aboutsummaryrefslogtreecommitdiff
path: root/gcs
diff options
context:
space:
mode:
Diffstat (limited to 'gcs')
-rw-r--r--gcs/n.lyx14
-rw-r--r--gcs/n3.lyx4480
2 files changed, 4494 insertions, 0 deletions
diff --git a/gcs/n.lyx b/gcs/n.lyx
index 6213d6f..21d9461 100644
--- a/gcs/n.lyx
+++ b/gcs/n.lyx
@@ -175,5 +175,19 @@ filename "n2.lyx"
\end_layout
+\begin_layout Chapter
+Curvatura de superficies
+\end_layout
+
+\begin_layout Standard
+\begin_inset CommandInset include
+LatexCommand input
+filename "n3.lyx"
+
+\end_inset
+
+
+\end_layout
+
\end_body
\end_document
diff --git a/gcs/n3.lyx b/gcs/n3.lyx
new file mode 100644
index 0000000..02ffa54
--- /dev/null
+++ b/gcs/n3.lyx
@@ -0,0 +1,4480 @@
+#LyX 2.3 created this file. For more info see http://www.lyx.org/
+\lyxformat 544
+\begin_document
+\begin_header
+\save_transient_properties true
+\origin unavailable
+\textclass book
+\begin_preamble
+\input{../defs}
+\end_preamble
+\use_default_options true
+\maintain_unincluded_children false
+\language spanish
+\language_package default
+\inputencoding auto
+\fontencoding global
+\font_roman "default" "default"
+\font_sans "default" "default"
+\font_typewriter "default" "default"
+\font_math "auto" "auto"
+\font_default_family default
+\use_non_tex_fonts false
+\font_sc false
+\font_osf false
+\font_sf_scale 100 100
+\font_tt_scale 100 100
+\use_microtype false
+\use_dash_ligatures true
+\graphics default
+\default_output_format default
+\output_sync 0
+\bibtex_command default
+\index_command default
+\paperfontsize default
+\spacing single
+\use_hyperref false
+\papersize default
+\use_geometry false
+\use_package amsmath 1
+\use_package amssymb 1
+\use_package cancel 1
+\use_package esint 1
+\use_package mathdots 1
+\use_package mathtools 1
+\use_package mhchem 1
+\use_package stackrel 1
+\use_package stmaryrd 1
+\use_package undertilde 1
+\cite_engine basic
+\cite_engine_type default
+\biblio_style plain
+\use_bibtopic false
+\use_indices false
+\paperorientation portrait
+\suppress_date false
+\justification true
+\use_refstyle 1
+\use_minted 0
+\index Index
+\shortcut idx
+\color #008000
+\end_index
+\secnumdepth 3
+\tocdepth 3
+\paragraph_separation indent
+\paragraph_indentation default
+\is_math_indent 0
+\math_numbering_side default
+\quotes_style french
+\dynamic_quotes 0
+\papercolumns 1
+\papersides 1
+\paperpagestyle default
+\tracking_changes false
+\output_changes false
+\html_math_output 0
+\html_css_as_file 0
+\html_be_strict false
+\end_header
+
+\begin_body
+
+\begin_layout Section
+Orientación
+\end_layout
+
+\begin_layout Standard
+Dada una superficie regular
+\begin_inset Formula $S$
+\end_inset
+
+, un
+\series bold
+campo de vectores
+\series default
+ sobre
+\begin_inset Formula $S$
+\end_inset
+
+ es una función
+\begin_inset Formula $\xi:S\to\mathbb{R}^{3}$
+\end_inset
+
+, y es
+\series bold
+tangente
+\series default
+ si
+\begin_inset Formula $\xi(p)\in T_{p}S$
+\end_inset
+
+ para todo
+\begin_inset Formula $p\in S$
+\end_inset
+
+,
+\series bold
+normal
+\series default
+ si
+\begin_inset Formula $\xi(p)\in(T_{p}S)^{\bot}$
+\end_inset
+
+ para todo
+\begin_inset Formula $p\in S$
+\end_inset
+
+ y
+\series bold
+unitario
+\series default
+ si
+\begin_inset Formula $|\xi(p)|=1$
+\end_inset
+
+ para todo
+\begin_inset Formula $p\in S$
+\end_inset
+
+.
+ Llamamos
+\begin_inset Formula $\mathfrak{X}(S)$
+\end_inset
+
+ al conjunto de campos de vectores tangentes sobre
+\begin_inset Formula $S$
+\end_inset
+
+ y
+\begin_inset Formula $\mathfrak{X}(S)^{\bot}$
+\end_inset
+
+ al conjunto de campos de vectores normales sobre
+\begin_inset Formula $S$
+\end_inset
+
+.
+\end_layout
+
+\begin_layout Standard
+Una
+\series bold
+orientación
+\series default
+ de una superficie regular
+\begin_inset Formula $S$
+\end_inset
+
+ es un campo de vectores diferenciable, normal y unitario sobre
+\begin_inset Formula $S$
+\end_inset
+
+.
+
+\begin_inset Formula $S$
+\end_inset
+
+ es
+\series bold
+orientable
+\series default
+ si admite una orientación, si y sólo si existe un campo
+\begin_inset Formula $\xi$
+\end_inset
+
+ normal y diferenciable sobre
+\begin_inset Formula $S$
+\end_inset
+
+ que no se anula en ningún punto, pues las orientaciones son de esta forma
+ y, dado
+\begin_inset Formula $\xi$
+\end_inset
+
+, basta tomar la orientación
+\begin_inset Formula $N(p):=\xi(p)/|\xi(p)|$
+\end_inset
+
+.
+ Una orientación
+\begin_inset Formula $N$
+\end_inset
+
+ de
+\begin_inset Formula $S$
+\end_inset
+
+ da a cada
+\begin_inset Formula $p\in S$
+\end_inset
+
+ un sentido de giro para
+\begin_inset Formula $T_{p}S$
+\end_inset
+
+ dado por el producto vectorial en
+\begin_inset Formula $\mathbb{R}^{3}$
+\end_inset
+
+.
+
+\begin_inset Formula $S$
+\end_inset
+
+ está orientada cuando se ha escogido una orientación concreta, en cuyo
+ caso dicha orientación es su
+\series bold
+aplicación de Gauss
+\series default
+.
+\end_layout
+
+\begin_layout Standard
+Ejemplos:
+\begin_inset Note Comment
+status open
+
+\begin_layout Enumerate
+La banda de Möbius se puede expresar como la imagen de
+\begin_inset Formula $X:\mathbb{R}\times(-1,1)\to\mathbb{R}^{3}$
+\end_inset
+
+ dada por
+\begin_inset Formula
+\[
+X(u,v):=\left((2-v\sin\tfrac{u}{2})\sin u,(2-v\sin\tfrac{u}{2})\cos u,v\cos\tfrac{u}{2}\right).
+\]
+
+\end_inset
+
+Esta es una superficie regular no orientable.
+\end_layout
+
+\begin_deeper
+\begin_layout Plain Layout
+Claramente
+\begin_inset Formula $X$
+\end_inset
+
+ es diferenciable, y es inyectiva en
+\begin_inset Formula $U_{1}:=(0,2\pi)\times(-1,1)$
+\end_inset
+
+ y en
+\begin_inset Formula $U_{2}:=(-\pi,\pi)\times(-1,1)$
+\end_inset
+
+.
+ Su diferencial es
+\begin_inset Formula
+\[
+dX(u,v)\equiv\begin{pmatrix}-\frac{v}{2}\cos\frac{u}{2}\sin u+(2-v\sin\frac{u}{2})\cos u & -\sin\frac{u}{2}\sin u\\
+-\frac{v}{2}\cos\frac{u}{2}\cos u-(2-v\sin\frac{u}{2})\sin u & -\sin\frac{u}{2}\cos u\\
+-\frac{v}{2}\sin\frac{u}{2} & \cos\frac{u}{2}
+\end{pmatrix},
+\]
+
+\end_inset
+
+y el determinante de las dos primeras filas es
+\begin_inset Formula
+\[
+-\sin\frac{u}{2}\left(-\frac{v}{2}\cos\frac{u}{2}\begin{vmatrix}\sin u & \sin u\\
+\cos u & \cos u
+\end{vmatrix}+\left(2-v\sin\frac{u}{2}\right)\begin{vmatrix}\cos u & \sin u\\
+-\sin u & \cos u
+\end{vmatrix}\right)=-\sin\frac{u}{2}\left(2-v\sin\frac{u}{2}\right),
+\]
+
+\end_inset
+
+lo que solo se anula cuando
+\begin_inset Formula $u\in\{2k\pi\}_{k\in\mathbb{Z}}$
+\end_inset
+
+, pero en tal caso
+\begin_inset Formula
+\[
+dX(u,v)\equiv\begin{pmatrix}2 & 0\\
+-\frac{v}{2} & 0\\
+0 & 1
+\end{pmatrix}
+\]
+
+\end_inset
+
+y el determinante de la submatriz resultante de quitar la segunda fila es
+
+\begin_inset Formula $2\neq0$
+\end_inset
+
+.
+ Esto prueba que la banda de Möbius es una superficie.
+\end_layout
+
+\end_deeper
+\end_inset
+
+
+\end_layout
+
+\begin_layout Enumerate
+El plano
+\begin_inset Formula $p_{0}+\langle v\rangle^{\bot}\subseteq\mathbb{R}^{3}$
+\end_inset
+
+ admite la orientación
+\begin_inset Formula $N(p):=v/|v|$
+\end_inset
+
+.
+\end_layout
+
+\begin_layout Enumerate
+Dados
+\begin_inset Formula $f:\mathbb{R}^{3}\to\mathbb{R}$
+\end_inset
+
+
+\begin_inset Formula ${\cal C}^{2}$
+\end_inset
+
+ y un valor regular
+\begin_inset Formula $c$
+\end_inset
+
+ de
+\begin_inset Formula $f$
+\end_inset
+
+, la superficie de nivel
+\begin_inset Formula $S:=f^{-1}(c)$
+\end_inset
+
+ admite la orientación
+\begin_inset Formula
+\[
+N(p):=\frac{\nabla f(p)}{|\nabla f(p)|},
+\]
+
+\end_inset
+
+ donde
+\begin_inset Formula $\nabla f(p):=(\frac{\partial f}{\partial x}(p),\frac{\partial f}{\partial y}(p),\frac{\partial f}{\partial z}(p))$
+\end_inset
+
+ es el
+\series bold
+gradiente
+\series default
+ de
+\begin_inset Formula $f$
+\end_inset
+
+ en
+\begin_inset Formula $p$
+\end_inset
+
+.
+\end_layout
+
+\begin_deeper
+\begin_layout Standard
+Sean
+\begin_inset Formula $p\in S$
+\end_inset
+
+,
+\begin_inset Formula $\alpha:=(x,y,z):I\to S$
+\end_inset
+
+ una curva diferenciable con
+\begin_inset Formula $\alpha(0)=p$
+\end_inset
+
+ y
+\begin_inset Formula $v:=\alpha'(0)\in T_{p}S$
+\end_inset
+
+, para
+\begin_inset Formula $t\in I$
+\end_inset
+
+ es
+\begin_inset Formula $f(\alpha(t))=c$
+\end_inset
+
+ por ser
+\begin_inset Formula $\alpha(t)\in S$
+\end_inset
+
+, luego derivando,
+\begin_inset Formula $\frac{\partial f}{\partial x}(\alpha(t))x'(t)+\frac{\partial f}{\partial y}(\alpha(t))y'(t)+\frac{\partial f}{\partial z}(\alpha(t))z'(t)=0$
+\end_inset
+
+ y
+\begin_inset Formula $\nabla f(p)\bot v$
+\end_inset
+
+.
+ Además,
+\begin_inset Formula $\nabla f(p)\neq0$
+\end_inset
+
+ porque
+\begin_inset Formula $p\in S=f^{-1}(c)$
+\end_inset
+
+ y
+\begin_inset Formula $c$
+\end_inset
+
+ es un valor regular de
+\begin_inset Formula $f$
+\end_inset
+
+, y claramente
+\begin_inset Formula $\nabla f$
+\end_inset
+
+ es diferenciable.
+\end_layout
+
+\end_deeper
+\begin_layout Enumerate
+\begin_inset Formula $\mathbb{S}^{2}(r)$
+\end_inset
+
+ admite la orientación
+\begin_inset Formula $N(p)=\frac{1}{r}p$
+\end_inset
+
+.
+\end_layout
+
+\begin_deeper
+\begin_layout Standard
+Sea
+\begin_inset Formula $f(x,y,z):=x^{2}+y^{2}+z^{2}$
+\end_inset
+
+,
+\begin_inset Formula $r^{2}$
+\end_inset
+
+ es un valor regular de
+\begin_inset Formula $f$
+\end_inset
+
+ y
+\begin_inset Formula $\mathbb{S}^{2}$
+\end_inset
+
+ es la superficie de nivel
+\begin_inset Formula $\{p:f(p)=r^{2}\}$
+\end_inset
+
+, luego admite la orientación
+\begin_inset Formula
+\[
+N(x,y,z)=\frac{\nabla f(x,y,z)}{|\nabla f(x,y,z)|}=\frac{(2x,2y,2z)}{|(2x,2y,2z)|}=\frac{(x,y,z)}{|(x,y,z)|}=\frac{1}{r}(x,y,z).
+\]
+
+\end_inset
+
+
+\end_layout
+
+\end_deeper
+\begin_layout Enumerate
+El cilindro
+\begin_inset Formula $\{x^{2}+y^{2}=r^{2}\}$
+\end_inset
+
+ admite la orientación
+\begin_inset Formula $N(x,y,z)=(x,y,0)$
+\end_inset
+
+.
+\end_layout
+
+\begin_deeper
+\begin_layout Standard
+Es una superficie de nivel y tiene pues orientación
+\begin_inset Formula $N(p)=\frac{(2x,2y,0)}{|(2x,2y,0)|}=\frac{(x,y,0)}{|(x,y,0)|}=\frac{1}{r}(x,y,0)$
+\end_inset
+
+.
+\end_layout
+
+\end_deeper
+\begin_layout Enumerate
+Dada
+\begin_inset Formula $f:U\subseteq\mathbb{R}^{2}\to\mathbb{R}$
+\end_inset
+
+ diferenciable en el abierto
+\begin_inset Formula $U$
+\end_inset
+
+, el grafo
+\begin_inset Formula $S:=\{(x,y,f(x,y))\}_{x,y\in U}$
+\end_inset
+
+ admite la orientación
+\begin_inset Formula
+\[
+N(u,v)=\frac{(-f_{u},-f_{v},1)}{\sqrt{1+f_{u}^{2}+f_{v}^{2}}}(u,v).
+\]
+
+\end_inset
+
+Dada la parametrización
+\begin_inset Formula $(U,X)$
+\end_inset
+
+ con
+\begin_inset Formula $X(u,v):=(u,v,f(u,v))$
+\end_inset
+
+,
+\begin_inset Formula $X_{u}=(1,0,f_{u})$
+\end_inset
+
+ y
+\begin_inset Formula $X_{v}=(0,1,f_{v})$
+\end_inset
+
+, y
+\begin_inset Formula $X_{u}\wedge X_{v}=(-f_{u},-f_{v},1)$
+\end_inset
+
+.
+\end_layout
+
+\begin_layout Standard
+Las superficies orientables tienen exactamente dos orientaciones, una opuesta
+ de la otra.
+\end_layout
+
+\begin_layout Standard
+Dos cartas
+\begin_inset Formula $(U,X)$
+\end_inset
+
+ y
+\begin_inset Formula $(U',X')$
+\end_inset
+
+ de
+\begin_inset Formula $S$
+\end_inset
+
+ son
+\series bold
+compatibles
+\series default
+ si
+\begin_inset Formula $V:=X(U)$
+\end_inset
+
+ y
+\begin_inset Formula $V':=X'(U')$
+\end_inset
+
+ son disjuntos o
+\begin_inset Formula $\det(Jh)>0$
+\end_inset
+
+, donde
+\begin_inset Formula $h:X^{-1}(V')\to(X')^{-1}(V)$
+\end_inset
+
+ es el cambio de coordenadas de
+\begin_inset Formula $V$
+\end_inset
+
+ a
+\begin_inset Formula $V'$
+\end_inset
+
+.
