diff options
Diffstat (limited to 'gcs')
| -rw-r--r-- | gcs/n1.lyx | 5 | ||||
| -rw-r--r-- | gcs/n3.lyx | 90 | 
2 files changed, 65 insertions, 30 deletions
| @@ -5,6 +5,9 @@  \save_transient_properties true  \origin unavailable  \textclass book +\begin_preamble +\input{../defs} +\end_preamble  \use_default_options true  \maintain_unincluded_children false  \language spanish @@ -2037,7 +2040,7 @@ Curvas en el espacio  \end_layout  \begin_layout Standard -Sean  +Sea   \begin_inset Formula $\alpha:I\to\mathbb{R}^{3}$  \end_inset @@ -1573,17 +1573,54 @@ Sean  \end_inset   una superficie regular y  -\begin_inset Formula $V:\mathbb{R}\to T_{p}S$ +\begin_inset Formula $\alpha:I\to S$ +\end_inset + + una curva regular, un  +\series bold +campo de vectores a lo largo de  +\begin_inset Formula $\alpha$ +\end_inset + + +\series default + es una función  +\begin_inset Formula $V:I\to\mathbb{R}^{3}$  \end_inset - diferenciable, llamamos  +, y es  +\series bold +tangente +\series default + a  +\begin_inset Formula $S$ +\end_inset + + (a lo largo de  +\begin_inset Formula $\alpha$ +\end_inset + +) si para  +\begin_inset Formula $t\in S$ +\end_inset + + es  +\begin_inset Formula $V(t)\in T_{\alpha(t)}S$ +\end_inset + +. + Sea  +\begin_inset Formula $V:I\to\mathbb{R}^{3}$ +\end_inset + + un campo de vectores tangente y diferenciable, llamamos   \series bold  derivada covariante  \series default   a   \begin_inset Formula   \[ -\frac{DV}{dt}(t):=\pi_{T_{p}S}V'(t), +\frac{DV}{dt}(t):=\pi_{T_{\alpha(t)}S}V'(t),  \]  \end_inset @@ -1598,11 +1635,11 @@ la proyección de  .   Propiedades: Sean  -\begin_inset Formula $V,W:\mathbb{R}\to T_{p}S$ +\begin_inset Formula $V,W:I\to T_{p}S$  \end_inset   y  -\begin_inset Formula $f:I\subseteq\mathbb{R}\to\mathbb{R}$ +\begin_inset Formula $f:I\to\mathbb{R}$  \end_inset   diferenciables, siendo  @@ -1622,11 +1659,11 @@ la proyección de  \begin_deeper  \begin_layout Standard  Si  -\begin_inset Formula $\pi:=\pi_{T_{p}S}$ +\begin_inset Formula $\pi:=\pi_{T_{\alpha(t)}S}$  \end_inset  ,  -\begin_inset Formula $\frac{D(fV)}{dt}=\pi((fV)')=\pi(fV'+f'V)=f\pi V'+f'\pi V=f\frac{DV}{dt}+f'V$ +\begin_inset Formula $\frac{D(fV)}{dt}=\pi((fV)')=\pi(fV'+f'V)=f\pi(V')+f'\pi(V)=f\frac{DV}{dt}+f'V$  \end_inset  . @@ -1642,7 +1679,7 @@ Si  \begin_deeper  \begin_layout Standard -\begin_inset Formula $\frac{D(V+W)}{dt}=\pi((V+W)')=\pi V'+\pi W'=\frac{DV}{dt}+\frac{DW}{dt}$ +\begin_inset Formula $\frac{D(V+W)}{dt}=\pi((V+W)')=\pi(V')+\pi(W')=\frac{DV}{dt}+\frac{DW}{dt}$  \end_inset  . @@ -1678,7 +1715,7 @@ Si  \end_inset  ,  -\begin_inset Formula $\langle\frac{dV}{dt}(t),W(t)\rangle=\sum_{i=1}^{3}x_{i}y_{i}\overset{y_{3}=0}{=}x_{1}y_{1}+x_{2}y_{2}=\langle\pi_{T_{p}S}\frac{dV}{dt}(t),W(t)\rangle=\langle\frac{DV}{dt}(t),W(t)\rangle$ +\begin_inset Formula $\langle\frac{dV}{dt}(t),W(t)\rangle=\sum_{i=1}^{3}x_{i}y_{i}\overset{y_{3}=0}{=}x_{1}y_{1}+x_{2}y_{2}=\langle\pi(\frac{dV}{dt}(t)),W(t)\rangle=\langle\frac{DV}{dt}(t),W(t)\rangle$  \end_inset  , y análogamente para  @@ -1686,7 +1723,7 @@ Si  \end_inset  , luego  -\begin_inset Formula $\frac{d}{dt}\langle V,W\rangle=\langle\frac{DV}{dt},W\rangle+\langle V,\frac{dW}{dt}\rangle$ +\begin_inset Formula $\frac{d}{dt}\langle V,W\rangle=\langle\frac{dV}{dt},W\rangle+\langle V,\frac{dW}{dt}\rangle=\langle\frac{DV}{dt},W\rangle+\langle V,\frac{DW}{dt}\rangle$  \end_inset  . @@ -1773,10 +1810,14 @@ triedro de Darboux  .   Entonces  -\begin_inset Formula $\frac{D\alpha'}{ds}(s)=\kappa_{g}(s)J\alpha'(s)$ +\begin_inset Formula  +\[ +\frac{D\alpha'}{ds}(s)=\kappa_{g}(s)J\alpha'(s), +\] +  \end_inset -, donde  + donde   \begin_inset Formula $\kappa_{g}:=\langle\alpha'',J\alpha'\rangle:I\to\mathbb{R}$  \end_inset @@ -1794,15 +1835,10 @@ curvatura geodésica  .   En efecto,  -\begin_inset Formula  -\begin{multline*} -\langle\frac{D\alpha'}{ds}(s),\alpha'(s)\rangle=\langle\alpha''(s)-\langle\alpha''(s),N(\alpha(s))\rangle N(\alpha(s)),\alpha'(s)\rangle=\\ -=\langle\alpha''(s),\alpha'(s)\rangle-\langle\alpha''(s),N(\alpha(s))\rangle\langle N(\alpha(s)),\alpha'(s)\rangle=0, -\end{multline*} - +\begin_inset Formula $\langle\frac{D\alpha'}{ds}(s),\alpha'(s)\rangle=\langle\alpha''(s)-\langle\alpha''(s),N(\alpha(s))\rangle N(\alpha(s)),\alpha'(s)\rangle=\langle\alpha''(s),\alpha'(s)\rangle-\langle\alpha''(s),N(\alpha(s))\rangle\langle N(\alpha(s)),\alpha'(s)\rangle=0$  \end_inset -y  +, y   \begin_inset Formula $\kappa_{g}(s)=\langle\frac{D\alpha'}{ds}(s),J\alpha'(s)\rangle=\langle\alpha''(s),J\alpha'(s)\rangle$  \end_inset @@ -2206,10 +2242,6 @@ direcciones principales  .  \end_layout -\begin_layout Standard -Ejemplos: -\end_layout -  \begin_layout Enumerate  Todas las direcciones del plano y la esfera son principales.  \end_layout @@ -3135,15 +3167,15 @@ respecto de la base  , entonces  \begin_inset Formula  -\begin{align*} +\[  \begin{pmatrix}-e & -f\\  -f & -g -\end{pmatrix} & =\begin{pmatrix}a_{11} & a_{21}\\ +\end{pmatrix}=\begin{pmatrix}a_{11} & a_{21}\\  a_{12} & a_{22}  \end{pmatrix}\begin{pmatrix}E & F\\  F & G  \end{pmatrix} -\end{align*} +\]  \end_inset @@ -3888,7 +3920,7 @@ símbolos de Christoffel  \end_inset   y  -\begin_inset Formula $\Gamma_{12}^{2}=\Gamma_{22}^{2}$ +\begin_inset Formula $\Gamma_{12}^{2}=\Gamma_{21}^{2}$  \end_inset  , pues  @@ -4103,9 +4135,9 @@ Como   nos da  \begin_inset Formula  -\begin{multline*} +\[  \Gamma_{11}^{1}f+\Gamma_{11}^{2}g-\Gamma_{12}^{1}e-\Gamma_{12}^{1}f+e_{v}-f_{u}=0, -\end{multline*} +\]  \end_inset | 
