diff options
Diffstat (limited to 'gcs')
| -rw-r--r-- | gcs/n.lyx | 165 | ||||
| -rw-r--r-- | gcs/n1.lyx | 2841 |
2 files changed, 3006 insertions, 0 deletions
diff --git a/gcs/n.lyx b/gcs/n.lyx new file mode 100644 index 0000000..cc9cec4 --- /dev/null +++ b/gcs/n.lyx @@ -0,0 +1,165 @@ +#LyX 2.3 created this file. For more info see http://www.lyx.org/ +\lyxformat 544 +\begin_document +\begin_header +\save_transient_properties true +\origin unavailable +\textclass book +\begin_preamble +\input{../defs} +\end_preamble +\use_default_options true +\maintain_unincluded_children false +\language spanish +\language_package default +\inputencoding auto +\fontencoding global +\font_roman "default" "default" +\font_sans "default" "default" +\font_typewriter "default" "default" +\font_math "auto" "auto" +\font_default_family default +\use_non_tex_fonts false +\font_sc false +\font_osf false +\font_sf_scale 100 100 +\font_tt_scale 100 100 +\use_microtype false +\use_dash_ligatures true +\graphics default +\default_output_format default +\output_sync 0 +\bibtex_command default +\index_command default +\paperfontsize 10 +\spacing single +\use_hyperref false +\papersize a5paper +\use_geometry true +\use_package amsmath 1 +\use_package amssymb 1 +\use_package cancel 1 +\use_package esint 1 +\use_package mathdots 1 +\use_package mathtools 1 +\use_package mhchem 1 +\use_package stackrel 1 +\use_package stmaryrd 1 +\use_package undertilde 1 +\cite_engine basic +\cite_engine_type default +\biblio_style plain +\use_bibtopic false +\use_indices false +\paperorientation portrait +\suppress_date false +\justification true +\use_refstyle 1 +\use_minted 0 +\index Index +\shortcut idx +\color #008000 +\end_index +\leftmargin 0.2cm +\topmargin 0.7cm +\rightmargin 0.2cm +\bottommargin 0.7cm +\secnumdepth 3 +\tocdepth 3 +\paragraph_separation indent +\paragraph_indentation default +\is_math_indent 0 +\math_numbering_side default +\quotes_style swiss +\dynamic_quotes 0 +\papercolumns 1 +\papersides 1 +\paperpagestyle empty +\listings_params "basicstyle={\ttfamily}" +\tracking_changes false +\output_changes false +\html_math_output 0 +\html_css_as_file 0 +\html_be_strict false +\end_header + +\begin_body + +\begin_layout Title +Geometría de Curvas y Superficies +\end_layout + +\begin_layout Date +\begin_inset Note Note +status open + +\begin_layout Plain Layout + +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +def +\backslash +cryear{2020} +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset CommandInset include +LatexCommand input +filename "../license.lyx" + +\end_inset + + +\end_layout + +\begin_layout Standard +Bibliografía: +\end_layout + +\begin_layout Itemize +M. + A. + Hernández Cifre y J. + A. + Pastor González (2010). + +\emph on +Un curso de Geometría Diferencial +\emph default +. +\end_layout + +\begin_layout Chapter +Curvas +\end_layout + +\begin_layout Standard +\begin_inset CommandInset include +LatexCommand input +filename "n1.lyx" + +\end_inset + + +\end_layout + +\end_body +\end_document diff --git a/gcs/n1.lyx b/gcs/n1.lyx new file mode 100644 index 0000000..83e939c --- /dev/null +++ b/gcs/n1.lyx @@ -0,0 +1,2841 @@ +#LyX 2.3 created this file. For more info see http://www.lyx.org/ +\lyxformat 544 +\begin_document +\begin_header +\save_transient_properties true +\origin unavailable +\textclass book +\use_default_options true +\maintain_unincluded_children false +\language spanish +\language_package default +\inputencoding auto +\fontencoding global +\font_roman "default" "default" +\font_sans "default" "default" +\font_typewriter "default" "default" +\font_math "auto" "auto" +\font_default_family default +\use_non_tex_fonts false +\font_sc false +\font_osf false +\font_sf_scale 100 100 +\font_tt_scale 100 100 +\use_microtype false +\use_dash_ligatures true +\graphics default +\default_output_format default +\output_sync 0 +\bibtex_command default +\index_command default +\paperfontsize default +\spacing single +\use_hyperref false +\papersize default +\use_geometry false +\use_package amsmath 1 +\use_package amssymb 1 +\use_package cancel 1 +\use_package esint 1 +\use_package mathdots 1 +\use_package mathtools 1 +\use_package mhchem 1 +\use_package stackrel 1 +\use_package stmaryrd 1 +\use_package undertilde 1 +\cite_engine basic +\cite_engine_type default +\biblio_style plain +\use_bibtopic false +\use_indices false +\paperorientation portrait +\suppress_date false +\justification true +\use_refstyle 1 +\use_minted 0 +\index Index +\shortcut idx +\color #008000 +\end_index +\secnumdepth 3 +\tocdepth 3 +\paragraph_separation indent +\paragraph_indentation default +\is_math_indent 0 +\math_numbering_side default +\quotes_style french +\dynamic_quotes 0 +\papercolumns 1 +\papersides 1 +\paperpagestyle default +\tracking_changes false +\output_changes false +\html_math_output 0 +\html_css_as_file 0 +\html_be_strict false +\end_header + +\begin_body + +\begin_layout Standard +Una +\series bold +curva parametrizada diferenciable +\series default + es una función +\begin_inset Formula $\alpha:I\to\mathbb{R}^{n}$ +\end_inset + + +\begin_inset Formula ${\cal C}^{\infty}$ +\end_inset + +, donde +\begin_inset Formula $I\subseteq\mathbb{R}$ +\end_inset + + es un intervalo abierto. + Llamamos +\series bold +traza +\series default + de la curva a +\begin_inset Formula $\alpha(I)\subseteq\mathbb{R}^{n}$ +\end_inset + + y +\series bold +vector velocidad +\series default + o +\series bold +vector tangente +\series default + a +\begin_inset Formula $\alpha$ +\end_inset + + a +\begin_inset Formula $\alpha':=(\alpha_{1}',\dots,\alpha_{n}'):I\to\mathbb{R}^{n}$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Una curva es +\series bold +plana +\series default + si su traza está contenida en un plano o +\series bold +alabeada +\series default + en otro caso. + Así, la +\series bold +hélice cilíndrica +\series default +, +\begin_inset Formula $\alpha(t):=(a\cos t,a\sin t,bt)$ +\end_inset + + para ciertos +\begin_inset Formula $a,b>0$ +\end_inset + +, es una curva alabeada. + Una +\series bold +auto-intersección +\series default + de una curva +\begin_inset Formula $\alpha:I\to\mathbb{R}^{n}$ +\end_inset + + es un punto +\begin_inset Formula $p\in\mathbb{R}^{n}$ +\end_inset + + para el que existen +\begin_inset Formula $s,t\in I$ +\end_inset + +, +\begin_inset Formula $s\neq t$ +\end_inset + +, con +\begin_inset Formula $\alpha(s)=\alpha(t)=p$ +\end_inset + +, y un +\series bold +punto de retroceso +\series default + es un punto singular, esto es, un +\begin_inset Formula $t\in I$ +\end_inset + + con +\begin_inset Formula $\alpha'(t)=0$ +\end_inset + +. + Una curva es +\series bold +simple +\series default + si no tiene autointersecciones, y es +\series bold +regular +\series default + si no tiene puntos singulares. + Nos centraremos en las curvas parametrizadas diferenciables regulares. +\end_layout + +\begin_layout Section +Reparametrización +\end_layout + +\begin_layout Standard +Dados dos intervalos abiertos +\begin_inset Formula $I,J\subseteq\mathbb{R}^{n}$ +\end_inset + +, un +\series bold +cambio de parámetro +\series default + es un difeomorfismo +\begin_inset Formula $h:J\to I$ +\end_inset + +, y si tenemos una curva +\begin_inset Formula $\alpha:=I\to\mathbb{R}^{n}$ +\end_inset + +, llamamos +\series bold +reparametrización +\series default + de +\begin_inset Formula $\alpha$ +\end_inset + + por +\begin_inset Formula $h$ +\end_inset + + a la curva +\begin_inset Formula $\beta:=\alpha\circ h:J\to\mathbb{R}^{n}$ +\end_inset + +. +\end_layout + +\begin_layout Standard +En tal caso, si +\begin_inset Formula $\alpha$ +\end_inset + + es regular, +\begin_inset Formula $\beta$ +\end_inset + + también, pues +\begin_inset Formula $h'(t)\neq0$ +\end_inset + + siempre. + Además, o bien +\begin_inset Formula $h'(t)>0$ +\end_inset + + para todo +\begin_inset Formula $t\in J$ +\end_inset + +, en cuyo caso +\begin_inset Formula $h$ +\end_inset + + +\series bold +conserva la orientación +\series default +, o +\begin_inset Formula $h'(t)<0$ +\end_inset + + para todo +\begin_inset Formula $t\in J$ +\end_inset + +, en cuyo caso +\begin_inset Formula $h$ +\end_inset + + +\series bold +invierte la orientación +\series default +. +\end_layout + +\begin_layout Subsection +Longitud de una curva +\end_layout + +\begin_layout Standard +Sean +\begin_inset Formula $\alpha:I\to\mathbb{R}^{n}$ +\end_inset + + una curva parametrizada, +\begin_inset Formula $[a,b]\subseteq I$ +\end_inset + +, y una partición +\begin_inset Formula $P:=\{a=t_{0}<\dots<t_{m}=b\}$ +\end_inset + +, llamamos +\series bold +longitud +\series default + de +\begin_inset Formula $\alpha$ +\end_inset + + asociada a +\begin_inset Formula $P$ +\end_inset + + a +\begin_inset Formula $L(\alpha,P):=\sum_{k=1}^{m}|\alpha(t_{k})-\alpha(t_{k-1})|$ +\end_inset + +, y longitud de +\begin_inset Formula $\alpha$ +\end_inset + + entre +\begin_inset Formula $a$ +\end_inset + + y +\begin_inset Formula $b$ +\end_inset + + a +\begin_inset Formula +\[ +L_{a}^{b}(\alpha):=\lim_{\begin{subarray}{c} +|P|\to0\\ +P\in{\cal P}[a,b] +\end{subarray}}L(\alpha,P), +\] + +\end_inset + +donde +\begin_inset Formula ${\cal P}[a,b]$ +\end_inset + + es el conjunto de particiones de +\begin_inset Formula $[a,b]$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Dada una curva +\begin_inset Formula $\alpha:I\to\mathbb{R}^{n}$ +\end_inset + + y +\begin_inset Formula $[a,b]\subseteq I$ +\end_inset + +, +\begin_inset Formula +\[ +L_{a}^{b}(\alpha)=\int_{a}^{b}|\alpha'(t)|dt. +\] + +\end_inset + + +\series bold +Demostración: +\series default + Sea +\begin_inset Formula $P:=\{a=t_{0}<\dots<t_{m}=b\}\in{\cal P}[a,b]$ +\end_inset + +, por el teorema de los valores intermedios, en cada +\begin_inset Formula $[t_{i-1},t_{i}]$ +\end_inset + + existen +\begin_inset Formula $\eta_{i1},\dots,\eta_{in}\in(t_{i-1},t_{i})$ +\end_inset + + tales que +\begin_inset Formula $\alpha_{j}(t_{i})-\alpha_{j}(t_{i-1})=\alpha'_{j}(\eta_{ij})(t_{i}-t_{i-1})$ +\end_inset + +, luego si +\begin_inset Formula $f(s_{1},\dots,s_{n}):=|(\alpha'_{1}(s_{1}),\dots,\alpha'_{n}(s_{n}))|$ +\end_inset + +, +\begin_inset Formula +\[ +L(\alpha,P)=\sum_{i=1}^{m}|\alpha(t_{k})-\alpha(t_{k-1})|=\sum_{i=1}^{m}f(\eta_{i1},\dots,\eta_{in})(t_{i}-t_{i-1}). +\] + +\end_inset + +Por otro lado, por el teorema del valor medio integral, +\begin_inset Formula +\[ +\int_{a}^{b}|\alpha'(t)|dt=\sum_{i=1}^{m}\int_{t_{i-1}}^{t_{i}}|\alpha'(t)|dt=\sum_{i=1}^{m}|\alpha'(\nu_{i})|(t_{i}-t_{i-1})=\sum_{i=1}^{m}f(\nu_{i},\dots,\nu_{i})(t_{i}-t_{i-1}) +\] + +\end_inset + +para ciertos +\begin_inset Formula $\nu_{i}\in(t_{i-1},t_{i})$ +\end_inset + +, por lo que +\begin_inset Formula +\[ +\left|L(\alpha,P)-\int_{a}^{b}|\alpha'(t)|dt\right|\leq\sum_{i=1}^{m}\left|f(\eta_{i1},\dots,\eta_{in})-f(\nu_{i},\dots,\nu_{i})\right|(t_{i}-t_{i-1}). +\] + +\end_inset + +Además, +\begin_inset Formula $f$ +\end_inset + + es continua en el compacto +\begin_inset Formula $[a,b]$ +\end_inset + + y por tanto uniformemente continua, luego fijado un +\begin_inset Formula $\varepsilon>0$ +\end_inset + +, existe +\begin_inset Formula $\delta>0$ +\end_inset + + tal que, si +\begin_inset Formula $|s_{j}-t_{j}|<\delta$ +\end_inset + + para todo +\begin_inset Formula $j\in\{1,\dots,n\}$ +\end_inset + +, +\begin_inset Formula $|f(s_{1},\dots,s_{n})-f(t_{1},\dots,t_{n})|<\varepsilon$ +\end_inset + +. + Eligiendo +\begin_inset Formula $P\in{\cal P}[a,b]$ +\end_inset + + con +\begin_inset Formula $|P|<\delta$ +\end_inset + +, +\begin_inset Formula $|\eta_{ij}-\nu_{i}|<\delta$ +\end_inset + + para todo +\begin_inset Formula $j$ +\end_inset + + y +\begin_inset Formula +\begin{multline*} +\left|L(\alpha,P)-\int_{a}^{b}|\alpha'(t)|dt\right|\leq\sum_{i=1}^{m}|f(\eta_{i1},\dots,\eta_{in})-f(\nu_{i},\dots,\nu_{i})|(t_{i}-t_{i-1})\leq\\ +\leq\sum_{i=1}^{m}\varepsilon(t_{i}-t_{i-1})=\varepsilon(b-a). +\end{multline*} + +\end_inset + + +\end_layout + +\begin_layout Standard +Con esto, la longitud de una curva es independiente de su parametrización, + pues si +\begin_inset Formula $\alpha:I\to\mathbb{R}^{n}$ +\end_inset + + es una curva, +\begin_inset Formula $h:J\to I$ +\end_inset + + es un cambio de parámetro que conserva la orientación y +\begin_inset Formula $\beta:=\alpha\circ h$ +\end_inset + +, +\begin_inset Formula $\alpha(t)=\beta(h^{-1}(t))$ +\end_inset + + y +\begin_inset Formula +\[ +L_{h^{-1}(a)}^{h^{-1}(b)}(\beta)=\int_{h^{-1}(a)}^{h^{-1}(b)}|\beta'(t)|dt=\int_{h^{-1}(a)}^{h^{-1}(b)}|\alpha'(h(t))|h'(t)dt=\int_{a}^{b}|\alpha'(s)|ds, +\] + +\end_inset + +y si +\begin_inset Formula $h$ +\end_inset + + invierte la orientación ocurre algo análogo con +\begin_inset Formula $L_{h^{-1}(b)}^{h^{-1}(a)}(\beta)$ +\end_inset + +. +\end_layout + +\begin_layout Subsection +Parametrización por arco +\end_layout + +\begin_layout Standard +Una curva +\begin_inset Formula $\alpha:I\to\mathbb{R}^{n}$ +\end_inset + + está +\series bold +parametrizada por arco +\series default + o es +\series bold +p.p.a. + +\series default + si +\begin_inset Formula $|\alpha'(t)|=1$ +\end_inset + + para todo +\begin_inset Formula $t\in I$ +\end_inset + +, en cuyo caso +\begin_inset Formula $L_{0}^{t}(\alpha)=t$ +\end_inset + +, y entonces generalmente usaremos +\begin_inset Formula $s$ +\end_inset + + como parámetro. + En tal caso, si +\begin_inset Formula $h:J\to I$ +\end_inset + + es un cambio de parámetro tal que +\begin_inset Formula $\beta:=\alpha\circ h$ +\end_inset + + es p.p.a, +\begin_inset Formula $h$ +\end_inset + + es de la forma +\begin_inset Formula $s\mapsto\pm s+a$ +\end_inset + + para algún +\begin_inset Formula $a\in\mathbb{R}$ +\end_inset + +, pues +\begin_inset Formula $|h'(t)|=|\alpha'(h(t))||h'(t)|=|\beta'(t)|=1$ +\end_inset + +. +\end_layout + +\begin_layout Standard +La +\series bold +aceleración +\series default + de una curva es su doble derivada, y se puede descomponer una +\series bold +componente tangencial +\series default +, en la recta generada por la velocidad, y una +\series bold +componente normal +\series default +, en el plano perpendicular a esta. + La aceleración de una curva p.p.a. + no tiene componente tangencial, pues esta vale +\begin_inset Formula $\langle\alpha'(s),\alpha''(s)\rangle=\frac{1}{2}\frac{d}{ds}|\alpha'(s)|^{2}=0$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset Note Note +status open + +\begin_layout Plain Layout +TODO Recordatorio del teorema de la función inversa para la siguiente demostraci +ón. +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Como +\series bold +teorema +\series default +, toda curva parametrizada regular admite una reparametrización por longitud + de arco con un cambio de parámetro que conserva la orientación. + +\series bold +Demostración: +\series default + Sean +\begin_inset Formula $\alpha:I\to\mathbb{R}^{n}$ +\end_inset + + una curva de este