+ Un
+\series bold
+atlas
+\series default
+ para
+\begin_inset Formula $S$
+\end_inset
+
+ es una familia
+\begin_inset Formula $\{(U_{i},X_{i})\}_{i\in I}$
+\end_inset
+
+ de cartas tales que
+\begin_inset Formula $\bigcup_{i\in I}X_{i}(U_{i})=S$
+\end_inset
+
+.
+ Entonces una superficie es orientable si y sólo si existe un atlas cuyas
+ cartas son compatibles.
+\end_layout
+
+\begin_layout Itemize
+\begin_inset Argument item:1
+status open
+
+\begin_layout Plain Layout
+\begin_inset Formula $\impliedby]$
+\end_inset
+
+
+\end_layout
+
+\end_inset
+
+Sean
+\begin_inset Formula ${\cal A}:=\{(U_{i},X_{i})\}_{i\in I}$
+\end_inset
+
+ un atlas de cartas compatibles en
+\begin_inset Formula $S$
+\end_inset
+
+,
+\begin_inset Formula $p\in S$
+\end_inset
+
+,
+\begin_inset Formula $(U,X)\in{\cal A}(I)$
+\end_inset
+
+ con
+\begin_inset Formula $p\in X(U)$
+\end_inset
+
+ y
+\begin_inset Formula $N:X(U)\to\mathbb{R}^{3}$
+\end_inset
+
+ dado por
+\begin_inset Formula
+\[
+N(X(u,v)):=N(u,v):=\frac{X_{u}\wedge X_{v}}{|X_{u}\wedge X_{v}|}(u,v),
+\]
+
+\end_inset
+
+
+\begin_inset Formula $N$
+\end_inset
+
+ está bien definido y es diferenciable, normal y unitario.
+ Sean ahora
+\begin_inset Formula $(\overline{U},\overline{X})\in{\cal A}(I)$
+\end_inset
+
+ con
+\begin_inset Formula $p\in\overline{X}(\overline{U})$
+\end_inset
+
+,
+\begin_inset Formula $\overline{N}(\overline{X}(u,v)):=\overline{N}(u,v):=\frac{\overline{X}_{u}\cap\overline{X}_{v}}{|\overline{X}_{u}\cap\overline{X}_{v}|}(u,v)$
+\end_inset
+
+ y
+\begin_inset Formula $h$
+\end_inset
+
+ el cambio de coordenadas de
+\begin_inset Formula $(U,X)$
+\end_inset
+
+ a
+\begin_inset Formula $(\overline{U},\overline{X})$
+\end_inset
+
+, para
+\begin_inset Formula $(u,v)\in X^{-1}(V_{0})$
+\end_inset
+
+,
+\begin_inset Formula
+\[
+dX(u,v)=d(\overline{X}\circ h)(u,v)=d\overline{X}(h(u,v))\circ dh(u,v),
+\]
+
+\end_inset
+
+ luego
+\begin_inset Formula
+\[
+N(u,v)=\frac{X_{u}\wedge X_{v}}{|X_{u}\wedge X_{v}|}=\frac{\det(Jh(u,v))}{|\det(Jh(u,v))|}\frac{\overline{X}_{u}\wedge\overline{X}_{v}}{|\overline{X}_{u}\wedge\overline{X}_{v}|}(h(u,v))\overset{Jh(u,v)>0}{=}\overline{N}(u,v),
+\]
+
+\end_inset
+
+ de modo que
+\begin_inset Formula $N(p)$
+\end_inset
+
+ es diferenciable, normal, unitario y no depende de la carta del atlas escogida.
+\end_layout
+
+\begin_layout Itemize
+\begin_inset Argument item:1
+status open
+
+\begin_layout Plain Layout
+\begin_inset Formula $\implies]$
+\end_inset
+
+
+\end_layout
+
+\end_inset
+
+Sea
+\begin_inset Formula $N$
+\end_inset
+
+ una orientación de
+\begin_inset Formula $S$
+\end_inset
+
+, para toda carta
+\begin_inset Formula $(U,X)$
+\end_inset
+
+ de
+\begin_inset Formula $S$
+\end_inset
+
+ es
+\begin_inset Formula $N(X(q))=\pm\frac{X_{u}\wedge X_{v}}{|X_{u}\wedge X_{v}|}(q)$
+\end_inset
+
+ para todo
+\begin_inset Formula $q\in U$
+\end_inset
+
+.
+ Entonces, para
+\begin_inset Formula $p\in S$
+\end_inset
+
+, podemos tomar una carta
+\begin_inset Formula $(U_{p},X_{p})$
+\end_inset
+
+ de
+\begin_inset Formula $S$
+\end_inset
+
+ con
+\begin_inset Formula $N(X(q))=\frac{(X_{p})_{u}\wedge(X_{p})_{v}}{|(X_{p})_{u}\wedge(X_{p})_{v}|}(q)$
+\end_inset
+
+ para
+\begin_inset Formula $q\in U$
+\end_inset
+
+, pues si el normal fuese el opuesto basta cambiar
+\begin_inset Formula $X_{p}(u,v)$
+\end_inset
+
+ por
+\begin_inset Formula $X_{p}(v,u)$
+\end_inset
+
+ y
+\begin_inset Formula $U_{p}$
+\end_inset
+
+ por
+\begin_inset Formula $\{(u,v)\}_{(v,u)\in U}$
+\end_inset
+
+, y el resultado se tiene por la antisimetría del producto vectorial.
+ Con esto, dados
+\begin_inset Formula $a,b\in S$
+\end_inset
+
+ con
+\begin_inset Formula $V:=X_{a}(U_{a})\cap X_{b}(U_{b})\neq\emptyset$
+\end_inset
+
+, queremos ver que el determinante del cambio de coordenadas
+\begin_inset Formula $h:X_{a}^{-1}(V)\to X_{b}^{-1}(V)$
+\end_inset
+
+ de
+\begin_inset Formula $(U_{a},X_{a})$
+\end_inset
+
+ a
+\begin_inset Formula $(U_{b},X_{b})$
+\end_inset
+
+ tiene jacobiano con determinante positivo.
+ En efecto,
+\begin_inset Formula $\det(Jh)$
+\end_inset
+
+ debe ser no nulo, pero si fuera negativo, para un
+\begin_inset Formula $p\in V$
+\end_inset
+
+, sean
+\begin_inset Formula $q_{a}:=X_{a}^{-1}(p)$
+\end_inset
+
+ y
+\begin_inset Formula $q_{b}:=X_{b}^{-1}(p)$
+\end_inset
+
+, entonces
+\begin_inset Formula
+\[
+N(p)=\frac{X_{au}\wedge X_{av}}{|X_{au}\wedge X_{av}|}(q_{a})=\frac{\det(Jh)}{|\det(Jh)|}\frac{X_{bu}\wedge X_{bv}}{|X_{bu}\wedge X_{bv}|}(q_{b})=-N(p),
+\]
+
+\end_inset
+
+luego
+\begin_inset Formula $N(p)=0\#$
+\end_inset
+
+.
+ Por tanto
+\begin_inset Formula $\det(Jh)>0$
+\end_inset
+
+ y las cartas del atlas
+\begin_inset Formula $\{(U_{p},X_{p})\}_{p\in S}$
+\end_inset
+
+ son compatibles.
+\end_layout
+
+\begin_layout Standard
+En adelante, cuando consideremos una parametrización
+\begin_inset Formula $(U,X)$
+\end_inset
+
+, escribiremos
+\begin_inset Formula $N(u,v):=N(X(u,v))$
+\end_inset
+
+,
+\begin_inset Formula $N_{u}:=\frac{\partial(N\circ X)}{\partial u}$
+\end_inset
+
+ y
+\begin_inset Formula $N_{v}:=\frac{\partial(N\circ X)}{\partial v}$
+\end_inset
+
+.
+ En general, para
+\begin_inset Formula $f:\mathbb{R}^{n}\to\mathbb{R}$
+\end_inset
+
+,
+\begin_inset Formula $f_{x_{i}}:=\frac{\partial f}{\partial x_{i}}$
+\end_inset
+
+.
+\end_layout
+
+\begin_layout Section
+La segunda forma fundamental
+\end_layout
+
+\begin_layout Standard
+Sea
+\begin_inset Formula $S$
+\end_inset
+
+ una superficie orientada con aplicación de Gauss
+\begin_inset Formula $N:S\to\mathbb{S}^{2}$
+\end_inset
+
+, llamamos
+\series bold
+imagen esférica
+\series default
+ de
+\begin_inset Formula $S$
+\end_inset
+
+ a
+\begin_inset Formula $\text{Im}N\subseteq\mathbb{S}^{2}$
+\end_inset
+
+.
+ Ejemplos:
+\end_layout
+
+\begin_layout Enumerate
+La imagen esférica de un plano es unipuntual.
+\end_layout
+
+\begin_deeper
+\begin_layout Standard
+Dado el plano
+\begin_inset Formula $\Pi:=p_{0}+\langle v\rangle\subseteq\mathbb{R}^{3}$
+\end_inset
+
+, donde podemos suponer
+\begin_inset Formula $v$
+\end_inset
+
+ unitario, la imagen de
+\begin_inset Formula $N(p):=v$
+\end_inset
+
+ es
+\begin_inset Formula $\{v\}$
+\end_inset
+
+.
+\end_layout
+
+\end_deeper
+\begin_layout Enumerate
+La imagen esférica de
+\begin_inset Formula $\mathbb{S}^{2}$
+\end_inset
+
+ es
+\begin_inset Formula $\mathbb{S}^{2}$
+\end_inset
+
+.
+\end_layout
+
+\begin_deeper
+\begin_layout Standard
+La aplicación de Gauss es
+\begin_inset Formula $\pm1_{\mathbb{S}^{2}}$
+\end_inset
+
+.
+\end_layout
+
+\end_deeper
+\begin_layout Enumerate
+La imagen esférica de un grafo
+\begin_inset Formula $\{(x,y,f(x,y))\}_{(x,y)\in U}$
+\end_inset
+
+ con
+\begin_inset Formula $f:U\subseteq\mathbb{R}^{2}\to\mathbb{R}$
+\end_inset
+
+ diferenciable está contenida en el hemisferio (estricto) norte o sur.
+\end_layout
+
+\begin_deeper
+\begin_layout Standard
+Una orientación es
+\begin_inset Formula $N(u,v)=\frac{(-f_{u},-f_{v},1)}{\sqrt{1+f_{u}^{2}+f_{v}^{2}}}(u,v)$
+\end_inset
+
+, y como la coordenada
+\begin_inset Formula $z$
+\end_inset
+
+ de
+\begin_inset Formula $N$
+\end_inset
+
+ es siempre positiva,
+\begin_inset Formula $\text{Im}N$
+\end_inset
+
+ está en el hemisferio norte estricto.
+ Con la orientación opuesta está en el hemisferio sur estricto.
+\end_layout
+
+\end_deeper
+\begin_layout Enumerate
+La imagen esférica de un cilindro es un circulo máximo de la esfera.
+\end_layout
+
+\begin_deeper
+\begin_layout Standard
+Los cilindros se obtienen por un movimiento de
+\begin_inset Formula $S_{r}:=\{x^{2}+y^{2}=r^{2}\}$
+\end_inset
+
+ para algún
+\begin_inset Formula $r>0$
+\end_inset
+
+, y como su orientación es
+\begin_inset Formula $N(x,y,z)=\pm\frac{1}{r}(x,y,0)$
+\end_inset
+
+,
+\begin_inset Formula $N(S_{r})=\{\frac{1}{r}(x,y,0):x^{2}+y^{2}=r^{2}\}=\{(x,y,0):x^{2}+y^{2}=1\}$
+\end_inset
+
+.
+\end_layout
+
+\end_deeper
+\begin_layout Enumerate
+El
+\series bold
+catenoide
+\series default
+,
+\begin_inset Formula $C:=\{x^{2}+y^{2}=\cosh^{2}z\}$
+\end_inset
+
+, tiene imagen esférica
+\begin_inset Formula $\mathbb{S}^{2}\setminus\{\mathsf{N},\mathsf{S}\}$
+\end_inset
+
+, donde
+\begin_inset Formula $\mathsf{N}:=(0,0,1)$
+\end_inset
+
+ es el
+\series bold
+polo norte
+\series default
+ y
+\begin_inset Formula $\mathsf{S}:=(0,0,-1)$
+\end_inset
+
+ es el
+\series bold
+polo sur
+\series default
+.
+\end_layout
+
+\begin_deeper
+\begin_layout Standard
+Sea
+\begin_inset Formula $f(x,y,z):=x^{2}+y^{2}-\cosh^{2}z$
+\end_inset
+
+, como
+\begin_inset Formula $f_{x}=2x$
+\end_inset
+
+,
+\begin_inset Formula $f_{y}=2y$
+\end_inset
+
+ y
+\begin_inset Formula $f_{z}=-2\cosh z\sinh z$
+\end_inset
+
+, el único punto crítico de
+\begin_inset Formula $f$
+\end_inset
+
+ es el origen, con
+\begin_inset Formula $f(0)=-1$
+\end_inset
+
+, de modo que 0 es un valor regular de
+\begin_inset Formula $f\in{\cal C}^{\infty}$
+\end_inset
+
+ y
+\begin_inset Formula $C=\{f(x,y,z)=0\}$
+\end_inset
+
+ es una superficie de nivel regular y
+\begin_inset Formula
+\begin{align*}
+N(x,y,z) & =\frac{\nabla f(x,y,z)}{\Vert\nabla f(x,y,z)\Vert}=\frac{(2x,2y,-2\cosh z\sinh z)}{2\sqrt{x^{2}+y^{2}+\cosh^{2}z\sinh^{2}z}}\\
+ & =\frac{(x,y,-\cosh z\sinh z)}{\sqrt{\cosh^{2}z+\cosh^{2}z\sinh^{2}z}}=\frac{(x,y,-\cosh z\sinh z)}{\cosh^{2}z}.
+\end{align*}
+
+\end_inset
+
+Como
+\begin_inset Formula $N_{1}(p)^{2}+N_{2}(p)^{2}=\frac{x^{2}+y^{2}}{\cosh^{4}z}=\frac{1}{\cosh^{2}z}>0$
+\end_inset
+
+, no se cubren los polos norte y sur.
+ Sean ahora
+\begin_inset Formula $(\hat{x},\hat{y},\hat{z})\in\mathbb{S}^{2}\setminus\{\mathsf{N},\mathsf{S}\}$
+\end_inset
+
+,
+\begin_inset Formula $z:=\arg\tanh(-\hat{z})$
+\end_inset
+
+ (que existe porque
+\begin_inset Formula $\hat{z}\in(-1,1)$
+\end_inset
+
+),
+\begin_inset Formula $x:=\hat{x}\cosh^{2}z$
+\end_inset
+
+ e
+\begin_inset Formula $y:=\hat{y}\cosh^{2}z$
+\end_inset
+
+, es claro que
+\begin_inset Formula $N(x,y,z)=(\hat{x},\hat{y},\hat{z})$
+\end_inset
+
+.
+ Ahora bien,
+\begin_inset Formula
+\begin{multline*}
+x^{2}+y^{2}=(\hat{x}^{2}+\hat{y}^{2})\cosh^{4}z=(1-\hat{z}^{2})\cosh^{4}z=\left(1-\tanh^{2}z\right)\cosh^{4}z=\\
+=\frac{\cosh^{2}z-\sinh^{2}z}{\cosh^{2}z}\cosh^{4}z=\frac{\cosh^{4}z}{\cosh^{2}z}=\cosh^{2}z,
+\end{multline*}
+
+\end_inset
+
+luego
+\begin_inset Formula $(x,y,z)\in C$
+\end_inset
+
+ y
+\begin_inset Formula $N(x,y,z)$
+\end_inset
+
+ cubre
+\begin_inset Formula $\mathbb{S}^{2}\setminus\{\mathsf{N},\mathsf{S}\}$
+\end_inset
+
+.
