diff options
Diffstat (limited to 'gcs')
| -rw-r--r-- | gcs/n1.lyx | 4 | ||||
| -rw-r--r-- | gcs/n2.lyx | 6 | ||||
| -rw-r--r-- | gcs/n3.lyx | 8 |
3 files changed, 9 insertions, 9 deletions
@@ -1647,11 +1647,11 @@ distancia orientada \end_inset en dos semiplanos -\begin_inset Formula $H^{+}:=\{p:\text{dist}(p,\ell)\geq0\}$ +\begin_inset Formula $H^{+}:=\{p\mid \text{dist}(p,\ell)\geq0\}$ \end_inset y -\begin_inset Formula $H^{-}:=\{p:\text{dist}(p,\ell)\leq0\}$ +\begin_inset Formula $H^{-}:=\{p\mid \text{dist}(p,\ell)\leq0\}$ \end_inset , de modo que @@ -2984,7 +2984,7 @@ Sean \end_inset y -\begin_inset Formula $J:=\{t\in I:\alpha(t)\in V\}$ +\begin_inset Formula $J:=\{t\in I\mid \alpha(t)\in V\}$ \end_inset , entonces @@ -4304,7 +4304,7 @@ Sean \end_inset y -\begin_inset Formula $A:=\{p\in S:f(p)=a\}\neq\emptyset$ +\begin_inset Formula $A:=\{p\in S\mid f(p)=a\}\neq\emptyset$ \end_inset , pues @@ -4698,7 +4698,7 @@ Dados \end_inset , el cilindro -\begin_inset Formula $C:=\{(x,y,z):x^{2}+y^{2}=r^{2}\}$ +\begin_inset Formula $C:=\{(x,y,z)\mid x^{2}+y^{2}=r^{2}\}$ \end_inset y la parametrización @@ -472,7 +472,7 @@ Sea \end_inset es la superficie de nivel -\begin_inset Formula $\{p:f(p)=r^{2}\}$ +\begin_inset Formula $\{p\mid f(p)=r^{2}\}$ \end_inset , luego admite la orientación @@ -1018,7 +1018,7 @@ Los cilindros se obtienen por un movimiento de \end_inset , -\begin_inset Formula $N(S_{r})=\{\frac{1}{r}(x,y,0):x^{2}+y^{2}=r^{2}\}=\{(x,y,0):x^{2}+y^{2}=1\}$ +\begin_inset Formula $N(S_{r})=\{\frac{1}{r}(x,y,0)\mid x^{2}+y^{2}=r^{2}\}=\{(x,y,0)\mid x^{2}+y^{2}=1\}$ \end_inset . @@ -2275,7 +2275,7 @@ El cilindro \begin_deeper \begin_layout Standard Sean -\begin_inset Formula $C:=\{x^{2}+y^{2}=r^{2}\}=\{X(u,v):=(r\cos u,r\sin u,v)\}_{u,v\in\mathbb{R}}$ +\begin_inset Formula $C:=\{x^{2}+y^{2}=r^{2}\}=\{X(u,v)\mid =(r\cos u,r\sin u,v)\}_{u,v\in\mathbb{R}}$ \end_inset , @@ -2635,7 +2635,7 @@ status open \begin_layout Plain Layout La superficie es el grafo -\begin_inset Formula $S:=\{X(u,v):=(u,v,(u^{2}+v^{2})^{2}\}_{u,v\in\mathbb{R}}$ +\begin_inset Formula $S:=\{X(u,v)\mid =(u,v,(u^{2}+v^{2})^{2}\}_{u,v\in\mathbb{R}}$ \end_inset , de modo que |