tipo, +\begin_inset Formula $t_{0}\in I$ +\end_inset + + y +\begin_inset Formula $g:I\to\mathbb{R}$ +\end_inset + + dada por +\begin_inset Formula +\[ +g(t):=\int_{t_{0}}^{t}|\alpha'(u)|du=L_{t_{0}}^{t}(\alpha), +\] + +\end_inset + + +\begin_inset Formula $g$ +\end_inset + + es diferenciable y, como +\begin_inset Formula $\alpha'(t)\neq0$ +\end_inset + + para todo +\begin_inset Formula $t\in I$ +\end_inset + +, +\begin_inset Formula $g'(t)=|\alpha'(t)|>0$ +\end_inset + +, luego por el teorema de la función inversa, +\begin_inset Formula $J:=g(I)$ +\end_inset + + es abierto y +\begin_inset Formula $g:I\to J$ +\end_inset + + es un difeomorfismo. + Llamando +\begin_inset Formula $h:=g^{-1}$ +\end_inset + +, como +\begin_inset Formula $h'(g(t))g'(t)=1$ +\end_inset + +, +\begin_inset Formula $h'(g(t))=\frac{1}{g'(t)}>0$ +\end_inset + +, luego +\begin_inset Formula $h$ +\end_inset + + conserva la orientación. + Además, +\begin_inset Formula $|(\alpha\circ h)'(s)|=|\alpha'(h(s))||h'(s)|=|\alpha'(h(s))|\frac{1}{|\alpha'(h(s))|}=1$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Ejemplos: +\end_layout + +\begin_layout Enumerate +La +\series bold +catenaria +\series default + es la curva que adopta una cadena ideal perfectamente flexible con masa + distribuida uniformemente, suspendida por sus extremos y sometida a un + campo gravitatorio uniforme. + Se expresa como +\begin_inset Formula $\alpha(t):=(t,\cosh t)$ +\end_inset + +, y admite una reparametrización por longitud de arco +\begin_inset Formula $\beta(s):=(\arg\sinh s,\sqrt{1+s^{2}})$ +\end_inset + + de igual orientación. +\end_layout + +\begin_deeper +\begin_layout Standard +Sea +\begin_inset Formula +\[ +g(t):=\int_{0}^{t}|\alpha'(u)|du=\int_{0}^{t}|(1,\sinh u)|du=\int_{0}^{t}\cosh u\,du=\sinh t, +\] + +\end_inset + +entonces +\begin_inset Formula $h(s):=g^{-1}(s)=\arg\sinh s$ +\end_inset + +, luego la reparametrización es +\begin_inset Formula $\alpha(h(s))=(\arg\sinh s,\cosh(\arg\sinh s))=(\arg\sinh s,\sqrt{1+s^{2}})$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Enumerate +Dada la circunferencia +\begin_inset Formula $\alpha(t):=p+(r\cos t,r\sin t)$ +\end_inset + + para ciertos +\begin_inset Formula $p\in\mathbb{R}^{2}$ +\end_inset + + y +\begin_inset Formula $r>0$ +\end_inset + +, la reparametrización por longitud de arco es +\begin_inset Formula $\beta(s):=p+(r\cos\frac{s}{r},r\sin\frac{s}{r})$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Standard +\begin_inset Formula +\[ +g(t):=\int_{0}^{t}|\alpha'(u)|du=\int_{0}^{t}r\,du=rt, +\] + +\end_inset + +luego +\begin_inset Formula $h(s):=g^{-1}(s)=\frac{s}{r}$ +\end_inset + + y la reparametrización es +\begin_inset Formula $\alpha(h(s))=p+(r\cos\frac{s}{r},r\sin\frac{s}{r})$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Section +Curvas en el plano +\end_layout + +\begin_layout Standard +Llamamos +\series bold +estructura compleja +\series default + en +\begin_inset Formula $\mathbb{R}^{2}$ +\end_inset + + a la rotación positiva de ángulo +\begin_inset Formula $\frac{\pi}{2}$ +\end_inset + +, que se expresa como la matriz +\begin_inset Formula +\[ +J:=\begin{pmatrix}0 & -1\\ +1 & 0 +\end{pmatrix}. +\] + +\end_inset + +Entonces, dada una curva +\begin_inset Formula $\alpha:I\to\mathbb{R}^{2}$ +\end_inset + + p.p.a., si +\begin_inset Formula $\mathbf{t}(s):=\alpha'(s)$ +\end_inset + + y +\begin_inset Formula $\mathbf{n}(s):=J\mathbf{t}(s)$ +\end_inset + + es su +\series bold +vector normal +\series default +, +\begin_inset Formula $(\mathbf{t}(s),\mathbf{n}(s))$ +\end_inset + + es el +\series bold +diedro de Frenet +\series default + de +\begin_inset Formula $\alpha$ +\end_inset + +, que en cada +\begin_inset Formula $s$ +\end_inset + + es una base ortonormal positivamente orientada. + Propiedades: +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\mathbf{t}'(s)=\langle\mathbf{t}'(s),\mathbf{n}(s)\rangle\mathbf{n}(s)$ +\end_inset + +, +\end_layout + +\begin_deeper +\begin_layout Standard +\begin_inset Formula $\mathbf{t}'(s)=\langle\mathbf{t}'(s),\mathbf{t}(s)\rangle\mathbf{t}(s)+\langle\mathbf{t}'(s),\mathbf{n}(s)\rangle\mathbf{n}(s)$ +\end_inset + +, pero el primer término se anula al ser +\begin_inset Formula +\[ +\langle\mathbf{t}'(s),\mathbf{t}(s)\rangle=\frac{1}{2}\frac{d}{ds}|\mathbf{t}(s)|^{2}=0. +\] + +\end_inset + + +\end_layout + +\end_deeper +\begin_layout Enumerate +\begin_inset Formula $\mathbf{n}'(s)=\langle\mathbf{n}'(s),\mathbf{t}(s)\rangle\mathbf{t}(s)$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Standard +Análogo. +\end_layout + +\end_deeper +\begin_layout Enumerate +\begin_inset Formula $\langle\mathbf{t}'(s),\mathbf{n}(s)\rangle=-\langle\mathbf{t}(s),\mathbf{n}'(s)\rangle$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Standard +\begin_inset Formula $\langle\mathbf{t}'(s),\mathbf{n}(s)\rangle+\langle\mathbf{t}(s),\mathbf{n}'(s)\rangle=\langle\mathbf{t}(s),\mathbf{n}(s)\rangle'=0$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Subsection +Curvatura +\end_layout + +\begin_layout Standard +La +\series bold +curvatura +\series default + de una curva regular +\begin_inset Formula $\alpha:I\to\mathbb{R}^{2}$ +\end_inset + + p.p.a. + a +\begin_inset Formula $\kappa:I\to\mathbb{R}$ +\end_inset + + es +\begin_inset Formula +\[ +\kappa_{\alpha}(s):=\langle\mathbf{t}'(s),\mathbf{n}(s)\rangle=\det(\alpha'(s),\alpha''(s)), +\] + +\end_inset + +pues +\begin_inset Formula +\[ +\langle\mathbf{t}(s),\mathbf{n}(s)\rangle=\langle\alpha''(s),J\alpha'(s)\rangle=\langle(\alpha_{1}''(s),\alpha_{2}''(s)),(-\alpha_{2}'(s),\alpha_{1}'(s))\rangle=\alpha_{1}'(s)\alpha_{2}''(s)-\alpha_{2}'(s)\alpha_{1}''(s). +\] + +\end_inset + + Las +\series bold +fórmulas de Frenet +\series default + son +\begin_inset Formula +\[ +\left\{ \begin{aligned}\mathbf{t}'(s) & =\kappa(s)\mathbf{n}(s),\\ +\mathbf{n}'(s) & =-\kappa(s)\mathbf{t}(s). +\end{aligned} +\right. +\] + +\end_inset + +Si +\begin_inset Formula $\kappa(s)\neq0$ +\end_inset + +, llamamos +\series bold +radio de curvatura +\series default + a +\begin_inset Formula $\rho(s):=\frac{1}{|\kappa(s)|}$ +\end_inset + +. + +\end_layout + +\begin_layout Standard +Ejemplos: +\end_layout + +\begin_layout Enumerate +El radio de curvatura de una circunferencia de radio +\begin_inset Formula $r$ +\end_inset + + es +\begin_inset Formula $r$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Standard +Sea +\begin_inset Formula $\alpha(s):=p+r(\cos\frac{s}{r},\sin\frac{s}{r})$ +\end_inset + + con +\begin_inset Formula $p\in\mathbb{R}^{2}$ +\end_inset + + y +\begin_inset Formula $r\neq0$ +\end_inset + +, +\begin_inset Formula $\alpha'(s)=(-\sin\frac{s}{r},\cos\frac{s}{r})$ +\end_inset + + y +\begin_inset Formula $\alpha''(s)=\frac{1}{r}(-\cos\frac{s}{r},-\sin\frac{s}{r})$ +\end_inset + +, luego +\begin_inset Formula $\kappa(s)=\frac{1}{r}$ +\end_inset + + y +\begin_inset Formula $\rho(s)=|r|$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Enumerate +La curvatura de una recta es 0. +\end_layout + +\begin_deeper +\begin_layout Standard +Sea +\begin_inset Formula $\alpha(s):=p+sv$ +\end_inset + + para ciertos +\begin_inset Formula $p,v\in\mathbb{R}^{2}$ +\end_inset + + con +\begin_inset Formula $v$ +\end_inset + + unitario, +\begin_inset Formula $\alpha'(s)=v$ +\end_inset + + y +\begin_inset Formula $\alpha''(s)=0$ +\end_inset + +, luego +\begin_inset Formula $\kappa(s)=0$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Enumerate +La catenaria +\begin_inset Formula $\alpha(s):=(\arg\sinh s,\sqrt{1+s^{2}})$ +\end_inset + + tiene radio de curvatura +\begin_inset Formula $\rho(s)=1+s^{2}$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Standard +Se tiene +\begin_inset Formula $\arg\sinh's=\frac{1}{\cosh(\arg\sinh s)}=\frac{1}{\sqrt{1+s^{2}}}$ +\end_inset + +, luego +\begin_inset Formula +\begin{align*} +\alpha'(s) & =\left(\frac{1}{\sqrt{1+s^{2}}},\frac{s}{\sqrt{1+s^{2}}}\right), & \alpha''(s) & =\left(-\frac{s}{(1+s^{2})^{3/2}},\frac{1}{(1+s^{2})^{3/2}}\right), +\end{align*} + +\end_inset + +con lo que +\begin_inset Formula $\kappa(s)=\frac{1+s^{2}}{(1+s^{2})^{2}}=\frac{1}{1+s^{2}}$ +\end_inset + + y +\begin_inset Formula $\rho(s)=1+s^{2}$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Standard +Como interpretación geométrica, si +\begin_inset Formula $\alpha=:(x,y)$ +\end_inset + +, +\begin_inset Formula $x'(s)^{2}+y'(s)^{2}=1$ +\end_inset + +, luego existe +\begin_inset Formula $\varphi\in{\cal C}^{\infty}(I)$ +\end_inset + + con +\begin_inset Formula $x'(s)=\cos\varphi(s)$ +\end_inset + + e +\begin_inset Formula $y'(s)=\sin\varphi(s)$ +\end_inset + +, pero +\begin_inset Formula $\varphi$ +\end_inset + + es el ángulo que forma +\begin_inset Formula $\mathbf{t}(s)$ +\end_inset + + con el eje +\begin_inset Formula $x$ +\end_inset + + y, por tanto, +\begin_inset Formula $\kappa(s)=\langle\mathbf{t}'(s),\mathbf{n}(s)\rangle=\langle\varphi'(s)(-\sin\varphi(s),\cos\varphi(s)),(-\sin\varphi(s),\cos\varphi(s))\rangle=\varphi'(s)$ +\end_inset + + es la variación de este ángulo respecto al arco. + Además, dados un +\begin_inset Formula $s_{0}\in I$ +\end_inset + + y un incremento +\begin_inset Formula $h$ +\end_inset + +, +\begin_inset Formula $\kappa(s_{0})=\lim_{h\to0}\frac{\varphi(s_{0}+h)-\varphi(s_{0})}{h}$ +\end_inset + +, pero +\begin_inset Formula $\varphi(s_{0}+h)-\varphi(s_{0})$ +\end_inset + + es la longitud de arco entre +\begin_inset Formula $\mathbf{t}(s_{0})$ +\end_inset + + y +\begin_inset Formula $\mathbf{t}(s_{0}+h)$ +\end_inset + + en +\begin_inset Formula $\mathbb{S}^{1}$ +\end_inset + + y +\begin_inset Formula $h$ +\end_inset + + es la longitud entre +\begin_inset Formula $\alpha(s_{0})$ +\end_inset + + y +\begin_inset Formula $\alpha(s_{0}+h)$ +\end_inset + +. +\end_layout + +\begin_layout Standard +La curvatura es aceleración normal necesaria para recorrer la curva a velocidad + 1. + La +\series bold +circunferencia osculatriz +\series default + es la circunferencia que mejor se ajusta a la curva +\begin_inset Formula $\alpha$ +\end_inset + + en un punto +\begin_inset Formula $s$ +\end_inset + + con +\begin_inset Formula $\kappa(s)\neq0$ +\end_inset + +. + Pasa por +\begin_inset Formula $s$ +\end_inset + + y su radio es +\begin_inset Formula $\rho(s)$ +\end_inset + +, y su centro está a la izquierda en el sentido del recorrido cuando la + curvatura es positiva y a la derecha cuando es negativa, por lo que su + centro es +\begin_inset Formula $s+\frac{\mathbf{n}(s)}{\kappa(s)}$ +\end_inset + +. +\end_layout + +\begin_layout Subsection +Teorema fundamental +\end_layout + +\begin_layout Standard +Un +\series bold +movimiento rígido +\series default + es una función +\begin_inset Formula $M:\mathbb{R}^{m}\to\mathbb{R}^{m}$ +\end_inset + + dada por +\begin_inset Formula $M(x):=Ax+b$ +\end_inset + + para ciertos +\begin_inset Formula $A\in{\cal SO}(m)$ +\end_inset + + y +\begin_inset Formula $b\in\mathbb{R}^{m}$ +\end_inset + +. + +\series bold +Teorema fundamental de curvas planas: +\end_layout + +\begin_layout Enumerate +Dados un intervalo abierto +\begin_inset Formula $I\subseteq\mathbb{R}$ +\end_inset + + y +\begin_inset Formula $\kappa:I\to\mathbb{R}$ +\end_inset + + diferenciable, existe una curva regular +\begin_inset Formula $\alpha:I\to\mathbb{R}^{2}$ +\end_inset + + p.p.a. + con curvatura +\begin_inset Formula $\kappa$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Standard +Sean +\begin_inset Formula $s_{0}\in I$ +\end_inset + + cualquiera, +\begin_inset Formula $\varphi:I\to\mathbb{R}$ +\end_inset + + dada por +\begin_inset Formula $\varphi(s):=\int_{s_{0}}^{s}\kappa$ +\end_inset + + y +\begin_inset Formula +\[ +\alpha(s):=\left(\int_{s_{0}}^{s}\cos\varphi(u)du,\int_{s_{0}}^{s}\sin\varphi(u)du\right). +\] + +\end_inset + +Como +\begin_inset Formula $\alpha'(s)=(\cos\varphi(s),\sin\varphi(s))$ +\end_inset + +, +\begin_inset Formula $|\alpha'(s)|=1$ +\end_inset + + y +\begin_inset Formula $\alpha$ +\end_inset + + es una curva regular p.p.a. + Además +\begin_inset Formula +\[ +\kappa_{\alpha}(s)=\begin{vmatrix}\cos\varphi(s) & \sin\varphi(s)\\ +-\varphi'(s)\sin\varphi(s) & \varphi'(s)\cos\varphi(s) +\end{vmatrix}=\varphi'(s)(\cos^{2}\varphi(s)+\sin^{2}\varphi(s))=\kappa(s). +\] + +\end_inset + + +\end_layout + +\end_deeper +\begin_layout Enumerate +Dadas dos curvas regulares +\begin_inset Formula $\alpha,\beta:I\to\mathbb{R}^{2}$ +\end_inset + + con igual curvatura, existe un movimiento rígido +\begin_inset Formula $M$ +\end_inset + + tal que +\begin_inset Formula $\beta=M\circ\alpha$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Standard +Sean +\begin_inset Formula $\kappa$ +\end_inset + + la curvatura, +\begin_inset Formula $s_{0}\in I$ +\end_inset + + y +\begin_inset Formula $(\mathbf{t}_{\alpha},\mathbf{n}_{\alpha})$ +\end_inset + + y +\begin_inset Formula $(\mathbf{t}_{\beta},\mathbf{n}_{\beta})$ +\end_inset + + los diedros de Frenet respectivos de +\begin_inset Formula $\alpha$ +\end_inset + + y +\begin_inset Formula $\beta$ +\end_inset + +, existe un único +\begin_inset Formula $A\in{\cal SO}(2)$ +\end_inset + + tal que +\begin_inset Formula $A\mathbf{t}_{\alpha}(s_{0})=\mathbf{t}_{\beta}(s_{0})$ +\end_inset + +, y como +\begin_inset Formula $A$ +\end_inset + + es una rotación, +\begin_inset Formula $A\mathbf{n}_{\alpha}(s_{0})=\mathbf{n}_{\beta}(s_{0})$ +\end_inset + +. + Sean entonces +\begin_inset Formula $b:=\beta(s_{0})-A\alpha(s_{0})$ +\end_inset + +, +\begin_inset Formula $Mx:=Ax+b$ +\end_inset + + un movimiento rígido y +\begin_inset Formula $\gamma:=M\circ\alpha$ +\end_inset + +, y queremos ver que +\begin_inset Formula $\gamma=\beta$ +\end_inset + +. + Tenemos +\begin_inset Formula $\gamma(s_{0})=A\alpha(s_{0})+b=\beta(s_{0})$ +\end_inset + + y +\begin_inset Formula $\mathbf{t}'_{\gamma}(s_{0})=(A\alpha+b)'(s_{0})=A\alpha'(s_{0})=A\mathbf{t}_{\alpha}(s_{0})=\mathbf{t}_{\beta}(s_{0})$ +\end_inset + +, luego si +\begin_inset Formula $f(s):=\frac{1}{2}|t_{\beta}(s)-t_{\gamma}(s)|^{2}$ +\end_inset + +, entonces +\begin_inset Formula $f(s_{0})=0$ +\end_inset + +. + Además, como +\begin_inset Formula $\kappa_{\gamma}=\langle\gamma'',J\gamma'\rangle=\langle A\alpha'',JA\alpha'\rangle=\langle A\alpha'',AJ\alpha'\rangle=\langle\alpha'',J\alpha'\rangle=\kappa$ +\end_inset + +, +\begin_inset Formula $f'(s)=\langle\mathbf{t}_{\beta}'-\mathbf{t}_{\gamma}',\mathbf{t}_{\beta}-\mathbf{t}_{\gamma}\rangle=\langle\kappa\mathbf{n}_{\beta}-\kappa\mathbf{n}_{\gamma},\mathbf{t}_{\beta}-\mathbf{t}_{\gamma}\rangle=\kappa(-\langle\mathbf{n}_{\beta},\mathbf{t}_{\gamma}\rangle-\langle\mathbf{n}_{\gamma},\mathbf{t}_{\beta}\rangle)=0$ +\end_inset + +, pues +\begin_inset Formula $\langle\mathbf{n}_{\beta},\mathbf{t}_{\gamma}\rangle=\langle J\mathbf{t}_{\beta},\mathbf{t}_{\gamma}\rangle=-\langle\mathbf{t}_{\beta},J\mathbf{t}_{\gamma}\rangle=-\langle\mathbf{t}_{\beta},\mathbf{n}_{\gamma}\rangle$ +\end_inset + +. + Por tanto +\begin_inset Formula $f\equiv0$ +\end_inset + + y +\begin_inset Formula $\mathbf{t}_{\beta}(s)=\mathbf{t}_{\gamma}(s)$ +\end_inset + + para todo +\begin_inset Formula $s\in I$ +\end_inset + +, luego +\begin_inset Formula $(\beta-\gamma)'(s)\equiv0$ +\end_inset + + y +\begin_inset Formula $\beta$ +\end_inset + + y +\begin_inset Formula $\gamma$ +\end_inset + + se diferencian por una constante, que debe ser 0 porque +\begin_inset Formula $\beta(s_{0})=\gamma(s_{0})$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Subsection +Curvatura de una curva arbitraria +\end_layout + +\begin_layout Standard +Dados una curva regular +\begin_inset Formula $\alpha:I\to\mathbb{R}^{2}$ +\end_inset + + y un cambio de parámetro +\begin_inset Formula $h:J\to I$ +\end_inset + + que preserva la orientación tal que +\begin_inset Formula $\beta:=\alpha\circ h$ +\end_inset + + es p.p.a., llamamos +\series bold +curvatura +\series default + de +\begin_inset Formula $\alpha$ +\end_inset + + en +\begin_inset Formula $t\in I$ +\end_inset + + a la curvatura de +\begin_inset Formula $\beta$ +\end_inset + + en +\begin_inset Formula $h^{-1}(t)$ +\end_inset + +. + Esta es +\begin_inset Formula +\[ +\kappa_{\alpha}(t)=\frac{\langle\alpha''(t),J\alpha'(t)\rangle}{|\alpha'(t)|^{3}}. +\] + +\end_inset + + +\series bold +Demostración: +\series default + Se tiene +\begin_inset Formula $\mathbf{t}_{\beta}(s)=\beta'(s)=\alpha'(h(s))h'(s)$ +\end_inset + +, +\begin_inset Formula $\mathbf{n}_{\beta}(s)=J\mathbf{t}_{\beta}(s)=h'(s)J\alpha'(h(s))$ +\end_inset + + y +\begin_inset Formula $\mathbf{t}_{\beta}'(s)=\alpha''(h(s))h'(s)^{2}+h''(s)\alpha'(h(s))$ +\end_inset + +, luego para +\begin_inset Formula $s:=h^{-1}(t)$ +\end_inset + +, +\begin_inset Formula +\[ +\kappa_{\alpha}(t)=\kappa_{\beta}(s)=\langle\alpha''(h(s))h'(s)^{2},h'(s)J\alpha'(h(s))\rangle=h'(s)^{3}\langle\alpha''(t),J\alpha'(t)\rangle=\frac{\langle\alpha''(t),J\alpha'(t)\rangle}{|\alpha'(h(s))|^{3}}, +\] + +\end_inset + +pues +\begin_inset Formula $h'(s)|\alpha'(h(s))|=|h'(s)\alpha'(h(s))|=|\beta'(s)|=1$ +\end_inset + +. +\end_layout + +\begin_layout Subsection +Comparación de curvas en un punto +\end_layout + +\begin_layout Standard +Sean +\begin_inset Formula $\alpha:I\to\mathbb{R}^{2}$ +\end_inset + + una curva regular p.p.a. + con diedro de Frenet +\begin_inset Formula $(\mathbf{t},\mathbf{n})$ +\end_inset + +, +\begin_inset Formula $s_{0}\in I$ +\end_inset + +, +\begin_inset Formula $p_{0}:=\alpha(s_{0})$ +\end_inset + +, +\begin_inset Formula $\mathbf{t}_{0}:=\mathbf{t}(s_{0})$ +\end_inset + +, +\begin_inset Formula $\mathbf{n}_{0}:=\mathbf{n}(s_{0})$ +\end_inset + +, +\begin_inset Formula $\ell:=p_{0}+\langle\mathbf{t}_{0}\rangle$ +\end_inset + + y +\begin_inset Formula $p\in\mathbb{R}^{2}$ +\end_inset + +, llamamos +\series bold +distancia orientada +\series default + de +\begin_inset Formula $p$ +\end_inset + + a +\begin_inset Formula $\ell$ +\end_inset + + a +\begin_inset Formula $\text{dist}(p,\ell):=\langle p-p_{0},\mathbf{n}_{0}\rangle$ +\end_inset + +. + Entonces +\begin_inset Formula $\ell$ +\end_inset + + divide +\begin_inset Formula $\mathbb{R}^{2}$ +\end_inset + + en dos semiplanos +\begin_inset Formula $H^{+}:=\{p:\text{dist}(p,\ell)\geq0\}$ +\end_inset + + y +\begin_inset Formula $H^{-}:=\{p:\text{dist}(p,\ell)\leq0\}$ +\end_inset + +, de modo que +\begin_inset Formula $\ell=H^{+}\cap H^{-}$ +\end_inset + +. + Entonces: +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $\kappa(s_{0})>0$ +\end_inset + +, existe un entorno +\begin_inset Formula $J\subseteq I$ +\end_inset + + de +\begin_inset Formula $s_{0}$ +\end_inset + + con +\begin_inset Formula $\alpha(J)\subseteq H^{+}$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Standard +Sea +\begin_inset Formula $f(s):=\text{dist}(\alpha(s),\ell)=\langle\alpha(s)-p_{0},\mathbf{n}_{0}\rangle$ +\end_inset + +, entonces +\begin_inset Formula $f(s_{0})=0$ +\end_inset + +, +\begin_inset Formula $f'(s)=\langle\alpha'(s),\mathbf{n}_{0}\rangle$ +\end_inset + +, +\begin_inset Formula $f'(s_{0})=\langle\mathbf{t}_{0},\mathbf{n}_{0}\rangle=0$ +\end_inset + +, +\begin_inset Formula $f''(s)=\langle\mathbf{t}'(s),\mathbf{n}_{0}\rangle$ +\end_inset + + y +\begin_inset Formula $f''(s_{0})=\kappa(s_{0})$ +\end_inset + +, luego si +\begin_inset Formula $\kappa(s_{0})>0$ +\end_inset + +, +\begin_inset Formula $f$ +\end_inset + + tiene un mínimo relativo en +\begin_inset Formula $s_{0}$ +\end_inset + + y existe un +\begin_inset Formula $J\in{\cal E}(s_{0})$ +\end_inset + + con +\begin_inset Formula $f(s)\geq f(s_{0})=0$ +\end_inset + + para todo +\begin_inset Formula $s\in J$ +\end_inset + +, con lo que +\begin_inset Formula $\alpha(J)\in H^{+}$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Enumerate +Si +\begin_inset Formula $\kappa(s_{0})<0$ +\end_inset + +, existe un entorno +\begin_inset Formula $J\subseteq I$ +\end_inset + + de +\begin_inset Formula $s_{0}$ +\end_inset + + con +\begin_inset Formula $\alpha(J)\subseteq H^{-}$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Standard +Análogo. +\end_layout + +\end_deeper +\begin_layout Enumerate +Si existe un entorno +\begin_inset Formula $J\subseteq I$ +\end_inset + + de +\begin_inset Formula $s_{0}$ +\end_inset + + con +\begin_inset Formula $\alpha(J)\subseteq H^{+}$ +\end_inset + +, +\begin_inset Formula $\kappa(s_{0})\geq0$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Standard +Entonces +\begin_inset Formula $\text{dist}(\alpha(s),\ell)\geq0$ +\end_inset + + para todo +\begin_inset Formula $s\in J$ +\end_inset + +, luego +\begin_inset Formula $f$ +\end_inset + + tiene un mínimo relativo en +\begin_inset Formula $s_{0}$ +\end_inset + + y +\begin_inset Formula $f''(s_{0})=\kappa(s_{0})\geq0$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Enumerate +Si existe un entorno +\begin_inset Formula $J\subseteq I$ +\end_inset + + de +\begin_inset Formula $s_{0}$ +\end_inset + + con +\begin_inset Formula $\alpha(J)\subseteq H^{-}$ +\end_inset + +, +\begin_inset Formula $\kappa(s_{0})\leq0$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Standard +Análogo. +\end_layout + +\end_deeper +\begin_layout Standard +Sean +\begin_inset Formula $\alpha,\beta:I\to\mathbb{R}^{2}$ +\end_inset + + curvas regulares p.p.a., +\begin_inset Formula $s_{0}\in I$ +\end_inset + + con +\begin_inset Formula $\alpha(s_{0})=\beta(s_{0})=:p_{0}$ +\end_inset + + y +\begin_inset Formula $\alpha'(s_{0})=\beta'(s_{0})=:\mathbf{t}_{0}$ +\end_inset + +, y +\begin_inset Formula $\ell$ +\end_inset + + la recta tangente a +\begin_inset Formula $\alpha$ +\end_inset + + y +\begin_inset Formula $\beta$ +\end_inset + + en +\begin_inset Formula $s_{0}$ +\end_inset + +, +\begin_inset Formula $\alpha$ +\end_inset + + está +\series bold +por encima +\series default + de +\begin_inset Formula $\beta$ +\end_inset + + en +\begin_inset Formula $p_{0}$ +\end_inset + + si existe un entorno +\begin_inset Formula $J$ +\end_inset + + de +\begin_inset Formula $s_{0}$ +\end_inset + + con +\begin_inset Formula $\text{dist}(\alpha(s),\ell)\geq\text{dist}(\beta(s),\ell)$ +\end_inset + + para todo +\begin_inset Formula $s\in J$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $\kappa_{\alpha}(s_{0})>\kappa_{\beta}(s_{0})$ +\end_inset + +, +\begin_inset Formula $\alpha$ +\end_inset + + está por encima de +\begin_inset Formula $\beta$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Standard +Sean +\begin_inset Formula $\mathbf{n}_{0}=J\mathbf{t}_{0}$ +\end_inset + + y +\begin_inset Formula $f(s):=\text{dist}(\alpha(s),\ell)-\text{dist}(\beta(s),\ell)=\langle\alpha(s)-p_{0},\mathbf{n}_{0}\rangle-\langle\beta(s)-p_{0},\mathbf{n}_{0}\rangle=\langle\alpha(s)-\beta(s),\mathbf{n}_{0}\rangle$ +\end_inset + +, entonces +\begin_inset Formula $f(s_{0})=0$ +\end_inset + +, +\begin_inset Formula $f'(s)=\langle\alpha'(s)-\beta'(s),\mathbf{n}_{0}\rangle$ +\end_inset + +, +\begin_inset Formula $f'(s_{0})=0$ +\end_inset + +, +\begin_inset Formula $f''(s)=\langle\alpha''(s)-\beta''(s),\mathbf{n}_{0}\rangle=\langle\alpha''(s),\mathbf{n}_{0}\rangle-\langle\beta''(s),\mathbf{n}_{0}\rangle$ +\end_inset + + y +\begin_inset Formula $f''(s_{0})=\kappa_{\alpha}(s_{0})-\kappa_{\beta}(s_{0})$ +\end_inset + +. + Entonces, si +\begin_inset Formula $\kappa_{\alpha}(s_{0})>\kappa_{\beta}(s_{0})$ +\end_inset + +, +\begin_inset Formula $f$ +\end_inset + + tiene un mínimo relativo en +\begin_inset Formula $s_{0}$ +\end_inset + + y por tanto existe un +\begin_inset Formula $J\in{\cal E}(s_{0})$ +\end_inset + + con +\begin_inset Formula $f(s)=\text{dist}(\alpha(s),\ell)-\text{dist}(\beta(s),\ell)\geq f(s_{0})=0$ +\end_inset + + para todo +\begin_inset Formula $s\in J$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Enumerate +Si +\begin_inset Formula $\alpha$ +\end_inset + + está por encima de +\begin_inset Formula $\beta$ +\end_inset + +, +\begin_inset Formula $\kappa_{\alpha}(s_{0})\geq\kappa_{\beta}(s_{0})$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Standard +Sea +\begin_inset Formula $J$ +\end_inset + + un entorno de +\begin_inset Formula $s_{0}$ +\end_inset + + en que +\begin_inset Formula $\text{dist}(\alpha(s),\ell)\geq\text{dist}(\beta(s),\ell)$ +\end_inset + +, en este entorno es +\begin_inset Formula $f(s)\geq0$ +\end_inset + +, luego como +\begin_inset Formula $f(s_{0})=0$ +\end_inset + +, +\begin_inset Formula $f$ +\end_inset + + tiene un mínimo relativo en +\begin_inset Formula $s_{0}$ +\end_inset + + y +\begin_inset Formula $\kappa_{\alpha}(s_{0})\geq\kappa_{\beta}(s_{0})$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Section +Curvas en el espacio +\end_layout + +\begin_layout Standard +Sean +\begin_inset Formula $\alpha:I\to\mathbb{R}^{3}$ +\end_inset + + una curva regular p.p.a., si +\begin_inset Formula $\mathbf{t}(s)$ +\end_inset + + es su vector tangente, +\begin_inset Formula $\mathbf{t}(s)\bot\mathbf{t}'(s)$ +\end_inset + +, y llamamos +\series bold +curvatura +\series default + de +\begin_inset Formula $\alpha$ +\end_inset + + en +\begin_inset Formula $s\in I$ +\end_inset + + a +\begin_inset Formula $\kappa(s):=|\mathbf{t}'(s)|$ +\end_inset + +. + Una curva p.p.a. + +\begin_inset Formula $\alpha:I\to\mathbb{R}^{3}$ +\end_inset + + es una recta si y sólo si su curvatura es nula. + +\end_layout + +\begin_layout Standard +El +\series bold +vector normal +\series default + a una curva regular p.p.a. + +\begin_inset Formula $\alpha:I\to\mathbb{R}^{3}$ +\end_inset + + en un +\begin_inset Formula $s\in I$ +\end_inset + + con +\begin_inset Formula $\kappa(s)\neq0$ +\end_inset + + es +\begin_inset Formula +\[ +\mathbf{n}(s):=\frac{\mathbf{t}'(s)}{\kappa(s)}=\frac{\alpha''(s)}{|\alpha''(s)|}, +\] + +\end_inset + +el +\series bold +plano osculador +\series default + es +\begin_inset Formula $\text{span}\{\mathbf{t}(s),\mathbf{n}(s)\}$ +\end_inset + +, el +\series bold +vector binormal +\series default + es +\begin_inset Formula $\mathbf{b}(s)=\mathbf{t}(s)\land\mathbf{n}(s)$ +\end_inset + + y el +\series bold +triedro de Frenet +\series default + es la base ortonormal de +\begin_inset Formula $\mathbb{R}^{3}$ +\end_inset + + positivamente orientada +\begin_inset Formula $(t(s),n(s),b(s))$ +\end_inset + +. + La +\series bold +torsión +\series default + de una curva regular p.p.a. + +\begin_inset Formula $\alpha:I\to\mathbb{R}^{3}$ +\end_inset + + cuya curvatura nunca se anula es la función +\begin_inset Formula $\tau:I\to\mathbb{R}$ +\end_inset + + dada por +\begin_inset Formula $\tau(s):=\langle\mathbf{t}(s)\land\mathbf{n}'(s),\mathbf{n}(s)\rangle=\langle\mathbf{b}'(s),\mathbf{n}(s)\rangle$ +\end_inset + +. +\end_layout + +\begin_layout Subsection +Propiedades de la curvatura y la torsión +\end_layout + +\begin_layout Standard + +\series bold +Fórmulas de Frenet: +\series default + Para +\begin_inset Formula $\alpha:I\to\mathbb{R}^{3}$ +\end_inset + + una curva regular p.p.a. + cuya curvatura nunca se anula y +\begin_inset Formula $s\in I$ +\end_inset + +, +\begin_inset Formula +\[ +\begin{pmatrix}\mathbf{t}\\ +\mathbf{n}\\ +\mathbf{b} +\end{pmatrix}^{\prime}=\begin{pmatrix}\kappa\mathbf{n}\\ +-\kappa\mathbf{t}-\tau\mathbf{b}\\ +\tau\mathbf{n} +\end{pmatrix}=\begin{pmatrix} & \kappa\\ +-\kappa & & -\tau\\ + & \tau +\end{pmatrix}\begin{pmatrix}\mathbf{t}\\ +\mathbf{n}\\ +\mathbf{b} +\end{pmatrix}. +\] + +\end_inset + + +\series bold +Demostración: +\series default + Claramente +\begin_inset Formula $\mathbf{t}'(s)=\kappa(s)\mathbf{n}(s)$ +\end_inset + +. + Derivando la definición de +\begin_inset Formula $\mathbf{b}$ +\end_inset + +, +\begin_inset Formula $\mathbf{b}'(s)=\mathbf{t}'(s)\land\mathbf{n}(s)+\mathbf{t}(s)\land\mathbf{n}'(s)=\mathbf{t}(s)\land\mathbf{n}'(s)\bot\mathbf{t}(s)$ +\end_inset + +, y al ser +\begin_inset Formula $\mathbf{b}$ +\end_inset + + unitario, +\begin_inset Formula $\mathbf{b}'(s)\bot\mathbf{b}(s)$ +\end_inset + +, luego +\begin_inset Formula $\mathbf{b}'(s)$ +\end_inset + + debe ser proporcional a +\begin_inset Formula $\mathbf{n}(s)$ +\end_inset + +, +\begin_inset Formula $\mathbf{b}'(s0=\langle\mathbf{b}'(s),\mathbf{n}(s)\rangle\mathbf{n}(s)=\langle\mathbf{t}(s)\land\mathbf{n}'(s),\mathbf{n}(s)\rangle\mathbf{n}(s)=\tau(s)\mathbf{n}(s)$ +\end_inset + +. + Finalmente, +\begin_inset Formula $\mathbf{n}'(s)=\langle\mathbf{n}'(s),\mathbf{t}(s)\rangle\mathbf{t}(s)+\langle\mathbf{n}'(s),\mathbf{n}(s)\rangle\mathbf{n}(s)+\langle\mathbf{n}'(s),\mathbf{b}(s)\rangle\mathbf{b}(s)$ +\end_inset + +, pero al ser +\begin_inset Formula $\langle\mathbf{n}(s),\mathbf{t}(s)\rangle=0$ +\end_inset + +, +\begin_inset Formula $\langle\mathbf{n}'(s),\mathbf{t}(s)\rangle=-\langle\mathbf{n}(s),\mathbf{t}'(s)\rangle=-|\mathbf{n}(s)||\mathbf{t}'(s)|=-\kappa(s)$ +\end_inset + +; +\begin_inset Formula $\langle\mathbf{n}'(s),\mathbf{n}(s)\rangle=0$ +\end_inset + +, y al ser +\begin_inset Formula $\langle\mathbf{n}(s),\mathbf{b}(s)\rangle=0$ +\end_inset + +, +\begin_inset Formula $\langle\mathbf{n}'(s),\mathbf{b}(s)\rangle=-\langle\mathbf{n}(s),\mathbf{b}'(s)\rangle=-\tau(s)$ +\end_inset + +, luego finalmente +\begin_inset Formula $\mathbf{n}'(s)=-\kappa(s)\mathbf{t}(s)-\tau(s)\mathbf{b}(s)$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Tenemos +\begin_inset Formula +\[ +\tau(s)=-\frac{\det(\alpha'(s),\alpha''(s),\alpha'''(s))}{|\alpha''(s)|^{2}}, +\] + +\end_inset + +pues +\begin_inset Formula +\begin{align*} +\tau(s) & =\langle\mathbf{t}(s)\land\mathbf{n}'(s),\mathbf{n}(s)\rangle=\det(\mathbf{t}(s),\mathbf{n}'(s),\mathbf{n}(s))\\ + & =\det\left(\alpha'(s),\frac{\alpha'''(s)|\alpha''(s)|-\alpha''(s)|\alpha''(s)|'}{|\alpha''(s)|^{2}},\frac{\alpha''(s)}{|\alpha''(s)|}\right)\\ + & =\frac{1}{|\alpha''(s)|^{2}}\det(\alpha'(s),\alpha'''(s),\alpha''(s))=-\frac{\det(\alpha'(s),\alpha''(s),\alpha'''(s))}{|\alpha''(s)|^{2}}. +\end{align*} + +\end_inset + + +\end_layout + +\begin_layout Standard +Sea +\begin_inset Formula $\alpha:I\to\mathbb{R}^{3}$ +\end_inset + + una curva regular p.p.a. + con curvatura +\begin_inset Formula $\kappa$ +\end_inset + +: +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\kappa=0$ +\end_inset + + si y sólo si +\begin_inset Formula $\alpha$ +\end_inset + + es una recta. +\end_layout + +\begin_deeper +\begin_layout Enumerate +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\implies]$ +\end_inset + + +\end_layout + +\end_inset + +Si +\begin_inset Formula $\alpha(s):=p+sv$ +\end_inset + +, +\begin_inset Formula $\mathbf{t}(s)=v$ +\end_inset + +, y +\begin_inset Formula $\kappa(s)=|\mathbf{t}'(s)|=0$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\impliedby]$ +\end_inset + + +\end_layout + +\end_inset + +Entonces +\begin_inset Formula $\alpha''(s)=0$ +\end_inset + + para todo +\begin_inset Formula $s\in I$ +\end_inset + +, luego integrando, +\begin_inset Formula $\alpha'(s)$ +\end_inset + + es constante en algún +\begin_inset Formula $v$ +\end_inset + + y +\begin_inset Formula $\alpha(s)$ +\end_inset + + es de la forma +\begin_inset Formula $p+sv$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Enumerate +Si +\begin_inset Formula $\kappa$ +\end_inset + + no se anula, +\begin_inset Formula $\alpha$ +\end_inset + + es plana si y sólo si su torsión +\begin_inset Formula $\tau=0$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Enumerate +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\implies]$ +\end_inset + + +\end_layout + +\end_inset + +Sean +\begin_inset Formula $p\in\mathbb{R}^{3}$ +\end_inset + + y +\begin_inset Formula $\pi\subseteq\mathbb{R}^{3}$ +\end_inset + + un plano vectorial tales que +\begin_inset Formula $\alpha(I)\subseteq\pi$ +\end_inset + +, entonces +\begin_inset Formula $\mathbf{t}(s),\mathbf{n}(s)\in\pi$ +\end_inset + + para todo +\begin_inset Formula $s\in I$ +\end_inset + +, luego +\begin_inset Formula $\mathbf{b}(s)$ +\end_inset + + siempre está en la misma recta y, por continuidad, es constante, con lo + que +\begin_inset Formula $\mathbf{b}'=0$ +\end_inset + + y +\begin_inset Formula $\tau=0$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\impliedby]$ +\end_inset + + +\end_layout + +\end_inset + +Si +\begin_inset Formula $\tau=0$ +\end_inset + +, +\begin_inset Formula $\mathbf{b}'=\tau\mathbf{n}=0$ +\end_inset + +, luego +\begin_inset Formula $\mathbf{b}$ +\end_inset + + es constante en algún +\begin_inset Formula $b$ +\end_inset + + y, si +\begin_inset Formula $f(s):=\langle\alpha(s),\mathbf{b}(s)\rangle$ +\end_inset + +, +\begin_inset Formula $f'(s)=\langle\mathbf{t}(s),b\rangle=0$ +\end_inset + +, luego +\begin_inset Formula $f$ +\end_inset + + es constante en algún +\begin_inset Formula $c$ +\end_inset + + y, para todo +\begin_inset Formula $s\in I$ +\end_inset + +, +\begin_inset Formula $\alpha_{1}(s)b_{1}+\alpha_{2}(s)b_{3}+\alpha_{3}(s)b_{3}=c$ +\end_inset + +, la ecuación de un plano. +\end_layout + +\end_deeper +\begin_layout Subsection +Curvatura y torsión de curvas arbitrarias +\end_layout + +\begin_layout Standard +Sean +\begin_inset Formula $\alpha:I\to\mathbb{R}^{3}$ +\end_inset + + una curva regular y +\begin_inset Formula $h:J\to I$ +\end_inset + + un cambio de parámetro que conserva la orientación y tal que +\begin_inset Formula $\beta:=\alpha\circ h$ +\end_inset + + es p.p.a., definimos la curvatura de +\begin_inset Formula $\alpha$ +\end_inset + + como +\begin_inset Formula $\kappa_{\alpha}(t):=\kappa_{\beta}(h^{-1}(t))$ +\end_inset + + y, si esta no se anula, la torsión como +\begin_inset Formula $\tau_{\alpha}(t):=\tau_{\beta}(h^{-1}(t))$ +\end_inset + +. + Entonces +\begin_inset Formula +\begin{align*} +\kappa_{\alpha}(t) & :=\frac{|\alpha'(t)\land\alpha''(t)|}{|\alpha'(t)|^{3}}, & \tau_{\alpha}(t) & =-\frac{\det(\alpha'(t),\alpha''(t),\alpha'''(t))}{|\alpha'(t)\land\alpha''(t)|^{2}}. +\end{align*} + +\end_inset + + +\series bold +Demostración: +\series default + Sea +\begin_inset Formula $s:=h^{-1}(t)$ +\end_inset + +, +\begin_inset Formula +\begin{align*} +\beta'(s) & =\alpha'(h(s))h'(s),\\ +\beta''(s) & =\alpha''(h(s))h'(s)^{2}+\alpha'(h(s))h''(s),\\ +\beta'''(s) & =\alpha'''(h(s))h'(s)^{3}+3\alpha''(h(s))h'(s)h''(s)+\alpha'(h(s))h'''(s), +\end{align*} + +\end_inset + +y como +\begin_inset Formula $\beta'$ +\end_inset + + y +\begin_inset Formula $\beta''$ +\end_inset + + son ortogonales, +\begin_inset Formula $|\beta''(s)|=|\beta'(s)\land\beta''(s)|$ +\end_inset + +, luego sustituyendo, y eliminando los productos vectoriales entre vectores + proporcionales, +\begin_inset Formula +\begin{align*} +\kappa_{\beta}(s) & =|\beta''(s)|=|\beta'(s)\land\beta''(s)|=|\alpha'(h(s))h'(s)\land\alpha''(h(s))h'(s)^{2}|\\ + & =h'(s)^{3}|\alpha'(h(s))\land\alpha''(h(s))|=\frac{|\alpha'(t)\land\alpha''(t)|}{|\alpha'(t)|^{3}}, +\end{align*} + +\end_inset + +pues +\begin_inset Formula $|\alpha'(t)|h'(s)=|\alpha'(h(s))h'(s)|=|\beta'(s)|=1$ +\end_inset + +. + Por otro lado, haciendo lo mismo y eliminando productos escalares entre + vectores ortogonales, +\begin_inset Formula +\begin{align*} +\tau_{\beta}(s) & =-\frac{\det(\beta'(s),\beta''(s),\beta'''(s))}{|\beta''(s)|^{2}}=-\frac{\langle\beta'(s)\land\beta''(s),\beta'''(s)\rangle}{|\beta'(s)\land\beta''(s)|^{2}}\\ + & =-\frac{\langle\alpha'(h(s))h'(s)\land\alpha''(h(s))h'(s)^{2},\alpha'''(h(s))h'(s)^{3}\rangle}{h'(s)^{6}|\alpha'(h(s))\land\alpha''(h(s))|^{2}}\\ + & =-\frac{\langle\alpha'(t)\land\alpha''(t),\alpha'''(t)\rangle}{|\alpha'(t)\land\alpha''(t)|^{2}}=-\frac{\det(\alpha'(t),\alpha''(t),\alpha'''(t))}{|\alpha'(t)\land\alpha''(t)|^{2}}. +\end{align*} + +\end_inset + + +\end_layout + +\begin_layout Subsection +Teorema fundamental +\end_layout + +\begin_layout Standard +\begin_inset Note Note +status open + +\begin_layout Plain Layout +TODO Recordatorio del teorema de existencia y unicidad de soluciones de + sistemas de ecuaciones diferenciales. +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard + +\series bold +Teorema fundamental de curvas en +\begin_inset Formula $\mathbb{R}^{3}$ +\end_inset + +: +\end_layout + +\begin_layout Enumerate +Dadas +\begin_inset Formula $\kappa,\tau:I\to\mathbb{R}$ +\end_inset + + diferenciables con +\begin_inset Formula $\kappa(s)>0$ +\end_inset + + para todo +\begin_inset Formula $s\in I$ +\end_inset + +, existe una curva regular p.p.a. + con curvatura +\begin_inset Formula $\kappa$ +\end_inset + + y torsión +\begin_inset Formula $\tau$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Standard +Podemos ver las fórmulas de Frenet como como un sistema de ecuaciones diferencia +les lineales con incógnitas +\begin_inset Formula $(t_{1},t_{2},t_{3},n_{1},n_{2},n_{3},b_{1},b_{2},b_{3})$ +\end_inset + +, y tomando como condiciones iniciales un +\begin_inset Formula $s_{0}\in I$ +\end_inset + + y una base ortonormal positivamente orientada +\begin_inset Formula $(\mathbf{t}_{0},\mathbf{n}_{0},\mathbf{b}_{0})$ +\end_inset + +, por el teorema de existencia y unicidad de soluciones de sistemas de ecuacione +s diferenciales, existe una única +\begin_inset Formula $f:I\to\mathbb{R}^{n}$ +\end_inset + +, +\begin_inset Formula $f(s)=:(\mathbf{t}(s),\mathbf{n}(s),\mathbf{b}(s))$ +\end_inset + +, que cumple las fórmulas de Frenet y tal que +\begin_inset Formula $f(s_{0})=(\mathbf{t}_{0},\mathbf{n}_{0},\mathbf{b}_{0})$ +\end_inset + +. + El dominio de definición es +\begin_inset Formula $I$ +\end_inset + + por ser +\begin_inset Formula $f$ +\end_inset + + un sistema