+\end_layout
+
+\end_deeper
+\begin_layout Standard
+Para
+\begin_inset Formula $p\in\mathbb{S}^{2}$
+\end_inset
+
+ es
+\begin_inset Formula $T_{N(p)}\mathbb{S}^{2}=T_{p}\mathbb{S}^{2}$
+\end_inset
+
+, pues
+\begin_inset Formula $N(p)=\pm p$
+\end_inset
+
+ y
+\begin_inset Formula $T_{-p}\mathbb{S}^{2}=\langle N(-p)\rangle^{\bot}=\langle p\rangle^{\bot}=\langle N(p)\rangle^{\bot}=T_{p}\mathbb{S}^{2}$
+\end_inset
+
+.
+\end_layout
+
+\begin_layout Standard
+Sea
+\begin_inset Formula $S$
+\end_inset
+
+ una superficie regular orientada por
+\begin_inset Formula $N$
+\end_inset
+
+, llamamos
+\series bold
+operador forma
+\series default
+ o
+\series bold
+endomorfismo de Weingarten
+\series default
+ en
+\begin_inset Formula $p\in S$
+\end_inset
+
+ a
+\begin_inset Formula $A_{p}:=-dN_{p}:T_{p}S\to T_{p}S$
+\end_inset
+
+.
+ En efecto, como
+\begin_inset Formula $N:S\to\mathbb{S}^{2}$
+\end_inset
+
+,
+\begin_inset Formula $dN_{p}:T_{p}S\to T_{N(p)}\mathbb{S}^{2}$
+\end_inset
+
+, pero como la normal en
+\begin_inset Formula $\mathbb{S}^{2}$
+\end_inset
+
+ es
+\begin_inset Formula $1_{\mathbb{S}^{2}}$
+\end_inset
+
+,
+\begin_inset Formula $T_{p'}\mathbb{S}^{2}=\langle p'\rangle^{\bot}$
+\end_inset
+
+ para todo
+\begin_inset Formula $p'\in\mathbb{S}^{2}$
+\end_inset
+
+ y en particular
+\begin_inset Formula $T_{N(p)}\mathbb{S}^{2}=\langle N(p)\rangle^{\bot}=T_{p}S$
+\end_inset
+
+.
+\end_layout
+
+\begin_layout Standard
+\begin_inset Formula $A_{p}$
+\end_inset
+
+ es
+\series bold
+autoadjunto
+\series default
+, es decir,
+\begin_inset Formula $\langle A_{p}v,w\rangle=\langle v,A_{p}w\rangle$
+\end_inset
+
+.
+
+\series bold
+Demostración:
+\series default
+ Por linealidad, basta demostrarlo para una base de
+\begin_inset Formula $T_{p}S$
+\end_inset
+
+.
+ Sean
+\begin_inset Formula $(U,X)$
+\end_inset
+
+ una parametrización de
+\begin_inset Formula $S$
+\end_inset
+
+ en
+\begin_inset Formula $p$
+\end_inset
+
+ y
+\begin_inset Formula $q:=(u_{0},v_{0}):=X^{-1}(p)$
+\end_inset
+
+, tomamos la base
+\begin_inset Formula $(X_{u}(q),X_{v}(q))$
+\end_inset
+
+ y queremos ver que
+\begin_inset Formula $\langle dN_{p}(X_{u}(q)),X_{v}(q)\rangle=\langle X_{u}(q),dN_{p}(X_{v}(q))\rangle$
+\end_inset
+
+.
+ Sea entonces
+\begin_inset Formula $\alpha(u):=X(u_{0}+u,v_{0})$
+\end_inset
+
+,
+\begin_inset Formula $\alpha(0)=p$
+\end_inset
+
+ y
+\begin_inset Formula $\alpha'(0)=X_{u}(q)$
+\end_inset
+
+, luego
+\begin_inset Formula $dN_{p}(X_{u}(q))=\frac{\partial(N\circ\alpha)}{\partial u}(0)=\frac{\partial(N\circ X)}{\partial u}(u_{0},v_{0})=N_{u}(u_{0},v_{0})$
+\end_inset
+
+.
+ Análogamente
+\begin_inset Formula $dN_{p}(X_{v}(q))=N_{v}(u_{0},v_{0})$
+\end_inset
+
+, por lo que queda ver que
+\begin_inset Formula $\langle N_{u},X_{v}\rangle(q)=\langle N_{v},X_{u}\rangle(q)$
+\end_inset
+
+.
+ Sabemos que
+\begin_inset Formula $\langle N,X_{u}\rangle=\langle N,X_{v}\rangle=0$
+\end_inset
+
+, y derivando,
+\begin_inset Formula $\langle N_{v},X_{u}\rangle+\langle N,X_{uv}\rangle=\langle N_{u},X_{v}\rangle+\langle N,X_{vu}\rangle=0$
+\end_inset
+
+, pero
+\begin_inset Formula $X_{uv}=X_{vu}$
+\end_inset
+
+.
+\end_layout
+
+\begin_layout Standard
+Ejemplos:
+\end_layout
+
+\begin_layout Enumerate
+Para un plano,
+\begin_inset Formula $A_{p}\equiv0$
+\end_inset
+
+.
+\end_layout
+
+\begin_deeper
+\begin_layout Standard
+\begin_inset Formula $N$
+\end_inset
+
+ es fijo, luego
+\begin_inset Formula $-dN_{p}\equiv0$
+\end_inset
+
+.
+\end_layout
+
+\end_deeper
+\begin_layout Enumerate
+Para
+\begin_inset Formula $\mathbb{S}^{2}(r)$
+\end_inset
+
+ orientada con
+\begin_inset Formula $N(p)=\pm\frac{1}{r}p$
+\end_inset
+
+,
+\begin_inset Formula $A_{p}=\mp\frac{1}{r}1_{T_{p}\mathbb{S}^{2}(r)}$
+\end_inset
+
+.
+\end_layout
+
+\begin_layout Enumerate
+Para el cilindro
+\begin_inset Formula $X(\mathbb{R}^{2})$
+\end_inset
+
+ con
+\begin_inset Formula $X(u,v):=(r\cos u,r\sin u,v)$
+\end_inset
+
+, si
+\begin_inset Formula $p\in C$
+\end_inset
+
+ y
+\begin_inset Formula $q\in X^{-1}(p)$
+\end_inset
+
+,
+\begin_inset Formula $A_{p}=\text{diag}(-\frac{1}{r},0)$
+\end_inset
+
+ respecto a la base
+\begin_inset Formula $(X_{u}(q),X_{v}(q))$
+\end_inset
+
+.
+\end_layout
+
+\begin_deeper
+\begin_layout Standard
+Si
+\begin_inset Formula $p=:(x,y,z)$
+\end_inset
+
+ y
+\begin_inset Formula $q=:(u,v)$
+\end_inset
+
+,
+\begin_inset Formula $X_{u}(q)=(-r\sin u,r\cos u,0)$
+\end_inset
+
+,
+\begin_inset Formula $X_{v}(q)=(0,0,1)$
+\end_inset
+
+ y, como
+\begin_inset Formula $N(x,y,z)=\frac{1}{r}(x,y,0)=(\cos u,\sin u,0)$
+\end_inset
+
+,
+\begin_inset Formula $N_{u}(q)=(-\sin u,\cos u,0)=-\frac{1}{r}X_{u}$
+\end_inset
+
+ y
+\begin_inset Formula $N_{v}(q)=0$
+\end_inset
+
+.
+\end_layout
+
+\end_deeper
+\begin_layout Enumerate
+Para el
+\series bold
+paraboloide hiperbólico
+\series default
+ o
+\series bold
+silla de montar
+\series default
+,
+\begin_inset Formula $S:=\{y^{2}-x^{2}=z\}=\{(u,v,v^{2}-u^{2})\}_{(u,v)\in\mathbb{R}^{2}}$
+\end_inset
+
+,
+\begin_inset Formula $A_{p}(0)\equiv\text{diag}(-2,2)$
+\end_inset
+
+ respecto a la base
+\begin_inset Formula $(X_{u}(0),X_{v}(0))$
+\end_inset
+
+.
+\end_layout
+
+\begin_deeper
+\begin_layout Standard
+\begin_inset Formula $S$
+\end_inset
+
+ es una superficie porque es el grafo de
+\begin_inset Formula $f:\mathbb{R}^{2}\to\mathbb{R}$
+\end_inset
+
+ dada por
+\begin_inset Formula $f(u,v):=v^{2}-u^{2}$
+\end_inset
+
+.
+ Entonces
+\begin_inset Formula
+\[
+N(u,v)=\frac{(-f_{u},-f_{v},1)}{\sqrt{1+f_{u}^{2}+f_{v}^{2}}}=\frac{(2u,-2v,1)}{\sqrt{1+4u^{2}+4v^{2}}},
+\]
+
+\end_inset
+
+luego
+\begin_inset Formula
+\begin{align*}
+N_{u}(u,v) & =\frac{(2(1+4u^{2}+4v^{2})-8u^{2},8uv,-4u)}{(1+4u^{2}+4v^{2})^{3/2}}=\frac{(2(1+4v^{2}),8uv,-4u)}{(1+4u^{2}+4v^{2})^{3/2}},\\
+N_{v}(u,v) & =\frac{(-8uv,-2(1+4u^{2}+4v^{2})+8v^{2},-4v)}{(1+4u^{2}+4v^{2})^{3/2}}=\frac{(-8uv,-2(1+4u^{2}),-4v)}{(1+4u^{2}+4v^{2})^{3/2}},
+\end{align*}
+
+\end_inset
+
+y en particular
+\begin_inset Formula $N_{u}(0)=(2,0,0)$
+\end_inset
+
+ y
+\begin_inset Formula $N_{v}(0)=(0,-2,0)$
+\end_inset
+
+, pero
+\begin_inset Formula $X_{u}(0)=(1,0,0)$
+\end_inset
+
+ y
+\begin_inset Formula $X_{v}(0)=(0,1,0)$
+\end_inset
+
+, luego
+\begin_inset Formula $N_{u}(0)=2X_{u}(0)$
+\end_inset
+
+ y
+\begin_inset Formula $N_{v}(0)=2X_{v}(0)$
+\end_inset
+
+.
+\end_layout
+
+\end_deeper
+\begin_layout Standard
+El operador forma
+\begin_inset Formula $A_{p}$
+\end_inset
+
+ lleva asociada unívocamente una forma bilineal simétrica
+\begin_inset Formula $\sigma_{p}:T_{p}S\times T_{p}S\to\mathbb{R}$
+\end_inset
+
+ dada por
+\begin_inset Formula $\sigma_{p}(v,w):=\langle A_{p}v,w\rangle$
+\end_inset
+
+, así como una forma cuadrática
+\begin_inset Formula ${\cal II}_{p}:T_{p}S\to\mathbb{R}$
+\end_inset
+
+ dada por
+\begin_inset Formula ${\cal II}_{p}(v):=\sigma_{p}(v,v)=\langle A_{p}v,v\rangle$
+\end_inset
+
+.
+
+\begin_inset Formula ${\cal II}_{p}$
+\end_inset
+
+ es la
+\series bold
+segunda forma fundamental
+\series default
+ de
+\begin_inset Formula $S$
+\end_inset
+
+ en
+\begin_inset Formula $p$
+\end_inset
+
+.
+\end_layout
+
+\begin_layout Standard
+Las tres formas dan la misma información usando la
+\series bold
+identidad de polarización:
+\series default
+
+\begin_inset Formula
+\[
+\sigma_{p}(v,w)=\frac{1}{2}\left({\cal II}_{p}(v+w)-{\cal II}_{p}(v)-{\cal II}_{p}(w)\right).
+\]
+
+\end_inset
+
+
+\end_layout
+
+\begin_layout Section
+Curvas geodésica y normal
+\end_layout
+
+\begin_layout Standard
+Sean
+\begin_inset Formula $S$
+\end_inset
+
+ una superficie regular y
+\begin_inset Formula $V:\mathbb{R}\to T_{p}S$
+\end_inset
+
+ diferenciable, llamamos
+\series bold
+derivada covariante
+\series default
+ a
+\begin_inset Formula
+\[
+\frac{DV}{dt}(t):=\pi_{T_{p}S}V'(t),
+\]
+
+\end_inset
+
+la proyección de
+\begin_inset Formula $V'(t)$
+\end_inset
+
+ en
+\begin_inset Formula $T_{p}S$
+\end_inset
+
+.
+ Propiedades: Sean
+\begin_inset Formula $V,W:\mathbb{R}\to T_{p}S$
+\end_inset
+
+ y
+\begin_inset Formula $f:I\subseteq\mathbb{R}\to\mathbb{R}$
+\end_inset
+
+ diferenciables, siendo
+\begin_inset Formula $I$
+\end_inset
+
+ un intervalo:
+\end_layout
+
+\begin_layout Enumerate
+\begin_inset Formula $\frac{D(fV)}{dt}=f'V+f\frac{DV}{dt}$
+\end_inset
+
+.
+\end_layout
+
+\begin_deeper
+\begin_layout Standard
+Si
+\begin_inset Formula $\pi:=\pi_{T_{p}S}$
+\end_inset
+
+,
+\begin_inset Formula $\frac{D(fV)}{dt}=\pi((fV)')=\pi(fV'+f'V)=f\pi V'+f'\pi V=f\frac{DV}{dt}+f'V$
+\end_inset
+
+.
+\end_layout
+
+\end_deeper
+\begin_layout Enumerate
+\begin_inset Formula $\frac{D(V+W)}{dt}=\frac{DV}{dt}+\frac{DW}{dt}$
+\end_inset
+
+.
+\end_layout
+
+\begin_deeper
+\begin_layout Standard
+\begin_inset Formula $\frac{D(V+W)}{dt}=\pi((V+W)')=\pi V'+\pi W'=\frac{DV}{dt}+\frac{DW}{dt}$
+\end_inset
+
+.
+\end_layout
+
+\end_deeper
+\begin_layout Enumerate
+\begin_inset Formula $\frac{d}{dt}\langle V,W\rangle=\langle\frac{DV}{dt}W\rangle+\langle V,\frac{DW}{dt}\rangle$
+\end_inset
+
+.
+\end_layout
+
+\begin_deeper
+\begin_layout Standard
+\begin_inset Formula $\frac{d}{dt}\langle V,W\rangle=\langle\frac{dV}{dt},W\rangle+\langle V,\frac{dW}{dt}\rangle$
+\end_inset
+
+, pero dada una base ortonormal
+\begin_inset Formula $(v_{1},v_{2},v_{3})$
+\end_inset
+
+ con
+\begin_inset Formula $T_{p}S=\text{span}\{v_{1},v_{2}\}$
+\end_inset
+
+, si
+\begin_inset Formula $\frac{dV}{dt}(t)=\sum_{i}x_{i}v_{i}$
+\end_inset
+
+ y
+\begin_inset Formula $W(t)=\sum_{i}y_{i}v_{i}$
+\end_inset
+
+,
+\begin_inset Formula $\langle\frac{dV}{dt}(t),W(t)\rangle=\sum_{i=1}^{3}x_{i}y_{i}\overset{y_{3}=0}{=}x_{1}y_{1}+x_{2}y_{2}=\langle\pi_{T_{p}S}\frac{dV}{dt}(t),W(t)\rangle=\langle\frac{DV}{dt}(t),W(t)\rangle$
+\end_inset
+
+, y análogamente para
+\begin_inset Formula $\langle V,\frac{dW}{dt}\rangle$
+\end_inset
+
+, luego
+\begin_inset Formula $\frac{d}{dt}\langle V,W\rangle=\langle\frac{DV}{dt},W\rangle+\langle V,\frac{dW}{dt}\rangle$
+\end_inset
+
+.
+\end_layout
+
+\end_deeper
+\begin_layout Standard
+Sean
+\begin_inset Formula $S$
+\end_inset
+
+ una superficie regular orientada por
+\begin_inset Formula $N$
+\end_inset
+
+ y
+\begin_inset Formula $\alpha:I\to S$
+\end_inset
+
+ una curva, entonces
+\begin_inset Formula $\alpha'(t)\in T_{\alpha(t)}S$
+\end_inset
+
+ para
+\begin_inset Formula $t\in I$
+\end_inset
+
+, pero en general
+\begin_inset Formula $\alpha''(t)\notin T_{\alpha(t)}S$
+\end_inset
+
+, aunque se escribe de forma única como la suma de una
+\series bold
+aceleración tangencial
+\series default
+ o
+\series bold
+intrínseca
+\series default
+
+\begin_inset Formula $\alpha''(t)^{\top}\in T_{\alpha(t)}S$
+\end_inset
+
+ y una
+\series bold
+aceleración normal
+\series default
+ o
+\series bold
+extrínseca
+\series default
+
+\begin_inset Formula $\alpha''(t)^{\bot}\in\text{span}\{N(\alpha(t))\}$
+\end_inset
+
+.
