diff options
Diffstat (limited to 'ggs')
| -rw-r--r-- | ggs/n2.lyx | 8 | ||||
| -rw-r--r-- | ggs/n3.lyx | 10 | ||||
| -rw-r--r-- | ggs/n4.lyx | 4 | ||||
| -rw-r--r-- | ggs/n5.lyx | 2 | ||||
| -rw-r--r-- | ggs/n7.lyx | 2 | 
5 files changed, 13 insertions, 13 deletions
| @@ -569,7 +569,7 @@ intervalo maximal de existencia  Demostración:  \series default   Sea  -\begin_inset Formula ${\cal J}_{p,v}:=\{(I,\alpha):\alpha:I\to S\text{ geodésica},0\in I,\alpha(0)=p,\alpha'(0)=v\}$ +\begin_inset Formula ${\cal J}_{p,v}:=\{(I,\alpha)\mid \alpha\mid I\to S\text{ geodésica},0\in I,\alpha(0)=p,\alpha'(0)=v\}$  \end_inset  . @@ -669,7 +669,7 @@ Sean ahora   es abierto y, por el teorema del peine, también conexo, luego es un intervalo.   Sea  -\begin_inset Formula $A:=\{t\in I_{1}\cap I_{2}:\alpha_{1}(t)=\alpha_{2}(t),\alpha'_{1}(t)=\alpha'_{2}(t)\}$ +\begin_inset Formula $A:=\{t\in I_{1}\cap I_{2}\mid \alpha_{1}(t)=\alpha_{2}(t),\alpha'_{1}(t)=\alpha'_{2}(t)\}$  \end_inset  , y queremos ver que  @@ -1401,7 +1401,7 @@ geodésicamente completa  \begin_layout Enumerate  Dado el plano  -\begin_inset Formula $S=\{p\in\mathbb{R}^{3}:\langle p,a\rangle=c\}$ +\begin_inset Formula $S=\{p\in\mathbb{R}^{3}\mid \langle p,a\rangle=c\}$  \end_inset  , la geodésica maximal de  @@ -1579,7 +1579,7 @@ Sean  \end_inset  ,  -\begin_inset Formula $S:=\{(x,y,z)\in\mathbb{R}^{3}:x^{2}+y^{2}=r^{2}\}$ +\begin_inset Formula $S:=\{(x,y,z)\in\mathbb{R}^{3}\mid x^{2}+y^{2}=r^{2}\}$  \end_inset   un cilindro,  @@ -110,7 +110,7 @@ aplicación exponencial  \end_inset  donde  -\begin_inset Formula ${\cal D}_{p}:=\{v\in T_{p}S:1\in I_{v}\}$ +\begin_inset Formula ${\cal D}_{p}:=\{v\in T_{p}S\mid 1\in I_{v}\}$  \end_inset  . @@ -909,7 +909,7 @@ Sean  \end_inset   tal que  -\begin_inset Formula ${\cal D}(0,r):=\{v\in T_{p}S:\Vert v\Vert<r\}\subseteq{\cal D}_{p}$ +\begin_inset Formula ${\cal D}(0,r):=\{v\in T_{p}S\mid \Vert v\Vert<r\}\subseteq{\cal D}_{p}$  \end_inset  , llamamos  @@ -933,7 +933,7 @@ disco geodésico  \end_inset   cumple que  -\begin_inset Formula ${\cal S}(0,r):=\{v\in T_{p}S:\Vert v\Vert=r\}\subseteq{\cal D}_{p}$ +\begin_inset Formula ${\cal S}(0,r):=\{v\in T_{p}S\mid \Vert v\Vert=r\}\subseteq{\cal D}_{p}$  \end_inset  , llamamos  @@ -1099,7 +1099,7 @@ Sean  \end_inset  , luego  -\begin_inset Formula $t_{0}=\max\{t\in[a,b]:\alpha(t)=p_{0}\}<b$ +\begin_inset Formula $t_{0}=\max\{t\in[a,b]\mid \alpha(t)=p_{0}\}<b$  \end_inset   (pues  @@ -1422,7 +1422,7 @@ Finalmente, sea   es   \begin_inset Formula   \[ -A:=\{t\in(a,b):\Vert\tilde{\alpha}(t)\Vert=r^{*}\}=\{t\in[a,b]:\alpha(t)\in S(p_{0},r^{*})\}\neq\emptyset. +A:=\{t\in(a,b)\mid \Vert\tilde{\alpha}(t)\Vert=r^{*}\}=\{t\in[a,b]\mid \alpha(t)\in S(p_{0},r^{*})\}\neq\emptyset.  \]  \end_inset @@ -258,7 +258,7 @@ Demostración:  \begin_layout Standard  Primero vemos que  -\begin_inset Formula $A:=\{q\in S:\Omega(p,q)\neq\emptyset\}=S$ +\begin_inset Formula $A:=\{q\in S\mid \Omega(p,q)\neq\emptyset\}=S$  \end_inset   viendo que es abierto, cerrado y no vacío. @@ -750,7 +750,7 @@ Queremos ver que  \end_inset  , existe  -\begin_inset Formula $t^{*}:=\inf\{t\in[a,b]:\alpha(t)\notin D(p,r^{*})\}$ +\begin_inset Formula $t^{*}:=\inf\{t\in[a,b]\mid \alpha(t)\notin D(p,r^{*})\}$  \end_inset  , pero  @@ -229,7 +229,7 @@ Demostración:  \end_inset   y  -\begin_inset Formula $A:=\{t\in[0,1]:\tilde{\alpha}(t)=tw\}$ +\begin_inset Formula $A:=\{t\in[0,1]\mid \tilde{\alpha}(t)=tw\}$  \end_inset  , queremos ver que  @@ -273,7 +273,7 @@ soporte  \end_inset   es  -\begin_inset Formula $\text{sop}f:=\overline{\{x\in D:f(x)\neq0\}}$ +\begin_inset Formula $\text{sop}f:=\overline{\{x\in D\mid f(x)\neq0\}}$  \end_inset  . | 