lineal. +\end_layout + +\begin_layout Standard +Usando las fórmulas de Frenet, +\begin_inset Formula +\begin{align*} +\langle\mathbf{t},\mathbf{n}\rangle' & =\langle\mathbf{t}',\mathbf{n}\rangle+\langle\mathbf{t},\mathbf{n}'\rangle=\kappa\langle\mathbf{n},\mathbf{n}\rangle-\kappa\langle\mathbf{t},\mathbf{t}\rangle-\tau\langle\mathbf{t},\mathbf{b}\rangle,\\ +\langle\mathbf{t},\mathbf{b}\rangle' & =\langle\mathbf{t}',\mathbf{b}\rangle+\langle\mathbf{t},\mathbf{b}'\rangle=\kappa\langle\mathbf{n},\mathbf{b}\rangle+\tau\langle\mathbf{t},\mathbf{n}\rangle,\\ +\langle\mathbf{n},\mathbf{b}\rangle' & =\langle\mathbf{n}',\mathbf{b}\rangle+\langle\mathbf{n},\mathbf{b}'\rangle=-\kappa\langle\mathbf{t},\mathbf{b}\rangle-\tau\langle\mathbf{b},\mathbf{b}\rangle+\tau\langle\mathbf{n},\mathbf{n}\rangle,\\ +\langle\mathbf{t},\mathbf{t}\rangle' & =2\langle\mathbf{t},\mathbf{t}'\rangle=2\kappa\langle\mathbf{t},\mathbf{n}\rangle,\\ +\langle\mathbf{n},\mathbf{n}\rangle' & =2\langle\mathbf{n},\mathbf{n}'\rangle=-2\kappa\langle\mathbf{t},\mathbf{n}\rangle-2\tau\langle\mathbf{n},\mathbf{b}\rangle,\\ +\langle\mathbf{b},\mathbf{b}\rangle' & =2\langle\mathbf{b},\mathbf{b}'\rangle=2\tau(s)\langle\mathbf{n},\mathbf{b}\rangle, +\end{align*} + +\end_inset + +y tenemos un sistema de ecuaciones diferenciales en el que, si establecemos + como condiciones iniciales +\begin_inset Formula $\langle\mathbf{t},\mathbf{n}\rangle=\langle\mathbf{t},\mathbf{b}\rangle=\langle\mathbf{n},\mathbf{b}\rangle=0$ +\end_inset + + y +\begin_inset Formula $\langle\mathbf{t},\mathbf{t}\rangle=\langle\mathbf{n},\mathbf{n}\rangle=\langle\mathbf{b},\mathbf{b}\rangle=1$ +\end_inset + + en +\begin_inset Formula $s_{0}$ +\end_inset + +, las correspondientes funciones constantes forman una solución del sistema, + y por tanto la única para estas condiciones, luego +\begin_inset Formula $(\mathbf{t}(s),\mathbf{n}(s),\mathbf{b}(s))$ +\end_inset + + es siempre una base ortonormal. +\end_layout + +\begin_layout Standard +Sea entonces +\begin_inset Formula $\alpha:I\to\mathbb{R}^{3}$ +\end_inset + + la curva dada por +\begin_inset Formula $\alpha(s):=\int_{s_{0}}^{s}\mathbf{t}(u)du$ +\end_inset + +, para todo +\begin_inset Formula $s\in I$ +\end_inset + + la diferencial +\begin_inset Formula $\alpha'(s)=\mathbf{t}(s)$ +\end_inset + + y +\begin_inset Formula $\alpha''(s)=\mathbf{t}'(s)=\kappa(s)\mathbf{n}(s)$ +\end_inset + + por las fórmulas de Frenet, con lo que +\begin_inset Formula $\kappa$ +\end_inset + + es la curvatura de +\begin_inset Formula $\alpha$ +\end_inset + +. + Además, +\begin_inset Formula $\alpha'''(s)=\kappa'(s)\mathbf{n}(s)-\kappa(s)^{2}\mathbf{t}(s)-\kappa(s)\tau(s)\mathbf{b}(s)$ +\end_inset + +, y la torsión de la curva es +\begin_inset Formula +\begin{multline*} +-\frac{\det(\alpha'(s),\alpha''(s),\alpha'''(s))}{|\alpha''(s)|^{2}}=-\frac{\langle\alpha'(s)\land\alpha''(s),\alpha'''(s)\rangle}{\kappa(s)^{2}}=\\ +=-\frac{\langle\mathbf{t}(s)\land\kappa(s)\mathbf{n}(s),\kappa'(s)\mathbf{n}(s)-\kappa(s)^{2}\mathbf{t}(s)-\kappa(s)\tau(s)\mathbf{b}(s)\rangle}{\kappa(s)^{2}}=\\ +=-\frac{\langle\mathbf{t}(s)\land\kappa(s)\mathbf{n}(s),-\kappa(s)\tau(s)\mathbf{b}(s)\rangle}{\kappa(s)^{2}}=\tau(s)\langle\mathbf{t}(s)\land\mathbf{n}(s),\mathbf{b}(s)\rangle=\tau(s)\langle\mathbf{b}(s),\mathbf{b}(s)\rangle=\tau(s). +\end{multline*} + +\end_inset + + +\end_layout + +\end_deeper +\begin_layout Enumerate +Dadas dos curvas regulares p.p.a. + +\begin_inset Formula $\alpha,\beta:I\to\mathbb{R}^{3}$ +\end_inset + + con igual curvatura y torsión, existe un movimiento rígido +\begin_inset Formula $M$ +\end_inset + + tal que +\begin_inset Formula $\beta=M\circ\alpha$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Standard +Sean +\begin_inset Formula $\kappa$ +\end_inset + + la curvatura, +\begin_inset Formula $\tau$ +\end_inset + + la torsión y +\begin_inset Formula $s_{0}\in I$ +\end_inset + +, existe una única +\begin_inset Formula $A\in{\cal SO}(3)$ +\end_inset + + tal que +\begin_inset Formula $A\mathbf{t}_{\alpha}(s_{0})=\mathbf{t}_{\beta}(s_{0})$ +\end_inset + +, +\begin_inset Formula $A\mathbf{n}_{\alpha}(s_{0})=\mathbf{n}_{\beta}(s_{0})$ +\end_inset + + y +\begin_inset Formula $A\mathbf{b}_{\alpha}(s_{0})=\mathbf{b}_{\beta}(s_{0})$ +\end_inset + +. + Sean entonces +\begin_inset Formula $b:=\beta(s_{0})-A\alpha(s_{0})$ +\end_inset + +, +\begin_inset Formula $M(x):=Ax+b$ +\end_inset + + un movimiento rígido y +\begin_inset Formula $\gamma:=M\circ\alpha$ +\end_inset + +, y queremos ver que +\begin_inset Formula $\gamma=\beta$ +\end_inset + +. + +\end_layout + +\begin_layout Standard +Se tiene +\begin_inset Formula +\begin{align*} +\gamma(s_{0}) & =A\alpha(s_{0})+b=\beta(s_{0}),\\ +\mathbf{t}_{\gamma}(s_{0}) & =(A\alpha+b)'(s_{0})=A\alpha'(s_{0})=A\mathbf{t}_{\alpha}(s_{0})=\mathbf{t}_{\beta}(s_{0}),\\ +\kappa_{\gamma}(s) & |\gamma''(s)|=|A\alpha''(s)|=|\alpha''(s)|=\kappa(s),\\ +\tau_{\gamma}(s) & =-\frac{\det(\beta'(s),\beta''(s),\beta'''(s))}{|\beta''(s)|^{2}}=-\frac{\det(A\alpha'(s),A\alpha''(s),A\alpha'''(s))}{|\alpha''(s)|^{2}}\\ + & =-\det A\frac{\det(\alpha'(s),\alpha''(s),\alpha'''(s))}{|\alpha''(s)|^{2}}=\det A\tau(s)=\tau(s),\\ +\mathbf{n}_{\gamma}(s_{0}) & =\frac{\gamma''(s_{0})}{\kappa_{\gamma}(s_{0})}=\frac{A\alpha''(s_{0})}{\kappa(s_{0})}=A\mathbf{n}_{\alpha}(s_{0})=\mathbf{n}_{\beta}(s_{0}),\\ +\mathbf{b}_{\gamma}(s_{0}) & =\mathbf{t}_{\gamma}(s_{0})\land\mathbf{n}_{\gamma}(s_{0})=\mathbf{b}_{\beta}(s_{0}). +\end{align*} + +\end_inset + +Sea ahora +\begin_inset Formula $f(s):=\frac{1}{2}(|\mathbf{t}_{\beta}(s)-\mathbf{t}_{\gamma}(s)|^{2}+|\mathbf{n}_{\beta}(s)-\mathbf{n}_{\gamma}(s)|^{2}+|\mathbf{b}_{\beta}(s)-\mathbf{b}_{\gamma}(s)|^{2})$ +\end_inset + +, entonces +\begin_inset Formula $f(s_{0})=0$ +\end_inset + + y +\begin_inset Formula +\begin{align*} +f'= & \langle\mathbf{t}_{\beta}'-\mathbf{t}_{\gamma}',\mathbf{t}_{\beta}-\mathbf{t}_{\gamma}\rangle+\langle\mathbf{n}'_{\beta}-\mathbf{n}'_{\gamma},\mathbf{n}_{\beta}-\mathbf{n}_{\gamma}\rangle+\langle\mathbf{b}_{\beta}'-\mathbf{b}_{\gamma}',\mathbf{b}_{\beta}-\mathbf{b}_{\gamma}\rangle\\ += & \langle\kappa\mathbf{n}_{\beta}-\kappa\mathbf{n}_{\gamma},\mathbf{t}_{\beta}-\mathbf{t}_{\gamma}\rangle+\langle-\kappa\mathbf{t}_{\beta}-\tau\mathbf{b}_{\beta}+\kappa\mathbf{t}_{\gamma}+\tau\mathbf{b}_{\gamma},\mathbf{n}_{\beta}-\mathbf{n}_{\gamma}\rangle+\langle\tau\mathbf{n}_{\beta}-\tau\mathbf{n}_{\gamma},\mathbf{b}_{\beta}-\mathbf{b}_{\gamma}\rangle\\ += & -\kappa(\langle\mathbf{n}_{\beta},\mathbf{t}_{\gamma}\rangle+\langle\mathbf{n}_{\gamma},\mathbf{t}_{\beta}\rangle)+\kappa(\langle\mathbf{t}_{\beta},\mathbf{n}_{\gamma}\rangle+\langle\mathbf{t}_{\gamma},\mathbf{n}_{\beta}\rangle)\\ + & +\tau(\langle\mathbf{b}_{\beta},\mathbf{n}_{\gamma}\rangle+\langle\mathbf{b}_{\gamma},\mathbf{n}_{\beta}\rangle)-\tau(\langle\mathbf{n}_{\beta},\mathbf{b}_{\gamma}\rangle+\langle\mathbf{n}_{\gamma},\mathbf{b}_{\beta}\rangle)=0. +\end{align*} + +\end_inset + +Por tanto +\begin_inset Formula $f$ +\end_inset + + es constante en 0, luego +\begin_inset Formula $\mathbf{t}_{\beta}=\mathbf{t}_{\gamma}$ +\end_inset + +, +\begin_inset Formula $(\beta-\gamma)'(s)=0$ +\end_inset + + y +\begin_inset Formula $\beta-\gamma$ +\end_inset + + es constante, pero +\begin_inset Formula $\beta(s_{0})=\gamma(s_{0})$ +\end_inset + +, luego +\begin_inset Formula $\beta=\gamma$ +\end_inset + +. +\end_layout + +\end_deeper +\end_body +\end_document |