+ Como
+\begin_inset Formula $\alpha''(t)^{\top}=\frac{D\alpha'}{dt}$
+\end_inset
+
+,
+\begin_inset Formula
+\[
+\alpha''(t)=\frac{D\alpha'}{dt}(t)+\langle\alpha''(t),N(\alpha(t))\rangle N(\alpha(t)).
+\]
+
+\end_inset
+
+
+\end_layout
+
+\begin_layout Standard
+Sea
+\begin_inset Formula $\alpha:I\to S$
+\end_inset
+
+ una curva parametrizada por longitud de arco, el
+\series bold
+triedro de Darboux
+\series default
+ es la base ortonormal positivamente orientada
+\begin_inset Formula $(\alpha'(s),J\alpha'(s):=\alpha'(s)\wedge N(\alpha(s)),N(\alpha(s))\rangle$
+\end_inset
+
+.
+ Entonces
+\begin_inset Formula $\frac{D\alpha'}{ds}(s)=\kappa_{g}(s)J\alpha'(s)$
+\end_inset
+
+, donde
+\begin_inset Formula $\kappa_{g}:=\langle\alpha'',J\alpha'\rangle:I\to\mathbb{R}$
+\end_inset
+
+, es la
+\series bold
+curvatura geodésica
+\series default
+ de
+\begin_inset Formula $\alpha$
+\end_inset
+
+, cuyo signo depende de
+\begin_inset Formula $N$
+\end_inset
+
+.
+ En efecto,
+\begin_inset Formula
+\begin{multline*}
+\langle\frac{D\alpha'}{ds}(s),\alpha'(s)\rangle=\langle\alpha''(s)-\langle\alpha''(s),N(\alpha(s))\rangle N(\alpha(s)),\alpha'(s)\rangle=\\
+=\langle\alpha''(s),\alpha'(s)\rangle-\langle\alpha''(s),N(\alpha(s))\rangle\langle N(\alpha(s)),\alpha'(s)\rangle=0,
+\end{multline*}
+
+\end_inset
+
+y
+\begin_inset Formula $\kappa_{g}(s)=\langle\frac{D\alpha'}{ds}(s),J\alpha'(s)\rangle=\langle\alpha''(s),J\alpha'(s)\rangle$
+\end_inset
+
+, pero
+\begin_inset Formula $J\alpha'(s)$
+\end_inset
+
+ puede ser un vector o su opuesto según lo sea
+\begin_inset Formula $N$
+\end_inset
+
+.
+\end_layout
+
+\begin_layout Standard
+Dada una curva
+\begin_inset Formula $\alpha:I\to S$
+\end_inset
+
+,
+\begin_inset Formula ${\cal II}_{\alpha(t)}(\alpha'(t))=\langle\alpha''(t),N(\alpha(t))\rangle$
+\end_inset
+
+.
+ En efecto, como
+\begin_inset Formula $\alpha'(t)\in T_{\alpha(t)}S$
+\end_inset
+
+ para cada
+\begin_inset Formula $t$
+\end_inset
+
+,
+\begin_inset Formula $\langle\alpha'(t),N(\alpha(t))\rangle=0$
+\end_inset
+
+ y, derivando,
+\begin_inset Formula $\langle\alpha''(t),N(\alpha(t))\rangle+\langle\alpha'(t),(N\circ\alpha)'(t)\rangle=0$
+\end_inset
+
+, pero
+\begin_inset Formula $(N\circ\alpha)'(t)=dN_{\alpha(t)}(\alpha'(t))$
+\end_inset
+
+, luego
+\begin_inset Formula $\langle\alpha''(t),N(\alpha(t))\rangle=-\langle\alpha'(t),dN_{\alpha(t)}(\alpha'(t))\rangle=\langle\alpha'(t),A_{\alpha(t)}\alpha'(t)\rangle={\cal II}_{\alpha(t)}(\alpha'(t))$
+\end_inset
+
+.
+
+\end_layout
+
+\begin_layout Standard
+Entonces, dados
+\begin_inset Formula $p\in S$
+\end_inset
+
+ y
+\begin_inset Formula $v\in T_{p}S$
+\end_inset
+
+ unitario, llamamos
+\series bold
+curvatura normal
+\series default
+ de
+\begin_inset Formula $S$
+\end_inset
+
+ en
+\begin_inset Formula $p$
+\end_inset
+
+ en la dirección de
+\begin_inset Formula $v$
+\end_inset
+
+ a
+\begin_inset Formula $\kappa_{n}(v,p):={\cal II}_{p}(v)=\langle\alpha''(0),N(p)\rangle$
+\end_inset
+
+, siendo
+\begin_inset Formula $\alpha:(-\delta,\delta)\to S$
+\end_inset
+
+ una curva con
+\begin_inset Formula $\alpha(0)=p$
+\end_inset
+
+ y
+\begin_inset Formula $\alpha'(0)=v$
+\end_inset
+
+.
+\end_layout
+
+\begin_layout Standard
+Ejemplos:
+\end_layout
+
+\begin_layout Enumerate
+Un plano tiene curvatura normal 0 en todo punto y dirección.
+\end_layout
+
+\begin_deeper
+\begin_layout Standard
+Como
+\begin_inset Formula $A_{p}=0$
+\end_inset
+
+,
+\begin_inset Formula $\kappa_{n}(v,p)={\cal II}_{p}(v)=\langle A_{p}v,v\rangle=0$
+\end_inset
+
+.
+\end_layout
+
+\end_deeper
+\begin_layout Enumerate
+\begin_inset Formula $\mathbb{S}^{2}(r)$
+\end_inset
+
+ tiene curvatura normal constante
+\begin_inset Formula $-\frac{1}{r}$
+\end_inset
+
+.
+\end_layout
+
+\begin_deeper
+\begin_layout Standard
+Como
+\begin_inset Formula $N(p)=\frac{1}{r}p$
+\end_inset
+
+,
+\begin_inset Formula $\kappa_{n}(v,p)=\langle A_{p}v,v\rangle=\langle-\frac{1}{r}v,v\rangle=-\frac{1}{r}|v|^{2}=-\frac{1}{r}$
+\end_inset
+
+.
+\end_layout
+
+\end_deeper
+\begin_layout Standard
+Dados
+\begin_inset Formula $p\in S$
+\end_inset
+
+,
+\begin_inset Formula $v\in T_{p}S$
+\end_inset
+
+ unitario y
+\begin_inset Formula $\Pi_{v}:=\text{span}\{v,N(p)\}$
+\end_inset
+
+, llamamos
+\series bold
+sección normal
+\series default
+
+\begin_inset Formula $C_{v}$
+\end_inset
+
+ a la curva regular plana resultante de intersecar
+\begin_inset Formula $S$
+\end_inset
+
+ con
+\begin_inset Formula $\Pi_{v}$
+\end_inset
+
+.
+ Sea entonces
+\begin_inset Formula $\alpha:I\to S$
+\end_inset
+
+ una parametrización por arco de
+\begin_inset Formula $C_{v}$
+\end_inset
+
+ con
+\begin_inset Formula $\alpha(0)=p$
+\end_inset
+
+ y
+\begin_inset Formula $\alpha'(0)=v$
+\end_inset
+
+, entonces
+\begin_inset Formula $\kappa_{n}(v,p)=\kappa(0)$
+\end_inset
+
+, siendo
+\begin_inset Formula $\kappa$
+\end_inset
+
+ la curvatura de
+\begin_inset Formula $\alpha$
+\end_inset
+
+ como curva plana.
+ En efecto, como
+\begin_inset Formula $v\in T_{p}S$
+\end_inset
+
+,
+\begin_inset Formula $v\bot N(p)$
+\end_inset
+
+ y el vector normal es
+\begin_inset Formula $\mathbf{n}=J_{\Pi_{v}}v=\pm N(p)$
+\end_inset
+
+, y como todavía no hemos orientado el plano podemos tomar
+\begin_inset Formula $\mathbf{n}=N(p)$
+\end_inset
+
+, pero entonces
+\begin_inset Formula $\kappa_{n}(v,p)=\langle\alpha''(0),N(p)\rangle=\langle\kappa(0)\mathbf{n}(0),N(p)\rangle=\kappa(0)$
+\end_inset
+
+.
+\end_layout
+
+\begin_layout Standard
+Si
+\begin_inset Formula $\alpha:I\to S$
+\end_inset
+
+ es una curva parametrizada por arco,
+\begin_inset Formula $\alpha''(s)=\kappa_{g}(s)J\alpha'(s)+\kappa_{n}(s)N(\alpha(s))$
+\end_inset
+
+, siendo
+\begin_inset Formula $\kappa_{n}(s):=\kappa_{n}(\alpha'(s),\alpha(s))=\langle\alpha''(s),N(\alpha(s))\rangle$
+\end_inset
+
+, luego
+\begin_inset Formula
+\[
+\kappa(s)^{2}=\kappa_{g}(s)^{2}+\kappa_{n}(s)^{2}.
+\]
+
+\end_inset
+
+
+\end_layout
+
+\begin_layout Section
+Curvaturas principales
+\end_layout
+
+\begin_layout Standard
+\begin_inset ERT
+status open
+
+\begin_layout Plain Layout
+
+
+\backslash
+sremember{AAlG}
+\end_layout
+
+\end_inset
+
+
+\end_layout
+
+\begin_layout Standard
+Toda matriz simétrica real
+\begin_inset Formula $A\in{\cal M}_{m}(\mathbb{R})$
+\end_inset
+
+ admite una matriz ortogonal
+\begin_inset Formula $P$
+\end_inset
+
+ tal que
+\begin_inset Formula $P^{-1}AP=P^{t}AP$
+\end_inset
+
+ es diagonal.
+\end_layout
+
+\begin_layout Standard
+\begin_inset ERT
+status open
+
+\begin_layout Plain Layout
+
+
+\backslash
+eremember
+\end_layout
+
+\end_inset
+
+
+\end_layout
+
+\begin_layout Standard
+Dados una superficie regular
+\begin_inset Formula $S$
+\end_inset
+
+ orientada y
+\begin_inset Formula $p\in S$
+\end_inset
+
+, existe una base ortonormal
+\begin_inset Formula $(e_{1},e_{2})$
+\end_inset
+
+ en la que
+\begin_inset Formula $A_{p}$
+\end_inset
+
+ es diagonal, pues
+\begin_inset Formula $A_{p}$
+\end_inset
+
+ es simétrica.
+ Si
+\begin_inset Formula $\kappa_{1}(p)$
+\end_inset
+
+ y
+\begin_inset Formula $\kappa_{2}(p)$
+\end_inset
+
+ son los valores propios asociados respectivamente a
+\begin_inset Formula $e_{1}$
+\end_inset
+
+ y
+\begin_inset Formula $e_{2}$
+\end_inset
+
+, podemos suponer que
+\begin_inset Formula $\kappa_{1}(p)\leq\kappa_{2}(p)$
+\end_inset
+
+, y llamamos
+\series bold
+curvaturas principales
+\series default
+ de
+\begin_inset Formula $S$
+\end_inset
+
+ en
+\begin_inset Formula $p$
+\end_inset
+
+ a
+\begin_inset Formula $\kappa_{1}(p)$
+\end_inset
+
+ y
+\begin_inset Formula $\kappa_{2}(p)$
+\end_inset
+
+ y
+\series bold
+direcciones principales
+\series default
+ a
+\begin_inset Formula $e_{1}$
+\end_inset
+
+ y
+\begin_inset Formula $e_{2}$
+\end_inset
+
+, o a todos los vectores unitarios de
+\begin_inset Formula $T_{p}S$
+\end_inset
+
+ si
+\begin_inset Formula $\kappa_{1}(p)=\kappa_{2}(p)$
+\end_inset
+
+, pues en tal caso todos los vectores no nulos son propios al ser
+\begin_inset Formula $A_{p}$
+\end_inset
+
+ una homotecia.
+ Se tiene
+\begin_inset Formula $\kappa_{1}(p)=\kappa_{n}(e_{1},p)$
+\end_inset
+
+ y
+\begin_inset Formula $\kappa_{2}(p)=\kappa_{n}(e_{2},p)$
+\end_inset
+
+, pues
+\begin_inset Formula $\kappa_{n}(e_{i},p)=\langle A_{p}e_{i},e_{i}\rangle=\langle\kappa_{i}(p)e_{i},e_{i}\rangle=\kappa_{i}(p)$
+\end_inset
+
+.
+\end_layout
+
+\begin_layout Standard
+Ejemplos:
+\end_layout
+
+\begin_layout Enumerate
+Todas las direcciones del plano y la esfera son principales.
+\end_layout
+
+\begin_deeper
+\begin_layout Standard
+Como
+\begin_inset Formula $\kappa_{n}$
+\end_inset
+
+ es constante,
+\begin_inset Formula $\kappa_{1}(p)=\kappa_{2}(p)$
+\end_inset
+
+.
+\end_layout
+
+\end_deeper
+\begin_layout Enumerate
+El cilindro
+\begin_inset Formula $\{x^{2}+y^{2}=r^{2}\}$
+\end_inset
+
+ tiene como curvaturas principales
+\begin_inset Formula $-\frac{1}{r}$
+\end_inset
+
+ y 0.
+\end_layout
+
+\begin_deeper
+\begin_layout Standard
+Sean
+\begin_inset Formula $C:=\{x^{2}+y^{2}=r^{2}\}=\{X(u,v):=(r\cos u,r\sin u,v)\}_{u,v\in\mathbb{R}}$
+\end_inset
+
+,
+\begin_inset Formula $p=(x,y,z)\in C$
+\end_inset
+
+ y la orientación
+\begin_inset Formula $N(p):=\frac{1}{r}(x,y,0)$
+\end_inset
+
+, entonces
+\begin_inset Formula $X_{u}=(-r\sin u,r\cos u,0)$
+\end_inset
+
+,
+\begin_inset Formula $X_{v}=e_{3}$
+\end_inset
+
+ y
+\begin_inset Formula $N(u,v)=(\cos u,\sin u,0)$
+\end_inset
+
+, luego
+\begin_inset Formula $A_{p}=-(-\sin u,\cos u,0)=-\frac{1}{r}X_{u}$
+\end_inset
+
+ y por tanto
+\begin_inset Formula $A_{p}\equiv\text{diag}(-\frac{1}{r},0)$
+\end_inset
+
+ con la base
+\begin_inset Formula $(X_{u},X_{v})$
+\end_inset
+
+ de
+\begin_inset Formula $T_{p}S$
+\end_inset
+
+.
+\end_layout
+
+\end_deeper
+\begin_layout Enumerate
+La silla de montar tiene curvaturas principales
+\begin_inset Formula $-2$
+\end_inset
+
+ y 2 en el origen.
+\end_layout
+
+\begin_deeper
+\begin_layout Standard
+\begin_inset Formula $A_{p}\equiv\text{diag}(-2,2)$
+\end_inset
+
+.
+\end_layout
+
+\end_deeper
+\begin_layout Standard
+Una
+\series bold
+línea de curvatura
+\series default
+ en una superficie regular orientada
+\begin_inset Formula $S$
+\end_inset
+
+ es una curva
+\begin_inset Formula $\alpha:I\to S$
+\end_inset
+
+ tal que
+\begin_inset Formula $\alpha'(t)$
+\end_inset
+
+ es una dirección principal de
+\begin_inset Formula $\alpha(t)$
+\end_inset
+
+ para todo
+\begin_inset Formula $t\in I$
+\end_inset
+
+.
+ Si las curvaturas principales son distintas en todo punto de un abierto
+
+\begin_inset Formula $V\subseteq S$
+\end_inset
+
+, por cada
+\begin_inset Formula $p\in V$
+\end_inset
+
+ pasan dos únicas líneas de curvatura y estas se cortan de forma ortogonal.
