\{0\},\delta(a)\leq\delta(x)$ +\end_inset + +. +\end_layout + +\begin_layout Description +\begin_inset Formula $[1\iff3]$ +\end_inset + + +\begin_inset Formula $a$ +\end_inset + + es unidad si y sólo si +\begin_inset Formula $(a)=D$ +\end_inset + +, si y sólo si +\begin_inset Formula $\forall x\in D\setminus\{0\},\delta(a)\leq\delta(x)$ +\end_inset + +. +\end_layout + +\begin_layout Description +\begin_inset Formula $[2\implies3]$ +\end_inset + + Dado +\begin_inset Formula $x\in D\setminus\{0\}$ +\end_inset + +, como +\begin_inset Formula $1\mid x$ +\end_inset + +, +\begin_inset Formula $\delta(a)=\delta(1)\leq\delta(x)$ +\end_inset + +. +\end_layout + +\begin_layout Description +\begin_inset Formula $[3\implies2]$ +\end_inset + + Obvio. +\end_layout + +\begin_layout Section +Cuerpos de fracciones +\end_layout + +\begin_layout Standard +Sean +\begin_inset Formula $D\neq0$ +\end_inset + + un dominio y +\begin_inset Formula $X:=D\times(D\setminus\{0\})$ +\end_inset + +, definimos la relación binaria +\begin_inset Formula $(a_{1},s_{1})\sim(a_{2},s_{2}):\iff a_{1}s_{2}=a_{2}s_{1}$ +\end_inset + +. + Esta relación es de equivalencia; en efecto, las propiedades reflexiva + y transitiva son claras, y si +\begin_inset Formula $a_{1}s_{2}=a_{2}s_{1}$ +\end_inset + + y +\begin_inset Formula $a_{2}s_{3}=a_{3}s_{2}$ +\end_inset + +, entonces +\begin_inset Formula $a_{1}s_{2}a_{2}s_{3}=a_{2}s_{1}a_{3}s_{2}$ +\end_inset + + y, o bien +\begin_inset Formula $a_{2}=0$ +\end_inset + + y por tanto +\begin_inset Formula $a_{1}=a_{3}=0$ +\end_inset + +, o podemos cancelar +\begin_inset Formula $s_{2}a_{2}$ +\end_inset + +, y en cualquier caso +\begin_inset Formula $a_{1}s_{3}=s_{1}a_{3}$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Llamamos +\begin_inset Formula $a/s:=\frac{a}{s}:=[(a,s)]\in Q(D):=X/\sim$ +\end_inset + +, y se tiene que las operaciones +\begin_inset Formula +\begin{align*} +\frac{a_{1}}{s_{1}}+\frac{a_{2}}{s_{2}} & :=\frac{a_{1}s_{2}+a_{2}s_{1}}{s_{1}s_{2}}, & \frac{a_{1}}{s_{1}}\cdot\frac{a_{2}}{s_{2}} & :=\frac{a_{1}a_{2}}{s_{1}s_{2}}, +\end{align*} + +\end_inset + +están bien definidas. + +\series bold +Demostración: +\series default + Sean +\begin_inset Formula $a_{1}/s_{1}=b_{1}/t_{1}$ +\end_inset + + y +\begin_inset Formula $a_{2}/s_{2}=b_{2}/t_{2}$ +\end_inset + +, esto es, +\begin_inset Formula $a_{1}t_{1}=b_{1}s_{1}$ +\end_inset + + y +\begin_inset Formula $a_{2}t_{2}=b_{2}s_{2}$ +\end_inset + +. + Entonces +\begin_inset Formula $(a_{1}s_{2}+a_{2}s_{1})t_{1}t_{2}=a_{1}s_{2}t_{1}t_{2}+a_{2}s_{1}t_{1}t_{2}=b_{1}s_{2}s_{1}t_{2}+b_{2}s_{1}s_{2}t_{2}=(b_{1}t_{2}+b_{2}t_{1})s_{1}s_{2}$ +\end_inset + +, luego +\begin_inset Formula $\frac{a_{1}s_{2}+a_{2}s_{1}}{s_{1}s_{2}}=\frac{b_{1}t_{2}+b_{2}t_{1}}{t_{1}t_{2}}$ +\end_inset + +. + Por otro lado, +\begin_inset Formula $a_{1}a_{2}t_{1}t_{2}=b_{1}b_{2}s_{1}s_{2}$ +\end_inset + +, luego +\begin_inset Formula $\frac{a_{1}a_{2}}{s_{1}s_{2}}=\frac{b_{1}b_{2}}{t_{1}t_{2}}$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Propiedades: +\begin_inset Formula $\forall a,b\in D;s,t\in D\setminus\{0\}$ +\end_inset + +: +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\frac{a}{s}=\frac{0}{1}\iff