diff options
Diffstat (limited to 'ggs/n3.lyx')
| -rw-r--r-- | ggs/n3.lyx | 80 | 
1 files changed, 40 insertions, 40 deletions
| @@ -110,7 +110,7 @@ aplicación exponencial  \end_inset  donde  -\begin_inset Formula ${\cal D}_{p}:=\{v\in T_{p}S\mid 1\in I_{v}\}$ +\begin_inset Formula ${\cal D}_{p}\coloneqq \{v\in T_{p}S\mid 1\in I_{v}\}$  \end_inset  . @@ -278,7 +278,7 @@ Como  \end_inset  , sea  -\begin_inset Formula $\alpha(t):=tw$ +\begin_inset Formula $\alpha(t)\coloneqq tw$  \end_inset  , existe  @@ -377,11 +377,11 @@ entorno normal  \end_inset  , sean  -\begin_inset Formula $v_{p}:=\exp_{p_{0}}^{-1}(p)\in{\cal U}$ +\begin_inset Formula $v_{p}\coloneqq \exp_{p_{0}}^{-1}(p)\in{\cal U}$  \end_inset   y el segmento de geodésica  -\begin_inset Formula $\gamma_{p}:=\gamma_{v_{p}}|_{[0,1]}:[0,1]\to V$ +\begin_inset Formula $\gamma_{p}\coloneqq \gamma_{v_{p}}|_{[0,1]}:[0,1]\to V$  \end_inset  , entonces  @@ -487,7 +487,7 @@ Demostración:  \end_inset   dada por  -\begin_inset Formula $\alpha(t):=v+tw=(1+\lambda t)v$ +\begin_inset Formula $\alpha(t)\coloneqq v+tw=(1+\lambda t)v$  \end_inset  , entonces @@ -512,7 +512,7 @@ Para el caso general, sea  \end_inset   dada por  -\begin_inset Formula $\tau(s,t):=s\alpha(t):=s(v+tw)$ +\begin_inset Formula $\tau(s,t)\coloneqq s\alpha(t)\coloneqq s(v+tw)$  \end_inset  , para todo  @@ -591,7 +591,7 @@ Como  .   Proyectando el subrecubrimiento  -\begin_inset Formula $A:=\bigcup_{i=1}^{k}B_{\infty}((s_{i},0),\varepsilon_{s_{i}})$ +\begin_inset Formula $A\coloneqq \bigcup_{i=1}^{k}B_{\infty}((s_{i},0),\varepsilon_{s_{i}})$  \end_inset   en  @@ -608,7 +608,7 @@ Como  .   Sea  -\begin_inset Formula $\varepsilon:=\min\{\varepsilon_{s_{1}},\dots,\varepsilon_{s_{k}},\varepsilon'\}$ +\begin_inset Formula $\varepsilon\coloneqq \min\{\varepsilon_{s_{1}},\dots,\varepsilon_{s_{k}},\varepsilon'\}$  \end_inset  , para  @@ -632,7 +632,7 @@ luego  \begin_layout Standard  Sea ahora  -\begin_inset Formula $\varphi:=\exp_{p}\circ\tau:(-\varepsilon,1+\varepsilon)\times(-\varepsilon,\varepsilon)\to S$ +\begin_inset Formula $\varphi\coloneqq \exp_{p}\circ\tau:(-\varepsilon,1+\varepsilon)\times(-\varepsilon,\varepsilon)\to S$  \end_inset  . @@ -733,7 +733,7 @@ pues  \end_inset   dada por  -\begin_inset Formula $\beta_{s}(t):=\exp_{p}(s\alpha(t))$ +\begin_inset Formula $\beta_{s}(t)\coloneqq \exp_{p}(s\alpha(t))$  \end_inset  ,  @@ -909,7 +909,7 @@ Sean  \end_inset   tal que  -\begin_inset Formula ${\cal D}(0,r):=\{v\in T_{p}S\mid \Vert v\Vert<r\}\subseteq{\cal D}_{p}$ +\begin_inset Formula ${\cal D}(0,r)\coloneqq \{v\in T_{p}S\mid \Vert v\Vert<r\}\subseteq{\cal D}_{p}$  \end_inset  , llamamos  @@ -925,7 +925,7 @@ disco geodésico  \end_inset   a  -\begin_inset Formula $D(p,r):=\exp_{p}({\cal D}(0,r))$ +\begin_inset Formula $D(p,r)\coloneqq \exp_{p}({\cal D}(0,r))$  \end_inset  , y si  @@ -933,7 +933,7 @@ disco geodésico  \end_inset   cumple que  -\begin_inset Formula ${\cal S}(0,r):=\{v\in T_{p}S\mid \Vert v\Vert=r\}\subseteq{\cal D}_{p}$ +\begin_inset Formula ${\cal S}(0,r)\coloneqq \{v\in T_{p}S\mid \Vert v\Vert=r\}\subseteq{\cal D}_{p}$  \end_inset  , llamamos  @@ -949,7 +949,7 @@ circunferencia geodésica  \end_inset   a  -\begin_inset Formula $S(p,r):=\exp_{p}({\cal S}(0,r))$ +\begin_inset Formula $S(p,r)\coloneqq \exp_{p}({\cal S}(0,r))$  \end_inset  . @@ -1042,7 +1042,7 @@ teorema  Demostración:  \series default   Sea  -\begin_inset Formula $v_{p}:=\exp_{p_{0}}^{-1}(p)$ +\begin_inset Formula $v_{p}\coloneqq \exp_{p_{0}}^{-1}(p)$  \end_inset  , entonces @@ -1075,11 +1075,11 @@ Sea  \begin_layout Standard  Sean  -\begin_inset Formula $A:=\alpha^{-1}(\{p_{0}\})$ +\begin_inset Formula $A\coloneqq \alpha^{-1}(\{p_{0}\})$  \end_inset   y  -\begin_inset Formula $t_{0}:=\sup A$ +\begin_inset Formula $t_{0}\coloneqq \sup A$  \end_inset  , existe una sucesión  @@ -1132,7 +1132,7 @@ Sean  \end_inset  , basta demostrar la propiedad para  -\begin_inset Formula $\alpha:=\alpha'$ +\begin_inset Formula $\alpha\coloneqq \alpha'$  \end_inset  . @@ -1148,7 +1148,7 @@ Sean  \end_inset   y  -\begin_inset Formula $\tilde{\alpha}:=\exp_{p_{0}}^{-1}\circ\alpha:[0,1]\to{\cal U}$ +\begin_inset Formula $\tilde{\alpha}\coloneqq \exp_{p_{0}}^{-1}\circ\alpha:[0,1]\to{\cal U}$  \end_inset  , que cumple  @@ -1165,7 +1165,7 @@ Sean  .   Sean entonces  -\begin_inset Formula $r(t):=\Vert\tilde{\alpha}(t)\Vert$ +\begin_inset Formula $r(t)\coloneqq \Vert\tilde{\alpha}(t)\Vert$  \end_inset   y, para  @@ -1173,7 +1173,7 @@ Sean  \end_inset  ,  -\begin_inset Formula $V(t):=\frac{\tilde{\alpha}(t)}{\Vert\tilde{\alpha}(t)\Vert}$ +\begin_inset Formula $V(t)\coloneqq \frac{\tilde{\alpha}(t)}{\Vert\tilde{\alpha}(t)\Vert}$  \end_inset  , de modo que  @@ -1392,7 +1392,7 @@ Finalmente, sea  .   En otro caso, sea  -\begin_inset Formula $r^{*}:=\frac{r+\Vert v_{p}\Vert}{2}$ +\begin_inset Formula $r^{*}\coloneqq \frac{r+\Vert v_{p}\Vert}{2}$  \end_inset  , de modo que  @@ -1400,7 +1400,7 @@ Finalmente, sea  \end_inset  , y si  -\begin_inset Formula $\tilde{\alpha}:=\exp_{p_{0}}^{-1}\circ\alpha$ +\begin_inset Formula $\tilde{\alpha}\coloneqq \exp_{p_{0}}^{-1}\circ\alpha$  \end_inset  , como  @@ -1422,7 +1422,7 @@ Finalmente, sea   es   \begin_inset Formula   \[ -A:=\{t\in(a,b)\mid \Vert\tilde{\alpha}(t)\Vert=r^{*}\}=\{t\in[a,b]\mid \alpha(t)\in S(p_{0},r^{*})\}\neq\emptyset. +A:=\{t\in(a,b)\mid \Vert\tilde{\alpha}(t)\Vert=r^{*}\}=\{t\in[a,b]\mid\alpha(t)\in S(p_{0},r^{*})\}\neq\emptyset.  \]  \end_inset @@ -1436,11 +1436,11 @@ Entonces, como  \end_inset   también lo es y existe  -\begin_inset Formula $t^{*}:=\min A$ +\begin_inset Formula $t^{*}\coloneqq \min A$  \end_inset  , y llamando  -\begin_inset Formula $p^{*}:=\alpha(t^{*})\in S(p_{0},r^{*})$ +\begin_inset Formula $p^{*}\coloneqq \alpha(t^{*})\in S(p_{0},r^{*})$  \end_inset  ,  @@ -1492,7 +1492,7 @@ Sean  \end_inset   y  -\begin_inset Formula $U:=\phi^{-1}({\cal U})$ +\begin_inset Formula $U\coloneqq \phi^{-1}({\cal U})$  \end_inset   es abierto en  @@ -1504,7 +1504,7 @@ Sean  \end_inset   dada por  -\begin_inset Formula $X(u,v):=\exp_{p_{0}}(\phi(u,v))$ +\begin_inset Formula $X(u,v)\coloneqq \exp_{p_{0}}(\phi(u,v))$  \end_inset   es una parametrización llamada  @@ -1626,7 +1626,7 @@ Sean  \end_inset  ,  -\begin_inset Formula $\ell:=\{\lambda e_{1}\}_{\lambda\geq0}$ +\begin_inset Formula $\ell\coloneqq \{\lambda e_{1}\}_{\lambda\geq0}$  \end_inset  ,  @@ -1642,11 +1642,11 @@ Sean  \end_inset -\begin_inset Formula $V_{0}:=\exp_{p_{0}}({\cal U}\setminus\ell)$ +\begin_inset Formula $V_{0}\coloneqq \exp_{p_{0}}({\cal U}\setminus\ell)$  \end_inset   y  -\begin_inset Formula $U_{0}:=\phi^{-1}({\cal U}\setminus\ell)$ +\begin_inset Formula $U_{0}\coloneqq \phi^{-1}({\cal U}\setminus\ell)$  \end_inset  , entonces  @@ -1654,7 +1654,7 @@ Sean  \end_inset   dado por  -\begin_inset Formula $X(r,\theta):=\exp_{p_{0}}(\phi(r,\theta))$ +\begin_inset Formula $X(r,\theta)\coloneqq \exp_{p_{0}}(\phi(r,\theta))$  \end_inset   es una parametrización llamada  @@ -1710,7 +1710,7 @@ teorema  \begin_deeper  \begin_layout Standard  Sea  -\begin_inset Formula $v_{\theta}:=(\cos\theta e_{1}+\sin\theta e_{2})$ +\begin_inset Formula $v_{\theta}\coloneqq (\cos\theta e_{1}+\sin\theta e_{2})$  \end_inset  , de modo que  @@ -1830,7 +1830,7 @@ Para un  \begin_deeper  \begin_layout Standard  Sean  -\begin_inset Formula $\overline{X}(u,v):=\exp_{p_{0}}(ue_{1}+ve_{2})$ +\begin_inset Formula $\overline{X}(u,v)\coloneqq \exp_{p_{0}}(ue_{1}+ve_{2})$  \end_inset   la parametrización normal centrada en  @@ -1846,7 +1846,7 @@ Sean  \end_inset   los parámetros de su primera forma fundamental, como  -\begin_inset Formula $X(r,\theta)=\overline{X}(r_{\theta}):=\overline{X}(r\cos\theta,r\sin\theta)$ +\begin_inset Formula $X(r,\theta)=\overline{X}(r_{\theta})\coloneqq \overline{X}(r\cos\theta,r\sin\theta)$  \end_inset  , se tiene @@ -1989,7 +1989,7 @@ Fijado  \end_inset  , sea  -\begin_inset Formula $u(r):=\sqrt{G(r,\theta)}$ +\begin_inset Formula $u(r)\coloneqq \sqrt{G(r,\theta)}$  \end_inset  , de modo que  @@ -2212,11 +2212,11 @@ Demostración:  \end_inset  ,  -\begin_inset Formula $V_{1}:=D(p_{1},\varepsilon)$ +\begin_inset Formula $V_{1}\coloneqq D(p_{1},\varepsilon)$  \end_inset   y  -\begin_inset Formula $V_{2}:=D(p_{2},\varepsilon)$ +\begin_inset Formula $V_{2}\coloneqq D(p_{2},\varepsilon)$  \end_inset  , entonces  @@ -2252,11 +2252,11 @@ Sean ahora  \end_inset   una isometría lineal dada por  -\begin_inset Formula $\tilde{\varphi}(e_{1}):=f_{1}$ +\begin_inset Formula $\tilde{\varphi}(e_{1})\coloneqq f_{1}$  \end_inset   y  -\begin_inset Formula $\tilde{\varphi}(e_{2}):=f_{2}$ +\begin_inset Formula $\tilde{\varphi}(e_{2})\coloneqq f_{2}$  \end_inset  , entonces  | 