+\end_layout
+
+\begin_layout Standard
+
+\series bold
+Fórmula de Euler:
+\series default
+ Sean
+\begin_inset Formula $S$
+\end_inset
+
+ una superficie regular orientada,
+\begin_inset Formula $p\in S$
+\end_inset
+
+,
+\begin_inset Formula $\kappa_{1}(p)\leq\kappa_{2}(p)$
+\end_inset
+
+ las curvaturas principales de
+\begin_inset Formula $S$
+\end_inset
+
+ en
+\begin_inset Formula $p$
+\end_inset
+
+,
+\begin_inset Formula $e_{1}$
+\end_inset
+
+ y
+\begin_inset Formula $e_{2}$
+\end_inset
+
+ las respectivas direcciones principales,
+\begin_inset Formula $v\in T_{p}S$
+\end_inset
+
+ y
+\begin_inset Formula $\theta$
+\end_inset
+
+ tal que
+\begin_inset Formula $\cos\theta=\langle e_{1},v\rangle$
+\end_inset
+
+, entonces
+\begin_inset Formula $\kappa_{n}(v,p)=\kappa_{1}(p)\cos^{2}\theta+\kappa_{2}(p)\sin^{2}\theta$
+\end_inset
+
+.
+ En efecto, sea
+\begin_inset Formula $v=:\cos\omega e_{1}+\sin\omega e_{2}$
+\end_inset
+
+,
+\begin_inset Formula $\kappa_{n}(v,p)=\langle A_{p}v,v\rangle=\langle\kappa_{1}(p)\cos\omega e_{1}+\kappa_{2}(p)\cos\omega e_{2},\cos\omega e_{1}+\sin\omega e_{2}\rangle=\kappa_{1}(p)\cos^{2}\omega+\kappa_{2}(p)\sin^{2}\omega$
+\end_inset
+
+, y aunque
+\begin_inset Formula $\omega=\pm\theta+2k\pi$
+\end_inset
+
+ para algún
+\begin_inset Formula $k\in\mathbb{Z}$
+\end_inset
+
+, el coseno y por tanto el cuadrado del seno coinciden.
+\end_layout
+
+\begin_layout Standard
+Con esto,
+\begin_inset Formula $\kappa_{1}(p)=\min\{\kappa_{n}(v,p)\}_{|v|=1}$
+\end_inset
+
+ y
+\begin_inset Formula $\kappa_{2}(p)=\max\{\kappa_{n}(v,p)\}_{|v|=1}$
+\end_inset
+
+, pues por la fórmula, si
+\begin_inset Formula $|v|=1$
+\end_inset
+
+,
+\begin_inset Formula $\kappa_{n}(v,p)=\kappa_{1}(p)(1-\sin^{2}\theta)+\kappa_{2}(p)\sin^{2}\theta$
+\end_inset
+
+ para algún
+\begin_inset Formula $\theta$
+\end_inset
+
+.
+ Llamamos
+\series bold
+curvatura mínima
+\series default
+ a
+\begin_inset Formula $\kappa_{1}(p)$
+\end_inset
+
+ y
+\series bold
+curvatura máxima
+\series default
+ a
+\begin_inset Formula $\kappa_{2}(p)$
+\end_inset
+
+.
+ La
+\series bold
+curvatura de Gauss
+\series default
+ de
+\begin_inset Formula $S$
+\end_inset
+
+ en
+\begin_inset Formula $p\in S$
+\end_inset
+
+ es
+\begin_inset Formula $K(p):=\det A_{p}=\kappa_{1}(p)\kappa_{2}(p)$
+\end_inset
+
+, y la
+\series bold
+curvatura media
+\series default
+ es
+\begin_inset Formula $H(p):=\frac{1}{2}\text{tr}A_{p}=\frac{1}{2}(\kappa_{1}(p)+\kappa_{2}(p))$
+\end_inset
+
+.
+\end_layout
+
+\begin_layout Standard
+Las curvaturas máxima, mínima y media cambian de signo al cambiar de orientación.
+ La curvatura de Gauss no, pues es el producto de dos curvaturas que cambian
+ de signo a la vez.
+\end_layout
+
+\begin_layout Standard
+Sea
+\begin_inset Formula $S$
+\end_inset
+
+ una superficie regular,
+\begin_inset Formula $p\in S$
+\end_inset
+
+ es
+\series bold
+elíptico
+\series default
+ si
+\begin_inset Formula $K(p)>0$
+\end_inset
+
+,
+\series bold
+hiperbólico
+\series default
+ si
+\begin_inset Formula $K(p)<0$
+\end_inset
+
+,
+\series bold
+parabólico
+\series default
+ si
+\begin_inset Formula $K(p)=0$
+\end_inset
+
+ pero
+\begin_inset Formula $A_{p}\not\equiv0$
+\end_inset
+
+ y
+\series bold
+llano
+\series default
+ o
+\series bold
+plano
+\series default
+ si
+\begin_inset Formula $A_{p}\equiv0$
+\end_inset
+
+.
+ Ejemplos:
+\end_layout
+
+\begin_layout Enumerate
+Los puntos de un plano son planos.
+\end_layout
+
+\begin_layout Enumerate
+Los puntos de una esfera son elípticos.
+\end_layout
+
+\begin_deeper
+\begin_layout Standard
+Si
+\begin_inset Formula $r$
+\end_inset
+
+ es el radio,
+\begin_inset Formula $K(p)=(-\frac{1}{r})^{2}=\frac{1}{r^{2}}>0$
+\end_inset
+
+.
+\end_layout
+
+\end_deeper
+\begin_layout Enumerate
+El origen en la silla de montar es hiperbólico.
+\end_layout
+
+\begin_deeper
+\begin_layout Standard
+\begin_inset Formula $A_{p}\equiv\text{diag}(-2,2)$
+\end_inset
+
+ respecto de cierta base, luego
+\begin_inset Formula $K(p)=-4$
+\end_inset
+
+.
+\end_layout
+
+\end_deeper
+\begin_layout Enumerate
+Los puntos de un cilindro son parabólicos.
+\end_layout
+
+\begin_deeper
+\begin_layout Standard
+Si
+\begin_inset Formula $r$
+\end_inset
+
+ es el radio,
+\begin_inset Formula $A_{p}\equiv\text{diag}(-\frac{1}{r},0)$
+\end_inset
+
+.
+\end_layout
+
+\end_deeper
+\begin_layout Enumerate
+En
+\begin_inset Formula $\{z=(x^{2}+y^{2})^{2}\}$
+\end_inset
+
+, el origen es un punto plano.
+\begin_inset Note Comment
+status open
+
+\begin_layout Plain Layout
+La superficie es el grafo
+\begin_inset Formula $S:=\{X(u,v):=(u,v,(u^{2}+v^{2})^{2}\}_{u,v\in\mathbb{R}}$
+\end_inset
+
+, de modo que
+\begin_inset Formula $X_{u}=(1,0,2(u^{2}+v^{2})u)$
+\end_inset
+
+,
+\begin_inset Formula $X_{v}=(0,1,2(u^{2}+v^{2})v)$
+\end_inset
+
+,
+\begin_inset Formula $N=\frac{(-4(u^{2}+v^{2})u,-4(u^{2}+v^{2})v,1)}{\sqrt{16(u^{2}+v^{2})^{2}+1}}$
+\end_inset
+
+,
+\begin_inset Formula $N_{u}=\frac{(-4(3u^{2}+v^{2})(16(u^{2}+v^{2})^{2}+1)+256(u^{2}+v^{2})^{2}u^{2},-8uv(16(u^{2}+v^{2})^{2}+1)+256(u^{2}+v^{2})^{2}uv,64(u^{2}+v^{2})u)}{(16(u^{2}+v^{2})^{2}+1)^{3/2}}$
+\end_inset
+
+ y entonces
+\begin_inset Formula $N_{u}(0,0)=(0,0,0)$
+\end_inset
+
+ y, por simetría,
+\begin_inset Formula $N_{v}(0,0)=(0,0,0)$
+\end_inset
+
+, por lo que
+\begin_inset Formula $A_{p}\equiv0$
+\end_inset
+
+.
+\end_layout
+
+\end_inset
+
+
+\end_layout
+
+\begin_layout Standard
+En una superficie regular
+\begin_inset Formula $S$
+\end_inset
+
+ orientada,
+\begin_inset Formula $p\in S$
+\end_inset
+
+ es un
+\series bold
+punto umbilical
+\series default
+ si
+\begin_inset Formula $\kappa_{1}(p)=\kappa_{2}(p)$
+\end_inset
+
+.
+
+\begin_inset Formula $S$
+\end_inset
+
+ es
+\series bold
+totalmente umbilical
+\series default
+ si todos sus puntos son umbilicales.
+ Así, el plano y la esfera son totalmente umbilicales.
+\end_layout
+
+\begin_layout Standard
+Como
+\series bold
+teorema
+\series default
+, toda superficie regular, orientable con orientación
+\begin_inset Formula ${\cal C}^{2}$
+\end_inset
+
+, conexa y totalmente umbilical es un trozo de esfera o plano.
+\end_layout
+
+\begin_layout Standard
+
+\series bold
+Demostración:
+\series default
+ Sea
+\begin_inset Formula $S$
+\end_inset
+
+ la superficie y
+\begin_inset Formula $N$
+\end_inset
+
+ una orientación de
+\begin_inset Formula $S$
+\end_inset
+
+, para
+\begin_inset Formula $p\in S$
+\end_inset
+
+ es
+\begin_inset Formula $H(p)=\kappa_{1}(p)=\kappa_{2}(p)$
+\end_inset
+
+, luego
+\begin_inset Formula $A_{p}\equiv\text{diag}(H(p),H(p))$
+\end_inset
+
+ y
+\begin_inset Formula $A_{p}=H(p)1_{T_{p}S}$
+\end_inset
+
+.
+
+\begin_inset Formula $H:S\to\mathbb{R}$
+\end_inset
+
+ es diferenciable, y queremos ver que es constante.
+ Sean
+\begin_inset Formula $p\in S$
+\end_inset
+
+,
+\begin_inset Formula $(U,X)$
+\end_inset
+
+ una parametrización de
+\begin_inset Formula $S$
+\end_inset
+
+ en
+\begin_inset Formula $p$
+\end_inset
+
+,
+\begin_inset Formula $q:=(u_{0},v_{0}):=X^{-1}(p)$
+\end_inset
+
+ y
+\begin_inset Formula $\alpha(u):=X(u_{0}+u,v_{0})$
+\end_inset
+
+, como
+\begin_inset Formula $\alpha(0)=p$
+\end_inset
+
+ y
+\begin_inset Formula $\alpha'(0)=q$
+\end_inset
+
+,
+\begin_inset Formula $dH_{p}(X_{u}(q))=\frac{d(H\circ\alpha)}{dt}(0)=\frac{d}{dt}(H(X(u_{0}+u,v_{0})))(0)=(H\circ X)_{u}(q)$
+\end_inset
+
+, y por simetría
+\begin_inset Formula $dH_{p}(X_{v}(q))=\frac{\partial(H\circ X)}{\partial v}(q)$
+\end_inset
+
+.
+
+\end_layout
+
+\begin_layout Standard
+Como
+\begin_inset Formula $A_{p}=H(p)1_{T_{p}S}$
+\end_inset
+
+,
+\begin_inset Formula $(H\circ X)(q)X_{u}(q)=H(p)X_{u}(q)=A_{p}(X_{u}(q))=-dN_{p}(X_{u}(q))=-(N\circ X)(q)$
+\end_inset
+
+, y como esto es cierto para todo
+\begin_inset Formula $q\in U$
+\end_inset
+
+,
+\begin_inset Formula $(N\circ X)_{u}=-(H\circ X)X_{u}$
+\end_inset
+
+, y por simetría
+\begin_inset Formula $(N\circ X)_{v}=-(H\circ X)X_{v}$
+\end_inset
+
+.
+ Derivando,
+\begin_inset Formula $(N\circ X)_{uv}=-(H\circ X)_{v}X_{u}-(H\circ X)X_{uv}$
+\end_inset
+
+ y
+\begin_inset Formula $(N\circ X)_{vu}=-(H\circ X)_{u}X_{v}-(H\circ X)X_{vu}$
+\end_inset
+
+, y como las derivadas cruzadas coinciden,
+\begin_inset Formula $(H\circ X)_{v}X_{u}=(H\circ X)_{u}X_{v}$
+\end_inset
+
+.
+ Como
+\begin_inset Formula $(X_{u}(q),X_{v}(q))$
+\end_inset
+
+ es una base en cada
+\begin_inset Formula $q\in U$
+\end_inset
+
+, necesariamente
+\begin_inset Formula $(H\circ X)_{u},(H\circ X)_{v}\equiv0$
+\end_inset
+
+, luego
+\begin_inset Formula $dH_{p}(X_{u}(q)),dH_{p}(X_{v}(q))=0$
+\end_inset
+
+ y al ser
+\begin_inset Formula $S$
+\end_inset
+
+ conexa,
+\begin_inset Formula $H\equiv c$
+\end_inset
+
+ para algún
+\begin_inset Formula $c\in\mathbb{R}$
+\end_inset
+
+.
+\end_layout
+
+\begin_layout Standard
+Si
+\begin_inset Formula $c=0$
+\end_inset
+
+,
+\begin_inset Formula $H\equiv0$
+\end_inset
+
+ y
+\begin_inset Formula $dN_{p}=-A_{p}\equiv0$
+\end_inset
+
+, luego
+\begin_inset Formula $N$
+\end_inset
+
+ es constante en algún
+\begin_inset Formula $a\in\mathbb{R}^{3}$
+\end_inset
+
+.
+ Sean ahora
+\begin_inset Formula $\phi(p):=\langle p,a\rangle$
+\end_inset
+
+,
+\begin_inset Formula $p\in S$
+\end_inset
+
+,
+\begin_inset Formula $v\in T_{p}S$
+\end_inset
+
+ y
+\begin_inset Formula $\alpha:I\to S$
+\end_inset
+
+ una curva con
+\begin_inset Formula $\alpha(0)=p$
+\end_inset
+
+ y
+\begin_inset Formula $\alpha'(0)=v$
+\end_inset
+
+, entonces
+\begin_inset Formula $d\phi_{p}(v)=\frac{d(\phi\circ\alpha)}{dt}(0)=\frac{d}{dt}(\langle\alpha(t),a\rangle)(0)=\langle\alpha'(0),a\rangle=\langle v,a\rangle\overset{a=N(p)}{=}0$
+\end_inset
+
+, luego
+\begin_inset Formula $\phi$
+\end_inset
+
+ es constante en algún
+\begin_inset Formula $d\in\mathbb{R}$
+\end_inset
+
+ y
+\begin_inset Formula $S\subseteq\{\langle p,a\rangle=d\}=\{\langle p-p',a\rangle=0\}$
+\end_inset
+
+ para algún
+\begin_inset Formula $p'$
+\end_inset
+
+ con
+\begin_inset Formula $\langle p',a\rangle=d$
+\end_inset
+
+, pero
+\begin_inset Formula $\{\langle p-p',a\rangle=0\}=p'+\langle a\rangle^{\bot}$
+\end_inset
+
+, luego
+\begin_inset Formula $S$
+\end_inset
+
+ esta contenido en un plano.
+\end_layout
+
+\begin_layout Standard
+Si
+\begin_inset Formula $c\neq0$
+\end_inset
+
+, sea
+\begin_inset Formula $\phi:S\to\mathbb{R}^{3}$
+\end_inset
+
+ la función diferenciable dada por
+\begin_inset Formula $\phi(p):=p+\frac{1}{c}N(p)$
+\end_inset
+
+, para
+\begin_inset Formula $p\in S$
+\end_inset
+
+,
+\begin_inset Formula $v\in T_{p}S$
+\end_inset
+
+ y una curva
+\begin_inset Formula $\alpha:I\to S$
+\end_inset
+
+ con
+\begin_inset Formula $\alpha(0)=p$
+\end_inset
+
+ y
+\begin_inset Formula $\alpha'(0)=v$
+\end_inset
+
+, entonces
+\begin_inset Formula
+\begin{align*}
+d\phi_{p}(v) & =\frac{d(\phi\circ\alpha)}{dt}(0)=\frac{d}{dt}\left(\alpha(t)+\frac{1}{c}N(\alpha(t))\right)(0)=\alpha'(0)+\frac{1}{c}(N\circ\alpha)'(0)\\
+ & =v+\frac{1}{c}dN_{p}(v)=v-\frac{1}{c}A_{p}v=v-\frac{1}{c}cv=0,
+\end{align*}
+
+\end_inset
+
+luego
+\begin_inset Formula $\phi$
+\end_inset
+
+ es constante en algún
+\begin_inset Formula $a\in\mathbb{R}^{3}$
+\end_inset
+
+.