a=0$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Standard +\begin_inset Formula $\frac{a}{s}=\frac{0}{1}\iff a=a1=s0=0$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Enumerate +\begin_inset Formula $\frac{a}{s}=\frac{1}{1}\iff a=s$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Standard +\begin_inset Formula $\frac{a}{s}=\frac{1}{1}\iff a=a1=s1=s$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Enumerate +\begin_inset Formula $\frac{at}{st}=\frac{a}{s}$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Standard +\begin_inset Formula $ats=ast$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Enumerate +\begin_inset Formula $\frac{a}{s}=\frac{b}{s}\iff a=b$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Standard +\begin_inset Formula $\frac{a}{s}=\frac{b}{s}\iff as=bs\overset{s\neq0}{\iff}a=b$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Enumerate +\begin_inset Formula $\frac{a}{s}+\frac{b}{s}=\frac{a+b}{s}$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Standard +\begin_inset Formula $\frac{a}{s}+\frac{b}{s}=\frac{as+bs}{ss}=\frac{(a+b)s}{ss}=\frac{a+b}{s}$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Standard +De aquí, +\begin_inset Formula $(Q(D),+,\cdot)$ +\end_inset + + es un cuerpo llamado +\series bold +cuerpo de fracciones +\series default + o +\series bold +de cocientes +\series default + de +\begin_inset Formula $D$ +\end_inset + + cuyo cero es +\begin_inset Formula $\frac{0}{1}$ +\end_inset + + y cuyo uno es +\begin_inset Formula $\frac{1}{1}$ +\end_inset + + . + +\series bold +Demostración: +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\frac{a}{s}+\frac{b}{t}=\frac{at+bs}{st}=\frac{bs+at}{ts}=\frac{b}{t}+\frac{a}{s}$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\left(\frac{a}{s}+\frac{b}{t}\right)+\frac{c}{u}=\frac{at+bs}{st}+\frac{c}{u}=\frac{atu+bsu+cst}{stu}=\frac{a}{s}+\frac{bu+ct}{tu}=\frac{a}{s}+\left(\frac{b}{t}+\frac{c}{u}\right)$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\frac{a}{s}+\frac{0}{1}=\frac{a1+s0}{s1}=\frac{a+0}{s}=\frac{a}{s}$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\frac{a}{s}+\frac{-a}{s}=\frac{a+(-a)}{s}=\frac{0}{s}=\frac{0}{1}$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\frac{a}{s}\frac{b}{t}=\frac{ab}{st}=\frac{ba}{ts}=\frac{b}{t}\frac{a}{s}$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\frac{a}{s}\left(\frac{b}{t}\frac{c}{u}\right)=\frac{a}{s}\frac{bc}{tu}=\frac{abc}{stu}=\frac{ab}{st}\frac{c}{u}=\left(\frac{a}{s}\frac{b}{t}\right)\frac{c}{u}$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\frac{a}{s}\frac{1}{1}=\frac{a1}{s1}=\frac{a}{s}$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\frac{a}{s}\frac{s}{a}=\frac{as}{sa}=\frac{as}{as}=\frac{1}{1}$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\frac{a}{s}\left(\frac{b}{t}+\frac{c}{u}\right)=\frac{a}{s}\frac{bu+ct}{tu}=\frac{abu+act}{stu}=\frac{abu}{stu}+\frac{act}{stu}=\frac{ab}{st}+\frac{ac}{su}=\frac{a}{s}\frac{b}{t}+\frac{a}{s}\frac{c}{u}$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Así, +\begin_inset Formula $\mathbb{Q}$ +\end_inset + + es el cuerpo de fracciones de +\begin_inset Formula $\mathbb{Z}$ +\end_inset + +, y si +\begin_inset Formula $A[X]$ +\end_inset + + es un dominio llamamos +\series