aboutsummaryrefslogtreecommitdiff
path: root/gcs
diff options
context:
space:
mode:
Diffstat (limited to 'gcs')
-rw-r--r--gcs/n1.lyx4
-rw-r--r--gcs/n2.lyx6
-rw-r--r--gcs/n3.lyx8
3 files changed, 9 insertions, 9 deletions
diff --git a/gcs/n1.lyx b/gcs/n1.lyx
index 6e1fd95..75dd0c2 100644
--- a/gcs/n1.lyx
+++ b/gcs/n1.lyx
@@ -1647,11 +1647,11 @@ distancia orientada
\end_inset
en dos semiplanos
-\begin_inset Formula $H^{+}:=\{p:\text{dist}(p,\ell)\geq0\}$
+\begin_inset Formula $H^{+}:=\{p\mid \text{dist}(p,\ell)\geq0\}$
\end_inset
y
-\begin_inset Formula $H^{-}:=\{p:\text{dist}(p,\ell)\leq0\}$
+\begin_inset Formula $H^{-}:=\{p\mid \text{dist}(p,\ell)\leq0\}$
\end_inset
, de modo que
diff --git a/gcs/n2.lyx b/gcs/n2.lyx
index 61adb12..b768ad2 100644
--- a/gcs/n2.lyx
+++ b/gcs/n2.lyx
@@ -2984,7 +2984,7 @@ Sean
\end_inset
y
-\begin_inset Formula $J:=\{t\in I:\alpha(t)\in V\}$
+\begin_inset Formula $J:=\{t\in I\mid \alpha(t)\in V\}$
\end_inset
, entonces
@@ -4304,7 +4304,7 @@ Sean
\end_inset
y
-\begin_inset Formula $A:=\{p\in S:f(p)=a\}\neq\emptyset$
+\begin_inset Formula $A:=\{p\in S\mid f(p)=a\}\neq\emptyset$
\end_inset
, pues
@@ -4698,7 +4698,7 @@ Dados
\end_inset
, el cilindro
-\begin_inset Formula $C:=\{(x,y,z):x^{2}+y^{2}=r^{2}\}$
+\begin_inset Formula $C:=\{(x,y,z)\mid x^{2}+y^{2}=r^{2}\}$
\end_inset
y la parametrización
diff --git a/gcs/n3.lyx b/gcs/n3.lyx
index 5bae145..4cdb4d4 100644
--- a/gcs/n3.lyx
+++ b/gcs/n3.lyx
@@ -472,7 +472,7 @@ Sea
\end_inset
es la superficie de nivel
-\begin_inset Formula $\{p:f(p)=r^{2}\}$
+\begin_inset Formula $\{p\mid f(p)=r^{2}\}$
\end_inset
, luego admite la orientación
@@ -1018,7 +1018,7 @@ Los cilindros se obtienen por un movimiento de
\end_inset
,
-\begin_inset Formula $N(S_{r})=\{\frac{1}{r}(x,y,0):x^{2}+y^{2}=r^{2}\}=\{(x,y,0):x^{2}+y^{2}=1\}$
+\begin_inset Formula $N(S_{r})=\{\frac{1}{r}(x,y,0)\mid x^{2}+y^{2}=r^{2}\}=\{(x,y,0)\mid x^{2}+y^{2}=1\}$
\end_inset
.
@@ -2275,7 +2275,7 @@ El cilindro
\begin_deeper
\begin_layout Standard
Sean
-\begin_inset Formula $C:=\{x^{2}+y^{2}=r^{2}\}=\{X(u,v):=(r\cos u,r\sin u,v)\}_{u,v\in\mathbb{R}}$
+\begin_inset Formula $C:=\{x^{2}+y^{2}=r^{2}\}=\{X(u,v)\mid =(r\cos u,r\sin u,v)\}_{u,v\in\mathbb{R}}$
\end_inset
,
@@ -2635,7 +2635,7 @@ status open
\begin_layout Plain Layout
La superficie es el grafo
-\begin_inset Formula $S:=\{X(u,v):=(u,v,(u^{2}+v^{2})^{2}\}_{u,v\in\mathbb{R}}$
+\begin_inset Formula $S:=\{X(u,v)\mid =(u,v,(u^{2}+v^{2})^{2}\}_{u,v\in\mathbb{R}}$
\end_inset
, de modo que