+ Pero para
+\begin_inset Formula $p\in S$
+\end_inset
+
+,
+\begin_inset Formula $p-a=-\frac{1}{c}N(p)$
+\end_inset
+
+, luego
+\begin_inset Formula $\Vert p-a\Vert^{2}=\frac{1}{c^{2}}$
+\end_inset
+
+ y todos los puntos de
+\begin_inset Formula $S$
+\end_inset
+
+ están en la esfera
+\begin_inset Formula $a+\mathbb{S}^{2}(\frac{1}{c^{2}})$
+\end_inset
+
+.
+\end_layout
+
+\begin_layout Section
+Parámetros de la segunda forma fundamental
+\end_layout
+
+\begin_layout Standard
+Sean
+\begin_inset Formula $S$
+\end_inset
+
+ una superficie regular orientada por
+\begin_inset Formula $N$
+\end_inset
+
+ y
+\begin_inset Formula $(U,X)$
+\end_inset
+
+ una parametrización de
+\begin_inset Formula $S$
+\end_inset
+
+, los
+\series bold
+coeficientes de la segunda forma fundamental
+\series default
+ son
+\begin_inset Formula $e,f,g:U\to\mathbb{R}$
+\end_inset
+
+ dados por
+\begin_inset Formula
+\begin{align*}
+e & :=\langle N,X_{uu}\rangle=-\langle N_{u},X_{u}\rangle,\\
+f & :=\langle N,X_{uv}\rangle=-\langle N_{v},X_{u}\rangle=-\langle N_{u},X_{v}\rangle,\\
+g & :=\langle N,X_{vv}\rangle=-\langle N_{v},X_{v}\rangle,
+\end{align*}
+
+\end_inset
+
+y para
+\begin_inset Formula $p\in S$
+\end_inset
+
+ y
+\begin_inset Formula $v\in T_{p}S$
+\end_inset
+
+, si
+\begin_inset Formula $q:=X^{-1}(p)$
+\end_inset
+
+ y
+\begin_inset Formula $v=v_{1}X_{u}(q)+v_{2}X_{v}(q)$
+\end_inset
+
+, entonces
+\begin_inset Formula
+\[
+{\cal II}_{p}(v):=v_{1}^{2}e+2v_{1}v_{2}f+v_{2}^{2}g.
+\]
+
+\end_inset
+
+
+\series bold
+Demostración:
+\series default
+
+\begin_inset Formula $\langle N,X_{u}\rangle=\langle N,X_{v}\rangle=0$
+\end_inset
+
+, y derivando se obtiene
+\begin_inset Formula $\langle N_{u},X_{u}\rangle+\langle N,X_{uu}\rangle=0$
+\end_inset
+
+,
+\begin_inset Formula $\langle N_{v},X_{u}\rangle+\langle N,X_{uv}\rangle=0$
+\end_inset
+
+,
+\begin_inset Formula $\langle N_{u},X_{v}\rangle+\langle N,X_{vu}\rangle=0$
+\end_inset
+
+ y
+\begin_inset Formula $\langle N_{v},X_{v}\rangle+\langle N,X_{vv}\rangle=0$
+\end_inset
+
+, lo que nos da las igualdades en los coeficientes teniendo en cuenta que
+
+\begin_inset Formula $\langle N,X_{uv}\rangle=\langle N,X_{vu}\rangle$
+\end_inset
+
+.
+\end_layout
+
+\begin_layout Standard
+Sea
+\begin_inset Formula $q:=X^{-1}(p)=(u(0),v(0))$
+\end_inset
+
+, por linealidad
+\begin_inset Formula $dN_{p}(v)=v_{1}dN_{p}(X_{u}(q))+v_{2}dN_{p}(X_{v}(q))=v_{1}N_{u}(q)+v_{2}N_{v}(q)$
+\end_inset
+
+.
+ Entonces, evaluando las derivadas de
+\begin_inset Formula $X$
+\end_inset
+
+ y
+\begin_inset Formula $N$
+\end_inset
+
+ en
+\begin_inset Formula $q$
+\end_inset
+
+, d
+\begin_inset Formula
+\begin{align*}
+{\cal II}_{p}(v) & =\langle A_{p}v,v\rangle=-\langle dN_{p}(v),v\rangle=-\langle v_{1}N_{u}+v_{2}N_{v},v_{1}X_{u}+v_{2}X_{v}\rangle\\
+ & =v_{1}^{2}\langle N_{u},X_{u}\rangle-v_{1}v_{2}\langle N_{u},X_{v}\rangle-v_{1}v_{2}\langle N_{v},X_{u}\rangle-v_{2}^{2}\langle N_{v},X_{v}\rangle\\
+ & =v_{1}^{2}e+v_{1}v_{2}f+v_{2}^{2}g.
+\end{align*}
+
+\end_inset
+
+
+\end_layout
+
+\begin_layout Standard
+Si
+\begin_inset Formula
+\[
+dN_{p}\equiv\begin{pmatrix}a_{11} & a_{12}\\
+a_{21} & a_{22}
+\end{pmatrix}
+\]
+
+\end_inset
+
+respecto de la base
+\begin_inset Formula $(X_{u},X_{v})$
+\end_inset
+
+, entonces
+\begin_inset Formula
+\begin{align*}
+\begin{pmatrix}-e & -f\\
+-f & -g
+\end{pmatrix} & =\begin{pmatrix}a_{11} & a_{21}\\
+a_{12} & a_{22}
+\end{pmatrix}\begin{pmatrix}E & F\\
+F & G
+\end{pmatrix}
+\end{align*}
+
+\end_inset
+
+ y tenemos las
+\series bold
+fórmulas de Weingarten:
+\series default
+
+\begin_inset Formula
+\begin{align*}
+a_{11} & =\frac{fF-eG}{EG-F^{2}}, & a_{12} & =\frac{gF-fG}{EG-F^{2}}, & a_{21} & =\frac{eF-fE}{EG-F^{2}}, & a_{22} & =\frac{fF-gE}{EG-F^{2}}.
+\end{align*}
+
+\end_inset
+
+
+\end_layout
+
+\begin_layout Standard
+
+\series bold
+Demostración:
+\series default
+
+\begin_inset Formula
+\begin{align*}
+-e & =\langle N_{u},X_{u}\rangle=\langle a_{11}X_{u}+a_{21}X_{v},X_{u}\rangle=a_{11}E+a_{21}F,\\
+-f & =\langle N_{v},X_{u}\rangle=\langle a_{12}X_{u}+a_{22}X_{v},X_{u}\rangle=a_{12}E+a_{22}F\\
+ & =\langle N_{u},X_{v}\rangle=\langle a_{11}X_{u}+a_{21}X_{v},X_{v}\rangle=a_{11}F+a_{21}G,\\
+-g & =\langle N_{v},X_{v}\rangle=\langle a_{12}X_{u}+a_{22}X_{v},X_{v}\rangle=a_{12}F+a_{22}G.
+\end{align*}
+
+\end_inset
+
+Despejando,
+\begin_inset Formula
+\[
+\begin{pmatrix}a_{11} & a_{12}\\
+a_{12} & a_{22}
+\end{pmatrix}=-\begin{pmatrix}e & f\\
+f & g
+\end{pmatrix}\begin{pmatrix}E & F\\
+F & G
+\end{pmatrix}^{-1}=-\frac{1}{EG-F^{2}}\begin{pmatrix}e & f\\
+f & g
+\end{pmatrix}\begin{pmatrix}G & -F\\
+-F & E
+\end{pmatrix},
+\]
+
+\end_inset
+
+lo que nos da las fórmulas de Weingarten.
+\end_layout
+
+\begin_layout Standard
+De aquí,
+\end_layout
+
+\begin_layout Standard
+\begin_inset Formula
+\begin{align*}
+K(p) & =\frac{eg-f^{2}}{EG-F^{2}}, & H(p) & =\frac{1}{2}\frac{eG+gE-2fF}{EG-F^{2}},
+\end{align*}
+
+\end_inset
+
+y las curvaturas principales son
+\begin_inset Formula
+\[
+\kappa_{i}(p)=H(p)\pm\sqrt{H(p)^{2}-K(p)}.
+\]
+
+\end_inset
+
+
+\end_layout
+
+\begin_layout Standard
+
+\series bold
+Demostración:
+\series default
+
+\begin_inset Formula
+\begin{align*}
+K(p) & =\det A_{p}=\det(dN_{p})=\frac{1}{EG-F^{2}}((fF-eG)(fF-gE)-(gF-fG)(eF-fE))\\
+ & =\frac{1}{(EG-F^{2})^{2}}(f^{2}F^{2}-fgEF-efFG+egEG-egF^{2}+fgEF+efFG-f^{2}EG)\\
+ & =\frac{f^{2}F^{2}+egEG-egF^{2}-f^{2}EG}{(EG-F^{2})^{2}}=\frac{(EG-F^{2})(eg-f^{2})}{(EG-F^{2})^{2}},\\
+H(p) & =\frac{1}{2}\text{tr}A_{p}=-\frac{1}{2}\text{tr}(dN_{p})=-\frac{1}{2}\frac{2fF-eG-gE}{EG-F^{2}}.
+\end{align*}
+
+\end_inset
+
+Un
+\begin_inset Formula $\lambda\in\mathbb{R}$
+\end_inset
+
+ es un valor propio de
+\begin_inset Formula $A_{p}$
+\end_inset
+
+ si y sólo si
+\begin_inset Formula
+\begin{align*}
+0 & =\det(\lambda1_{T_{p}S}-A_{p})=\det(dN_{p}+\lambda1_{T_{p}S})=\begin{vmatrix}a_{11}+\lambda & a_{12}\\
+a_{21} & a_{22}+\lambda
+\end{vmatrix}\\
+ & =\lambda^{2}+(a_{11}+a_{22})\lambda+(a_{11}a_{22}-a_{12}a_{21})=\lambda^{2}-2H(p)+K(p),
+\end{align*}
+
+\end_inset
+
+si y sólo si
+\begin_inset Formula $\lambda=H(p)\pm\sqrt{H(p)^{2}-K(p)}$
+\end_inset
+
+.
+\end_layout
+
+\begin_layout Section
+Isometrías locales
+\end_layout
+
+\begin_layout Standard
+Una
+\series bold
+isometría local
+\series default
+ entre dos superficies regulares
+\begin_inset Formula $S_{1}$
+\end_inset
+
+ y
+\begin_inset Formula $S_{2}$
+\end_inset
+
+ es una función diferenciable
+\begin_inset Formula $\phi:S_{1}\to S_{2}$
+\end_inset
+
+ tal que para
+\begin_inset Formula $p\in S_{1}$
+\end_inset
+
+ y
+\begin_inset Formula $v,w\in T_{p}S_{1}$
+\end_inset
+
+ es
+\begin_inset Formula $\langle d\phi_{p}(v),d\phi_{p}(w)\rangle=\langle v,w\rangle$
+\end_inset
+
+, es decir, tal que
+\begin_inset Formula $d\phi_{p}:T_{p}S_{1}\to T_{\phi(p)}S_{2}$
+\end_inset
+
+ es una isometría lineal.
+ Entonces
+\begin_inset Formula $\phi$
+\end_inset
+
+ conserva ángulos, longitudes y áreas de
+\begin_inset Formula $S_{1}$
+\end_inset
+
+ a
+\begin_inset Formula $S_{2}$
+\end_inset
+
+, pero su existencia no implica que exista una isometría lineal
+\begin_inset Formula $\psi:S_{2}\to S_{1}$
+\end_inset
+
+.
+\end_layout
+
+\begin_layout Standard
+Una
+\series bold
+isometría
+\series default
+ (
+\series bold
+global
+\series default
+) entre
+\begin_inset Formula $S_{1}$
+\end_inset
+
+ y
+\begin_inset Formula $S_{2}$
+\end_inset
+
+ es una isometría local que es un difeomorfismo.
+
+\begin_inset Formula $S_{1}$
+\end_inset
+
+ y
+\begin_inset Formula $S_{2}$
+\end_inset
+
+ son (
+\series bold
+globalmente
+\series default
+)
+\series bold
+isométricas
+\series default
+ si existe una isometría global entre ellas, y son
+\series bold
+localmente isométricas
+\series default
+ si para cada
+\begin_inset Formula $p\in S_{1}$
+\end_inset
+
+ hay un entorno
+\begin_inset Formula $V\subseteq S_{1}$
+\end_inset
+
+ de
+\begin_inset Formula $p$
+\end_inset
+
+ y una isometría global
+\begin_inset Formula $\phi:V\to\phi(V)\subseteq S_{2}$
+\end_inset
+
+ y para cada
+\begin_inset Formula $q\in S_{2}$
+\end_inset
+
+ hay un entorno
+\begin_inset Formula $W\subseteq S_{2}$
+\end_inset
+
+ de
+\begin_inset Formula $p$
+\end_inset
+
+ y una isometría global
+\begin_inset Formula $\psi:W\to\phi(W)\subseteq S_{1}$
+\end_inset
+
+.
+ Si existe una isometría local entre
+\begin_inset Formula $S_{1}$
+\end_inset
+
+ y
+\begin_inset Formula $S_{2}$
+\end_inset
+
+,
+\begin_inset Formula $S_{1}$
+\end_inset
+
+ y
+\begin_inset Formula $S_{2}$
+\end_inset
+
+ son localmente isométricos.
+\end_layout
+
+\begin_layout Standard
+\begin_inset ERT
+status open
+
+\begin_layout Plain Layout
+
+
+\backslash
+sremember{TS}
+\end_layout
+
+\end_inset
+
+
+\end_layout
+
+\begin_layout Standard
+\begin_inset Formula $(\pi_{1}(X,x),*)$
+\end_inset
+
+ es un grupo, llamado
+\series bold
+grupo fundamental
+\series default
+ [...] de
+\begin_inset Formula $X$
+\end_inset
+
+ relativo al
+\series bold
+punto base
+\series default
+
+\begin_inset Formula $x$
+\end_inset
+
+ [...]
+\begin_inset Formula $X$
+\end_inset
+
+ es
+\series bold
+simplemente conexo
+\series default
+ si es conexo por caminos y
+\begin_inset Formula $\pi_{1}(X,x)$
+\end_inset
+
+ es el grupo trivial [...] para todo
+\begin_inset Formula $x\in X$
+\end_inset
+
+.
+ [...] Todo subespacio estrellado de
+\begin_inset Formula $\mathbb{R}^{n}$
+\end_inset
+
+ es simplemente conexo.
+ [...] El grupo fundamental de
+\begin_inset Formula $\mathbb{S}^{1}$
+\end_inset
+
+ es isomorfo a
+\begin_inset Formula $(\mathbb{Z},+)$
+\end_inset
+
+.
+ [...]
+\begin_inset Formula $\pi_{1}(X\times Y,(x,y))\cong\pi_{1}(X,x)\times\pi_{1}(Y,y)$
+\end_inset
+
+.
+\end_layout
+
+\begin_layout Standard
+\begin_inset ERT
+status open
+
+\begin_layout Plain Layout
+
+
+\backslash
+eremember
+\end_layout
+
+\end_inset
+
+
+\end_layout
+
+\begin_layout Standard
+Existe una isometría local entre el plano
+\begin_inset Formula $\Pi:=\{z=0\}$
+\end_inset
+
+ y el cilindro
+\begin_inset Formula $C:=\mathbb{S}^{1}\times\mathbb{R}$
+\end_inset
+
+, pero las superficies no son globalmente isométricas.
+
+\series bold
+Demostración:
+\series default
+ Como el plano es estrellado, su grupo fundamental es el grupo trivial,
+ y como el cilindro es
+\begin_inset Formula $\mathbb{S}^{1}\times\mathbb{R}$
+\end_inset
+
+, su grupo fundamental es
+\begin_inset Formula $\pi_{1}(\mathbb{S}^{1}\times\mathbb{R},e_{1})\cong\pi_{1}(\mathbb{S}_{1},e_{1})\times\pi_{1}(\mathbb{R},0)\cong(\mathbb{Z},+)\times1\cong(\mathbb{Z},+)$
+\end_inset
+
+.