bold +cuerpo de las funciones racionales +\series default + sobre +\begin_inset Formula $A$ +\end_inset + + a +\begin_inset Formula $A(X):=D(A[X])$ +\end_inset + +. + Es fácil ver que función +\begin_inset Formula $u:D\to Q(D)$ +\end_inset + + dada por +\begin_inset Formula $u(a):=a/1$ +\end_inset + + es un homomorfismo inyectivo, por lo que podemos ver a +\begin_inset Formula $D$ +\end_inset + + como un subdominio de +\begin_inset Formula $Q(D)$ +\end_inset + + identificando a cada +\begin_inset Formula $a\in D$ +\end_inset + + con +\begin_inset Formula $a/1\in Q(D)$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Así, dados un dominio +\begin_inset Formula $D$ +\end_inset + + y +\begin_inset Formula $u:D\to Q(D)$ +\end_inset + + dada por +\begin_inset Formula $u(a):=a/1$ +\end_inset + +: +\end_layout + +\begin_layout Enumerate + +\series bold +Propiedad universal del cuerpo de fracciones: +\series default + Sean +\begin_inset Formula $K$ +\end_inset + + un cuerpo y +\begin_inset Formula $f:D\to K$ +\end_inset + + un homomorfismo inyectivo, el único homomorfismo de cuerpos +\begin_inset Formula $\tilde{f}:Q(D)\to K$ +\end_inset + + con +\begin_inset Formula $\tilde{f}\circ u=f$ +\end_inset + + viene dado por +\begin_inset Formula $\tilde{f}(\frac{a}{s})=f(a)f(s)^{-1}$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Standard +Si +\begin_inset Formula $\hat{f}:Q(D)\to K$ +\end_inset + + es un homomorfismo de cuerpos con +\begin_inset Formula $\hat{f}\circ u=f$ +\end_inset + +, para todo +\begin_inset Formula $\frac{a}{s}\in Q(D)$ +\end_inset + +, +\begin_inset Formula $\hat{f}(\frac{a}{s})=\hat{f}(\frac{a}{1}\frac{s^{-1}}{1})=\hat{f}(u(a)u(s)^{-1})=\hat{f}(u(a))\hat{f}(u(s))^{-1}=f(a)f(s)^{-1}$ +\end_inset + +, luego el homomorfismo es único. + Para ver que está bien definido, si +\begin_inset Formula $\frac{a}{s}=\frac{b}{t}$ +\end_inset + +, +\begin_inset Formula $at=bs$ +\end_inset + +, luego +\begin_inset Formula $f(a)f(t)=f(b)f(s)$ +\end_inset + + y +\begin_inset Formula $f(a)f(s)^{-1}=f(b)f(t)^{-1}$ +\end_inset + +. + Para ver que es un homomorfismo, +\begin_inset Formula $\tilde{f}(1/1)=f(1)f(1)^{-1}=1$ +\end_inset + +, +\begin_inset Formula $\tilde{f}(\frac{a}{s}+\frac{b}{t})=\tilde{f}(\frac{at+bs}{st})=f(at+bs)f(st)^{-1}=(f(a)f(t)+f(b)f(s))f(s)^{-1}f(t)^{-1}=f(a)f(s)^{-1}+f(b)f(t)^{-1}=\tilde{f}(\frac{a}{s})+\tilde{f}(\frac{b}{t})$ +\end_inset + + y +\begin_inset Formula $\tilde{f}(\frac{a}{s}\frac{b}{t})=\tilde{f}(\frac{ab}{st})=f(ab)f(st)^{-1}=f(a)f(s)^{-1}f(b)f(t)^{-1}=\tilde{f}(\frac{a}{s})\tilde{f}(\frac{b}{t})$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Enumerate +Sean +\begin_inset Formula $K$ +\end_inset + + un cuerpo no trivial y +\begin_inset Formula $g,h:Q(D)\to K$ +\end_inset + + homomorfismos que coinciden en +\begin_inset Formula $D$ +\end_inset + +, entonces +\begin_inset Formula $g=h$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Standard +El homomorfismo +\begin_inset Formula $f:=g\circ u=h\circ u$ +\end_inset + + es inyectivo por serlo +\begin_inset Formula $g$ +\end_inset + +, al ser homomorfismo de cuerpos, y +\begin_inset Formula $u$ +\end_inset + +, y por la Propiedad Universal, existe un único +\begin_inset Formula $\tilde{f}$ +\end_inset + + con +\begin_inset Formula $\tilde{f}\circ u=f$ +\end_inset + + y por tanto +\begin_inset Formula $\tilde{f}=g=h$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Enumerate +Sean +\begin_inset Formula $F$ +\end_inset + + un cuerpo no trivial y +\begin_inset Formula $v:D\to F$ +\end_inset + + un homomorfismo inyectivo tal que para todo cuerpo +\begin_inset Formula $K$ +\end_inset + + y homomorfismo inyectivo +\begin_inset Formula $f:D\to K$ +\end_inset + + existe un único homomorfismo +\begin_inset Formula $\tilde{f}:F\to K$ +\end_inset + + con +\begin_inset Formula $\tilde{f}\circ v=f$ +\end_inset + +, entonces existe un isomorfismo +\begin_inset Formula $\phi:F\to Q(D)$ +\end_inset + + con +\begin_inset Formula $\phi\circ v=u$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Standard +Por la Propiedad Universal de +\begin_inset Formula $Q(D)$ +\end_inset + +, existe un único homomorfismo +\begin_inset Formula $\tilde{v}:Q(D)\to F$ +\end_inset + + con +\begin_inset Formula $\tilde{v}\circ u=v$ +\end_inset + +, y por la hipótesis existe un único homomorfismo +\begin_inset Formula $\tilde{u}:F\to Q(D)$ +\end_inset + + con +\begin_inset Formula $\tilde{u}\circ v=u$ +\end_inset + +, luego +\begin_inset Formula $\tilde{u}\circ\tilde{v}:Q(D)\to Q(D)$ +\end_inset + + verifica +\begin_inset Formula $(\tilde{u}\circ\tilde{v})\circ u=\tilde{u}\circ v=u$ +\end_inset + + y, por el punto anterior tomando como cuerpo +\begin_inset Formula $Q(D)$ +\end_inset + +, +\begin_inset Formula $\tilde{u}\circ\tilde{v}=id$ +\end_inset + +. + En particular +\begin_inset Formula $\tilde{u}$ +\end_inset + + es suprayectiva y, como es inyectivo por ser homomorfismo de cuerpos no + triviales, es el isomorfismo buscado. +\end_layout + +\end_deeper +\begin_layout Standard +Sean +\begin_inset Formula $D$ +\end_inset + + un dominio, +\begin_inset Formula $K$ +\end_inset + + un cuerpo no trivial y +\begin_inset Formula $f:D\to K$ +\end_inset + + un homomorfismo inyectivo, +\begin_inset Formula $K$ +\end_inset + + contiene un subcuerpo isomorfo a +\begin_inset Formula $Q(D)$ +\end_inset + +. + En efecto, por la propiedad universal, existe un homomorfismo +\begin_inset Formula $\tilde{f}:Q(D)\to K$ +\end_inset + +, y como este es inyectivo, +\begin_inset Formula $\text{Im}\tilde{f}$ +\end_inset + + es un subcuerpo de +\begin_inset Formula $K$ +\end_inset + + isomorfo a +\begin_inset Formula $Q(D)$ +\end_inset + +. +\end_layout + +\begin_layout Standard +De aquí, para +\begin_inset Formula $m\in\mathbb{Z}$ +\end_inset + +, +\begin_inset Formula $Q(\mathbb{Z}[\sqrt{m}])\cong\mathbb{Q}[\sqrt{m}]$ +\end_inset + +, lo que nos permite identificar los elementos de +\begin_inset Formula $Q(\mathbb{Z}[\sqrt{m}])$ +\end_inset + + con los de +\begin_inset Formula $\mathbb{Q}[\sqrt{m}]$ +\end_inset + +. + +\series bold +Demostración: +\series default + Si +\begin_inset Formula $m$ +\end_inset + + es un cuadrado, esto significa +\begin_inset Formula $Q(\mathbb{Z})\cong\mathbb{Q}$ +\end_inset + +, lo que ya sabemos. + De lo contrario, sean +\begin_inset Formula $f:\mathbb{Z}[\sqrt{m}]\to\mathbb{C}$ +\end_inset + + el homomorfismo inclusión y +\begin_inset Formula $\tilde{f}:Q(\mathbb{Z}[\sqrt{m}])\to\mathbb{C}$ +\end_inset + + el que nos da la propiedad universal, dado por +\begin_inset Formula $\tilde{f}(\frac{a+b\sqrt{m}}{c+d\sqrt{m}})=\frac{a+b\sqrt{m}}{c+d\sqrt{m}}$ +\end_inset + +. + Queda ver que +\begin_inset Formula $\text{Im}\tilde{f}=\mathbb{Q}[\sqrt{m}]$ +\end_inset + +, pero esto es claro, pues para +\begin_inset Formula $a,b,c,d\in\mathbb{Z}$ +\end_inset + + con +\begin_inset Formula $c,d\neq0$ +\end_inset + +, sea +\begin_inset Formula $t:=(c+d\sqrt{m})(c-d\sqrt{m})$ +\end_inset + +, entonces +\begin_inset Formula +\[ +\frac{a+b\sqrt{m}}{c+d\sqrt{m}}=\frac{(a+b\sqrt{m})(c-d\sqrt{m})}{(c+d\sqrt{m})(c-d\sqrt{m})}=\frac{ac-bdm}{t}+\frac{bc-ad}{t}\sqrt{m}\in\mathbb{Q}[\sqrt{m}], +\] + +\end_inset + +y recíprocamente, +\begin_inset Formula +\[ +\frac{a}{c}+\frac{b}{d}\sqrt{m}=\frac{ad+bc\sqrt{m}}{cd}\in Q(\mathbb{Z}[\sqrt{m}]). +\] + +\end_inset + + +\end_layout + +\begin_layout Standard +Sea +\begin_inset Formula $K$ +\end_inset + + un cuerpo no trivial, existe un subcuerpo +\begin_inset Formula $K'$ +\end_inset + + de +\begin_inset Formula $K$ +\end_inset + + llamado +\series bold +subcuerpo primo +\series default + de +\begin_inset Formula $K$ +\end_inset + + contenido en cualquier subcuerpo de +\begin_inset Formula $K$ +\end_inset + +, y este es isomorfo a +\begin_inset Formula $\mathbb{Z}_{p}$ +\end_inset + + si la característica de +\begin_inset Formula $K$ +\end_inset + + es un entero primo +\begin_inset Formula $p$ +\end_inset + + o a +\begin_inset Formula $\mathbb{Q}$ +\end_inset + + en caso contrario. + +\series bold +Demostración: +\series default + Si la característica es un primo +\begin_inset Formula $p$ +\end_inset + +, el subanillo primo de +\begin_inset Formula $K$ +\end_inset + +, isomorfo a +\begin_inset Formula $\mathbb{Z}_{p}$ +\end_inset + +, es un cuerpo y contiene a cualquier subanillo de +\begin_inset Formula $K$ +\end_inset + +, y por tanto a cualquier subcuerpo. + En otro caso, al ser +\begin_inset Formula $K$ +\end_inset + + un cuerpo, la característica es 0, por lo que +\begin_inset Formula $f:\mathbb{Z}\to K$ +\end_inset + + dado por +\begin_inset Formula $f(n):=n1$ +\end_inset + + es un homomorfismo inyectivo y la propiedad universal nos da un homomorfismo + +\begin_inset Formula $\tilde{f}:Q(\mathbb{Z})=\mathbb{Q}\to K$ +\end_inset + + dado por +\begin_inset Formula $f(\frac{n}{m})=f(n)f(m)^{-1}$ +\end_inset + +. + Es claro entonces que +\begin_inset Formula $K':=\tilde{f}(\mathbb{Q})$ +\end_inset + + es isomorfo a +\begin_inset Formula $\mathbb{Q}$ +\end_inset + +, y queda ver que está contenido en cualquier subcuerpo de +\begin_inset Formula $K$ +\end_inset + +. + Dado un tal +\begin_inset Formula $F$ +\end_inset + +, para +\begin_inset Formula $m\in\mathbb{Z}$ +\end_inset + +, +\begin_inset Formula $f(m)=m1\in F$ +\end_inset + +, y para +\begin_inset Formula $n\in\mathbb{Z}\setminus\{0\}$ +\end_inset + +, +\begin_inset Formula $f(n)\neq0$ +\end_inset + + y +\begin_inset Formula $f(n)^{-1}\in F$ +\end_inset + +, luego +\begin_inset Formula $\tilde{f}(\frac{m}{n})=f(m)f(n)^{-1}\in F$ +\end_inset + +, y en resumen +\begin_inset Formula $\tilde{f}(\mathbb{Q})\subseteq F$ +\end_inset + +. + +\end_layout + +\end_body +\end_document |