+ Como los grupos fundamentales no son isomorfos,
+\begin_inset Formula $\Pi$
+\end_inset
+
+ y
+\begin_inset Formula $C$
+\end_inset
+
+ no son homeomorfos y por tanto tampoco isométricos.
+ Sea ahora
+\begin_inset Formula $\phi:\Pi\to C$
+\end_inset
+
+ dada por
+\begin_inset Formula $\phi(x,y,0):=(\cos x,\sin x,y)$
+\end_inset
+
+, que es diferenciable.
+ Para
+\begin_inset Formula $p=(x,y,0)\in\Pi$
+\end_inset
+
+,
+\begin_inset Formula $T_{p}S=\Pi$
+\end_inset
+
+, y si
+\begin_inset Formula $v=(v_{1},v_{2},0)\in T_{p}S$
+\end_inset
+
+, sea
+\begin_inset Formula $\alpha:I\to\Pi$
+\end_inset
+
+ dada por
+\begin_inset Formula $\alpha(t):=p+tv$
+\end_inset
+
+,
+\begin_inset Formula
+\[
+d\phi_{p}(v)=\frac{d(\phi\circ\alpha)}{dt}(0)=\frac{d}{dt}(\cos(x+tv_{1}),\sin(x+tv_{1}),y+tv_{2})(0)=(-v_{1}\sin x,v_{1}\cos x,v_{2}).
+\]
+
+\end_inset
+
+Para ver que
+\begin_inset Formula $\phi$
+\end_inset
+
+ conserva el producto escalar, basta ver que conserva módulos, pero
+\begin_inset Formula $|d\phi_{p}(v)|^{2}=v_{1}^{2}+v_{2}^{2}=|v|^{2}$
+\end_inset
+
+.
+\end_layout
+
+\begin_layout Standard
+Como
+\series bold
+teorema
+\series default
+, sea
+\begin_inset Formula $\phi:S_{1}\to S_{2}$
+\end_inset
+
+ una isometría local entre superficies regulares, para todo
+\begin_inset Formula $p\in S_{1}$
+\end_inset
+
+ existen parametrizaciones
+\begin_inset Formula $(U,X)$
+\end_inset
+
+ de
+\begin_inset Formula $S_{1}$
+\end_inset
+
+ en
+\begin_inset Formula $p$
+\end_inset
+
+ y
+\begin_inset Formula $(U,\overline{X})$
+\end_inset
+
+ de
+\begin_inset Formula $S_{2}$
+\end_inset
+
+ en
+\begin_inset Formula $\phi(p)$
+\end_inset
+
+ con los mismos parámetros de la primera forma fundamental.
+
+\series bold
+Demostración:
+\series default
+ Sean
+\begin_inset Formula $(\tilde{U},X)$
+\end_inset
+
+ una parametrización de
+\begin_inset Formula $S_{1}$
+\end_inset
+
+ en
+\begin_inset Formula $p$
+\end_inset
+
+ y
+\begin_inset Formula $\overline{X}:\phi\circ X:\tilde{U}\to S_{2}$
+\end_inset
+
+, como
+\begin_inset Formula $\phi$
+\end_inset
+
+ es un difeomorfismo local, existe un entorno
+\begin_inset Formula $V\subseteq S_{1}$
+\end_inset
+
+ de
+\begin_inset Formula $p$
+\end_inset
+
+ en el que
+\begin_inset Formula $\phi:V\to\phi(V)$
+\end_inset
+
+ es un difeomorfismo, por lo que si
+\begin_inset Formula $U:=X^{-1}(V)\subseteq\tilde{U}$
+\end_inset
+
+, restringiendo
+\begin_inset Formula $\overline{X}$
+\end_inset
+
+ a
+\begin_inset Formula $U$
+\end_inset
+
+,
+\begin_inset Formula $(U,\overline{X})$
+\end_inset
+
+ es una parametrización de
+\begin_inset Formula $S_{2}$
+\end_inset
+
+ en
+\begin_inset Formula $\phi(p)$
+\end_inset
+
+.
+ Entonces, si
+\begin_inset Formula $q:=X^{-1}(p)$
+\end_inset
+
+,
+\begin_inset Formula $d\overline{X}_{q}=d(\phi\circ X)_{q}=d\phi_{p}\circ dX_{q}$
+\end_inset
+
+, luego
+\begin_inset Formula $\overline{X}_{u}(q)=d\phi_{p}(X_{u}(q))$
+\end_inset
+
+ y
+\begin_inset Formula $\overline{X}_{v}(q)=d\phi_{p}(X_{v}(q))$
+\end_inset
+
+.
+ Con esto, como
+\begin_inset Formula $\phi$
+\end_inset
+
+ es una isometría local,
+\begin_inset Formula $\overline{E}=\langle\overline{X}_{u}(q),\overline{X}_{u}(q)\rangle=\langle d\phi_{p}(X_{u}(q)),d\phi(X_{u}(q))\rangle=\langle X_{u}(q),X_{u}(q)\rangle=E$
+\end_inset
+
+, y análogamente
+\begin_inset Formula $\overline{F}=F$
+\end_inset
+
+ y
+\begin_inset Formula $\overline{G}=G$
+\end_inset
+
+.
+\end_layout
+
+\begin_layout Standard
+Como
+\series bold
+teorema
+\series default
+, dadas dos superficies regulares
+\begin_inset Formula $S_{1}$
+\end_inset
+
+ y
+\begin_inset Formula $S_{2}$
+\end_inset
+
+ y dos parametrizaciones
+\begin_inset Formula $(U,X)$
+\end_inset
+
+ de
+\begin_inset Formula $S_{1}$
+\end_inset
+
+ y
+\begin_inset Formula $(U,\overline{X})$
+\end_inset
+
+ de
+\begin_inset Formula $S_{2}$
+\end_inset
+
+ con los mismos parámetros de la primera forma fundamental, entonces
+\begin_inset Formula $\phi:=\overline{X}\circ X^{-1}:X(U)\to\overline{X}(U)$
+\end_inset
+
+ es una isometría.
+
+\series bold
+Demostración:
+\series default
+ Es un difeomorfismo por ser composición de difeomorfismos, y queda ver
+ que conserva productos escalares.
+ Sean
+\begin_inset Formula $q\in U$
+\end_inset
+
+ y
+\begin_inset Formula $p:=X(q)$
+\end_inset
+
+,
+\begin_inset Formula $d\phi_{p}\circ dX_{q}=d(\phi\circ X)_{q}=d\overline{X}_{q}$
+\end_inset
+
+ por la regla de la cadena, por lo que
+\begin_inset Formula $d\phi_{p}(X_{u}(q))=\overline{X}_{u}(q)$
+\end_inset
+
+ y
+\begin_inset Formula $d\phi_{p}(X_{v}(q))=\overline{X}_{v}(q)$
+\end_inset
+
+.
+ Por tanto, en
+\begin_inset Formula $q$
+\end_inset
+
+,
+\begin_inset Formula $\langle d\phi_{p}(X_{u}),d\phi_{p}(X_{u})\rangle=\langle\overline{X}_{u},\overline{X}_{u}\rangle=\overline{E}=E=\langle X_{u},X_{u}\rangle$
+\end_inset
+
+, y de forma análoga
+\begin_inset Formula $\langle d\phi_{p}(X_{u}),d\phi_{p}(X_{v})\rangle=\langle X_{u},X_{v}\rangle$
+\end_inset
+
+ y
+\begin_inset Formula $\langle d\phi_{p}(X_{v}),d\phi_{p}(X_{v})\rangle=\langle X_{v},X_{v}\rangle$
+\end_inset
+
+, pero
+\begin_inset Formula $(X_{u},X_{v})$
+\end_inset
+
+ es una base de
+\begin_inset Formula $T_{p}S$
+\end_inset
+
+, luego
+\begin_inset Formula $d\phi_{p}$
+\end_inset
+
+ conserva productos escalares.
+\end_layout
+
+\begin_layout Section
+
+\lang latin
+Theorema Egregium
+\lang spanish
+ de Gauss
+\end_layout
+
+\begin_layout Standard
+Sean
+\begin_inset Formula $S$
+\end_inset
+
+ una superficie regular orientada por
+\begin_inset Formula $N$
+\end_inset
+
+ y
+\begin_inset Formula $(U,X)$
+\end_inset
+
+ una parametrización de
+\begin_inset Formula $S$
+\end_inset
+
+ con la base
+\begin_inset Formula $(X_{u},X_{v},N)$
+\end_inset
+
+ de
+\begin_inset Formula $\mathbb{R}^{3}$
+\end_inset
+
+ positivamente orientada.
+ Las
+\series bold
+fórmulas de Gauss
+\series default
+ son
+\begin_inset Formula
+\[
+\left\{ \begin{aligned}X_{uu} & =\Gamma_{11}^{1}X_{u}+\Gamma_{11}^{2}X_{v}+eN,\\
+X_{uv} & =\Gamma_{12}^{1}X_{u}+\Gamma_{12}^{2}X_{v}+fN,\\
+X_{vu} & =\Gamma_{21}^{1}X_{u}+\Gamma_{21}^{2}X_{v}+fN,\\
+X_{vv} & =\Gamma_{22}^{1}X_{u}+\Gamma_{22}^{2}X_{v}+gN,
+\end{aligned}
+\right.
+\]
+
+\end_inset
+
+donde los
+\begin_inset Formula $\Gamma_{ij}^{k}$
+\end_inset
+
+ son los
+\series bold
+símbolos de Christoffel
+\series default
+, y se basan en que
+\begin_inset Formula $\langle X_{uu},N\rangle=e$
+\end_inset
+
+,
+\begin_inset Formula $\langle X_{uv},N\rangle=\langle X_{vu},N\rangle=f$
+\end_inset
+
+ y
+\begin_inset Formula $\langle X_{vv},N\rangle=g$
+\end_inset
+
+.
+\end_layout
+
+\begin_layout Standard
+\begin_inset Formula $\Gamma_{12}^{1}=\Gamma_{21}^{1}$
+\end_inset
+
+ y
+\begin_inset Formula $\Gamma_{12}^{2}=\Gamma_{22}^{2}$
+\end_inset
+
+, pues
+\begin_inset Formula $X_{uv}=X_{vu}$
+\end_inset
+
+.
+ Además,
+\begin_inset Formula
+\[
+\begin{pmatrix}\Gamma_{11}^{1} & \Gamma_{12}^{1} & \Gamma_{22}^{1}\\
+\Gamma_{11}^{2} & \Gamma_{12}^{2} & \Gamma_{22}^{2}
+\end{pmatrix}=\frac{1}{EG-F^{2}}\begin{pmatrix}G & -F\\
+-F & E
+\end{pmatrix}\begin{pmatrix}\frac{E_{u}}{2} & \frac{E_{v}}{2} & F_{v}-\frac{G_{u}}{2}\\
+F_{u}-\frac{E_{v}}{2} & \frac{G_{u}}{2} & \frac{G_{v}}{2}
+\end{pmatrix}.
+\]
+
+\end_inset
+
+
+\series bold
+Demostración:
+\series default
+ Multiplicando escalarmente las ecuaciones de Gauss por
+\begin_inset Formula $X_{u}$
+\end_inset
+
+ y
+\begin_inset Formula $X_{v}$
+\end_inset
+
+,
+\begin_inset Formula
+\begin{align*}
+\langle X_{uu},X_{u}\rangle & =\Gamma_{11}^{1}E+\Gamma_{11}^{2}F, & \langle X_{uu},X_{v}\rangle & =\Gamma_{11}^{1}F+\Gamma_{11}^{2}G,\\
+\langle X_{uv},X_{u}\rangle & =\Gamma_{12}^{1}E+\Gamma_{12}^{2}F, & \langle X_{uv},X_{v}\rangle & =\Gamma_{12}^{1}F+\Gamma_{12}^{2}G,\\
+\langle X_{vv},X_{u}\rangle & =\Gamma_{22}^{1}E+\Gamma_{22}^{2}F, & \langle X_{vv},X_{v}\rangle & =\Gamma_{22}^{1}F+\Gamma_{22}^{2}G.
+\end{align*}
+
+\end_inset
+
+Derivando
+\begin_inset Formula $E$
+\end_inset
+
+,
+\begin_inset Formula $F$
+\end_inset
+
+ y
+\begin_inset Formula $G$
+\end_inset
+
+ respecto a
+\begin_inset Formula $u$
+\end_inset
+
+ y
+\begin_inset Formula $v$
+\end_inset
+
+,
+\begin_inset Formula
+\begin{align*}
+E_{u} & =2\langle X_{uu},X_{u}\rangle, & F_{u} & =\langle X_{uu},X_{v}\rangle+\langle X_{u},X_{vu}\rangle, & G_{u} & =2\langle X_{vu},X_{v}\rangle,\\
+E_{v} & =2\langle X_{uv},X_{u}\rangle, & F_{v} & =\langle X_{uv},X_{v}\rangle+\langle X_{u},X_{vv}\rangle, & G_{v} & =2\langle X_{vv},X_{v}\rangle,
+\end{align*}
+
+\end_inset
+
+por lo que
+\begin_inset Formula
+\begin{align*}
+\langle X_{uu},X_{u}\rangle & =\frac{E_{u}}{2}, & \langle X_{uv},X_{u}\rangle & =\frac{E_{v}}{2}, & \langle X_{vv},X_{u}\rangle & =F_{v}-\langle X_{uv},X_{v}\rangle=F_{v}-\frac{G_{u}}{2},\\
+\langle X_{uv},X_{v}\rangle & =\frac{G_{u}}{2}, & \langle X_{vv},X_{v}\rangle & =\frac{G_{v}}{2}, & \langle X_{uu},X_{v}\rangle & =F_{u}-\langle X_{u},X_{vu}\rangle=F_{u}-\frac{E_{v}}{2}.
+\end{align*}
+
+\end_inset
+
+Igualando queda el sistema
+\begin_inset Formula
+\[
+\left\{ \begin{aligned}E\Gamma_{11}^{1}+F\Gamma_{11}^{2} & =\frac{1}{2}E_{u}, & E\Gamma_{12}^{1}+F\Gamma_{12}^{2} & =\frac{1}{2}E_{v}, & E\Gamma_{22}^{1}+F\Gamma_{22}^{2} & =F_{v}-\frac{1}{2}G_{u},\\
+F\Gamma_{11}^{1}+G\Gamma_{11}^{2} & =F_{u}-\frac{1}{2}E_{v}, & F\Gamma_{12}^{1}+G\Gamma_{12}^{2} & =\frac{1}{2}G_{u}, & F\Gamma_{22}^{1}+G\Gamma_{22}^{2} & =\frac{1}{2}G_{v},
+\end{aligned}
+\right.
+\]
+
+\end_inset
+
+que se divide en tres sistemas disjuntos de izquierda a derecha.
+ Para el primero,
+\begin_inset Formula
+\[
+\begin{pmatrix}\Gamma_{11}^{1}\\
+\Gamma_{12}^{2}
+\end{pmatrix}=\begin{pmatrix}E & F\\
+F & G
+\end{pmatrix}^{-1}\begin{pmatrix}\frac{1}{2}E_{u}\\
+F_{u}-\frac{E_{v}}{2}
+\end{pmatrix}=\frac{1}{EG-F^{2}}\begin{pmatrix}G & -F\\
+-F & E
+\end{pmatrix}\begin{pmatrix}\frac{1}{2}E_{u}\\
+F_{u}-\frac{E_{v}}{2}
+\end{pmatrix},
+\]
+
+\end_inset
+
+y para los otros dos es análogo.
+\end_layout
+
+\begin_layout Standard
+La
+\series bold
+ecuación de Gauss
+\series default
+ es
+\begin_inset Formula
+\[
+\Gamma_{11}^{1}\Gamma_{12}^{2}+(\Gamma_{11}^{2})_{v}+\Gamma_{11}^{2}\Gamma_{22}^{2}-\Gamma_{12}^{1}\Gamma_{11}^{2}-(\Gamma_{12}^{2})_{u}-\Gamma_{12}^{2}\Gamma_{12}^{2}=EK,
+\]
+
+\end_inset
+
+la primera
+\series bold
+ecuación de Mainardi-Codazzi
+\series default
+ es
+\begin_inset Formula
+\[
+e\Gamma_{12}^{1}+f(\Gamma_{12}^{2}-\Gamma_{11}^{1})-g\Gamma_{11}^{2}=e_{v}-f_{u}
+\]
+
+\end_inset
+
+y, además,
+\begin_inset Formula
+\begin{align*}
+(\Gamma_{11}^{1})_{v}+\Gamma_{11}^{2}\Gamma_{22}^{1}-(\Gamma_{12}^{1})_{u}-\Gamma_{12}^{2}\Gamma_{12}^{1} & =-FK.
+\end{align*}
+
+\end_inset
+
+
+\series bold
+Demostración:
+\series default
+
+\begin_inset Formula $X_{uuv}=X_{uvu}$
+\end_inset
+
+, y sustituyendo
+\begin_inset Formula $X_{uu}$
+\end_inset
+
+ y
+\begin_inset Formula $X_{vv}$
+\end_inset
+
+ según las fórmulas de Gauss,
+\begin_inset Formula
+\begin{multline*}
+0=X_{uuv}-X_{uvu}=(\Gamma_{11}^{1})_{v}X_{u}+\Gamma_{11}^{1}X_{uv}+(\Gamma_{11}^{2})_{v}X_{v}+\Gamma_{11}^{2}X_{vv}+e_{v}N+eN_{v}-\\
+-(\Gamma_{12}^{1})_{u}X_{u}-\Gamma_{12}^{1}X_{uu}-(\Gamma_{12}^{2})_{u}X_{v}-\Gamma_{12}^{2}X_{vu}-f_{u}N-fN_{u}.
+\end{multline*}
+
+\end_inset
+
+Sustituyendo con las fórmulas de Gauss,
+\begin_inset Formula
+\begin{multline*}
+0=(\Gamma_{11}^{1})_{v}X_{u}+\Gamma_{11}^{1}(\Gamma_{12}^{1}X_{u}+\Gamma_{12}^{2}X_{v}+fN)+(\Gamma_{11}^{2})_{v}X_{v}+\Gamma_{11}^{2}(\Gamma_{22}^{1}X_{u}+\Gamma_{22}^{2}X_{v}+gN)-\\
+-(\Gamma_{12}^{1})_{u}X_{u}-\Gamma_{12}^{1}(\Gamma_{11}^{1}X_{u}+\Gamma_{11}^{2}X_{v}+eN)-(\Gamma_{12}^{2})_{u}X_{v}-\Gamma_{12}^{2}(\Gamma_{12}^{1}X_{u}+\Gamma_{12}^{2}X_{v}+fN)+\\
++e_{v}N+e(a_{12}X_{u}+a_{22}X_{v})-f_{u}N-f(a_{11}X_{u}+a_{21}X_{v})=:A_{1}X_{u}+B_{1}X_{v}+C_{1}N.
+\end{multline*}
+
+\end_inset
+
+Como
+\begin_inset Formula $(X_{u},X_{v},N)$
+\end_inset
+
+ es base de
+\begin_inset Formula $\mathbb{R}^{3}$
+\end_inset
+
+,
+\begin_inset Formula $A_{1},B_{1},C_{1}=0$
+\end_inset
+
+.
+ Como
+\begin_inset Formula $B_{1}=0$
+\end_inset
+
+, usando las fórmulas de Weingarten,
+\begin_inset Formula
+\begin{multline*}
+\Gamma_{11}^{1}\Gamma_{12}^{2}+(\Gamma_{11}^{2})_{v}X_{v}+\Gamma_{11}^{2}\Gamma_{22}^{2}-\Gamma_{12}^{1}\Gamma_{11}^{2}-(\Gamma_{12}^{2})_{u}-\Gamma_{12}^{2}\Gamma_{12}^{2}=fa_{21}-ea_{22}=\\
+=f\frac{eF-fE}{EG-F^{2}}-e\frac{fF-gE}{EG-F^{2}}=\frac{efF-f^{2}E-efF+egE}{EG-F^{2}}=E\frac{eg-f^{2}}{EG-F^{2}}=EK.
+\end{multline*}
+
+\end_inset
+
+
+\begin_inset Formula $C_{1}=0$
+\end_inset
+
+ nos da
+\begin_inset Formula
+\begin{multline*}
+\Gamma_{11}^{1}f+\Gamma_{11}^{2}g-\Gamma_{12}^{1}e-\Gamma_{12}^{1}f+e_{v}-f_{u}=0,
+\end{multline*}
+
+\end_inset
+
+de donde se obtiene directamente la primera ecuación de Mainardi-Codazzi,
+ y
+\begin_inset Formula $A_{1}=0$
+\end_inset
+
+ nos da
+\begin_inset Formula
+\begin{multline*}
+(\Gamma_{11}^{1})_{v}+\Gamma_{11}^{1}\Gamma_{12}^{1}+\Gamma_{11}^{2}\Gamma_{22}^{1}-(\Gamma_{12}^{1})_{u}-\Gamma_{12}^{1}\Gamma_{11}^{1}-\Gamma_{12}^{2}\Gamma_{12}^{1}=(\Gamma_{11}^{1})_{v}+\Gamma_{11}^{2}\Gamma_{22}^{1}-(\Gamma_{12}^{1})_{u}-\Gamma_{12}^{2}\Gamma_{12}^{1}=\\
+=fa_{11}-ea_{12}=f\frac{fF-eG}{EG-F^{2}}-e\frac{gF-fG}{EG-F^{2}}=\frac{f^{2}F-egF}{EG-F^{2}}=-FK.
+\end{multline*}
+
+\end_inset
+
+
+\end_layout
+
+\begin_layout Standard
+La curvatura de Gauss depende solo de la primera forma fundamental, pues
+ como
+\begin_inset Formula $EG-F^{2}>0$
+\end_inset
+
+,
+\begin_inset Formula $E\neq0$
+\end_inset
+
+ y por la ecuación de Gauss
+\begin_inset Formula $K$
+\end_inset
+
+ se puede obtener de
+\begin_inset Formula $E$
+\end_inset
+
+ y los símbolos de Christoffel, que dependen solo de la primera forma fundamenta
+l.
+\end_layout
+
+\begin_layout Standard
+
+\series bold
+\lang latin
+Theorema Egregium
+\lang spanish
+ de Gauss:
+\series default
+ La curvatura de Gauss de una superficie regular es invariante por isometrías
+ locales.
+
+\series bold
+Demostración:
+\series default
+ Sean
+\begin_inset Formula $\phi:S_{1}\to S_{2}$
+\end_inset
+
+ una isometría local entre superficies regulares,
+\begin_inset Formula $p\in S_{1}$
+\end_inset
+
+ y
+\begin_inset Formula $(U,X)$
+\end_inset
+
+ una parametrización de
+\begin_inset Formula $S_{1}$
+\end_inset
+
+ en
+\begin_inset Formula $p$
+\end_inset
+
+ con
+\begin_inset Formula $U$
+\end_inset
+
+ lo suficientemente pequeña para que
+\begin_inset Formula $\phi|_{V:=X(U)}:V\to\phi(V)$
+\end_inset
+
+ sea un difeomorfismo, entonces
+\begin_inset Formula $(U,\overline{X}:=\phi\circ X)$
+\end_inset
+
+ es una parametrización de
+\begin_inset Formula $S_{2}$
+\end_inset
+
+ en
+\begin_inset Formula $\phi(p)$
+\end_inset
+
+.
+ Entonces, como los coeficientes de la primera forma fundamental son los
+ mismos para ambas parametrizaciones y la curvatura de Gauss solo depende
+ de estos, las curvaturas de Gauss coinciden para el mismo punto de
+\begin_inset Formula $U$
+\end_inset
+
+ y en particular
+\begin_inset Formula $K_{1}(p)=K_{2}(\phi(p))$
+\end_inset
+
+, donde
+\begin_inset Formula $K_{1}$
+\end_inset
+
+ y
+\begin_inset Formula $K_{2}$
+\end_inset
+
+ son las curvaturas de Gauss respectivas de
+\begin_inset Formula $S_{1}$
+\end_inset
+
+ y
+\begin_inset Formula $S_{2}$
+\end_inset
+
+.
+\end_layout
+
+\begin_layout Standard
+En general un difeomorfismo local que conserva la curvatura no es una isometría
+ local.
+
+\series bold
+Demostración:
+\series default
+ Sean
+\begin_inset Formula $S_{1}$
+\end_inset
+
+ y
+\begin_inset Formula $S_{2}$
+\end_inset
+
+ parametrizadas por
+\begin_inset Formula $X(u,v):=(u\cos v,u\sin v,\log u)$
+\end_inset
+
+ y
+\begin_inset Formula $\overline{X}(u,v):=(u\cos v,u\sin v,v)$
+\end_inset
+
+, entonces
+\begin_inset Formula
+\begin{align*}
+X_{u} & =(\cos v,\sin v,\tfrac{1}{u}), & \overline{X}_{u} & =(\cos v,\sin v,0),\\
+X_{v} & =(-u\sin v,u\cos v,0), & \overline{X}_{v} & =(-u\sin v,u\cos v,1),\\
+N & =\frac{(-\cos v,-\sin v,u)}{\sqrt{1+u^{2}}}, & \overline{N} & =\frac{(\sin v,-\cos v,u)}{\sqrt{1+u^{2}}},
+\end{align*}
+
+\end_inset
+
+luego
+\begin_inset Formula $N$
+\end_inset
+
+ y
+\begin_inset Formula $\overline{N}$
+\end_inset
+
+ se diferencian en alguna transformación ortogonal.
+ Si
+\begin_inset Formula $\overline{N}=O\circ N$
+\end_inset
+
+ para una transformación ortogonal
+\begin_inset Formula $O$
+\end_inset
+
+, entonces
+\begin_inset Formula $d\overline{N}_{q}=dO_{N(q)}\circ dN_{q}=O\circ dN_{q}$
+\end_inset
+
+, luego
+\begin_inset Formula $d\overline{N}_{q}$
+\end_inset
+
+ y
+\begin_inset Formula $dN_{q}$
+\end_inset
+
+ se diferencian por
+\begin_inset Formula $O$
+\end_inset
+
+ y por tanto tienen igual determinante, que será la curvatura de Gauss.
+ Sin embargo,
+\begin_inset Formula $\phi:=\overline{X}\circ X^{-1}=((x,y,z)\mapsto(x,y,e^{z}))$
+\end_inset
+
+ no es una isometría.
+\end_layout
+
+\begin_layout Standard
+\begin_inset Note Comment
+status open
+
+\begin_layout Plain Layout
+\begin_inset Formula
+\begin{align*}
+a_{11} & =\frac{fF-eG}{EG-F^{2}}, & a_{12} & =\frac{gF-fG}{EG-F^{2}}, & a_{21} & =\frac{eF-fE}{EG-F^{2}}, & a_{22} & =\frac{fF-gE}{EG-F^{2}}.
+\end{align*}
+
+\end_inset
+
+
+\end_layout
+
+\end_inset
+
+
+\end_layout
+
+\begin_layout Standard
+La segunda
+\series bold
+ecuación de Mainardi-Codazzi
+\series default
+ es
+\begin_inset Formula
+\[
+f_{v}-g_{u}=e\Gamma_{22}^{1}+f(\Gamma_{22}^{2}-\Gamma_{12}^{1})-g\Gamma_{12}^{2}.
+\]
+
+\end_inset
+
+
+\series bold
+Demostración:
+\series default
+ Como
+\begin_inset Formula $X_{vvu}=X_{vuv}$
+\end_inset
+
+, aplicando las fórmulas de Gauss,
+\begin_inset Note Comment
+status open
+
+\begin_layout Plain Layout
+
+\lang english
+\begin_inset Formula $gN_{u}$
+\end_inset
+
+ is not Unix.
+\end_layout
+
+\end_inset
+
+
+\begin_inset Formula
+\begin{multline*}
+0=X_{vvu}-X_{vuv}=(\Gamma_{22}^{1})_{u}X_{u}+\Gamma_{22}^{1}X_{uu}+(\Gamma_{22}^{2})_{u}X_{v}+\Gamma_{22}^{2}X_{vu}+g_{u}N+gN_{u}-\\
+-(\Gamma_{21}^{1})_{v}X_{u}-\Gamma_{21}^{1}X_{uv}-(\Gamma_{21}^{2})_{v}X_{v}-\Gamma_{21}^{2}X_{vv}-f_{v}N-fN_{v},
+\end{multline*}
+
+\end_inset
+
+y sustituyendo de nuevo,
+\begin_inset Formula
+\begin{multline*}
+0=(\Gamma_{22}^{1})_{u}X_{u}+\Gamma_{22}^{1}(\Gamma_{11}^{1}X_{u}+\Gamma_{11}^{2}X_{v}+eN)+(\Gamma_{22}^{2})_{u}X_{v}+\Gamma_{22}^{2}(\Gamma_{12}^{2}X_{u}+\Gamma_{12}^{2}X_{v}+fN)-\\
+-(\Gamma_{12}^{1})_{v}X_{u}-\Gamma_{12}^{1}(\Gamma_{12}^{1}X_{u}+\Gamma_{12}^{2}X_{v}+fN)-(\Gamma_{12}^{2})_{v}X_{v}-\Gamma_{12}^{2}(\Gamma_{22}^{1}X_{u}+\Gamma_{22}^{2}X_{v}+gN)+\\
++g_{u}N+g(a_{11}X_{u}+a_{21}X_{v})-f_{v}N-f(a_{12}X_{u}+a_{22}X_{v})=:A_{2}X_{u}+B_{2}X_{v}+C_{2}N.
+\end{multline*}
+
+\end_inset
+
+Como antes,
+\begin_inset Formula $A_{2},B_{2},C_{2}=0$
+\end_inset
+
+, luego como
+\begin_inset Formula $C_{2}=0$
+\end_inset
+
+,
+\begin_inset Formula $e\Gamma_{22}^{1}+f\Gamma_{22}^{2}-f\Gamma_{12}^{1}-g\Gamma_{12}^{2}=f_{v}-g_{u}$
+\end_inset
+
+.
+\end_layout
+
+\begin_layout Standard
+Las
+\series bold
+ecuaciones de compatibilidad
+\series default
+ son la ecuación de Gauss y las dos ecuaciones de Mainardi-Codazzi.
+
+\series bold
+Teorema de Bonnet:
+\series default
+ Sean
+\begin_inset Formula $E,F,G,e,f,g:V\to\mathbb{R}$
+\end_inset
+
+ funciones diferenciables en un abierto
+\begin_inset Formula $V\subseteq\mathbb{R}^{2}$
+\end_inset
+
+ con
+\begin_inset Formula $E>0$
+\end_inset
+
+,
+\begin_inset Formula $G>0$
+\end_inset
+
+,
+\begin_inset Formula $EG-F^{2}>0$
+\end_inset
+
+ y que verifican las ecuaciones de compatibilidad, entonces existen un abierto
+
+\begin_inset Formula $U\subseteq V$
+\end_inset
+
+ y un difeomorfismo
+\begin_inset Formula $X:U\to X(U)\subseteq\mathbb{R}^{3}$
+\end_inset
+
+ tales que
+\begin_inset Formula $(U,X)$
+\end_inset
+
+ es una parametrización de la superficie regular
+\begin_inset Formula $X(U)$
+\end_inset
+
+ en la que los coeficientes de la primera y segunda formas fundamentales
+ son
+\begin_inset Formula $E,F,G$
+\end_inset
+
+ y
+\begin_inset Formula $e,f,g$
+\end_inset
+
+, respectivamente, y si
+\begin_inset Formula $U$
+\end_inset
+
+ es conexo y
+\begin_inset Formula $\overline{X}:U\to\overline{X}(U)$
+\end_inset
+
+ es otro difeomorfismo con los mismos coeficientes de las formas fundamentales
+ primera y segunda, entonces existe un movimiento rígido
+\begin_inset Formula $M$
+\end_inset
+
+ en
+\begin_inset Formula $\mathbb{R}^{3}$
+\end_inset
+
+ tal que
+\begin_inset Formula $\overline{X}=M\circ X$
+\end_inset
+
+.
+\end_layout
+
+\end_body
+\end_document