diff options
Diffstat (limited to 'ggs')
| -rw-r--r-- | ggs/n.lyx | 188 | ||||
| -rw-r--r-- | ggs/n1.lyx | 1623 |
2 files changed, 1811 insertions, 0 deletions
diff --git a/ggs/n.lyx b/ggs/n.lyx new file mode 100644 index 0000000..31e8f95 --- /dev/null +++ b/ggs/n.lyx @@ -0,0 +1,188 @@ +#LyX 2.3 created this file. For more info see http://www.lyx.org/ +\lyxformat 544 +\begin_document +\begin_header +\save_transient_properties true +\origin unavailable +\textclass book +\begin_preamble +\input{../defs} +\end_preamble +\use_default_options true +\begin_modules +algorithm2e +\end_modules +\maintain_unincluded_children false +\language spanish +\language_package default +\inputencoding auto +\fontencoding global +\font_roman "default" "default" +\font_sans "default" "default" +\font_typewriter "default" "default" +\font_math "auto" "auto" +\font_default_family default +\use_non_tex_fonts false +\font_sc false +\font_osf false +\font_sf_scale 100 100 +\font_tt_scale 100 100 +\use_microtype false +\use_dash_ligatures true +\graphics default +\default_output_format default +\output_sync 0 +\bibtex_command default +\index_command default +\paperfontsize 10 +\spacing single +\use_hyperref false +\papersize a5paper +\use_geometry true +\use_package amsmath 1 +\use_package amssymb 1 +\use_package cancel 1 +\use_package esint 1 +\use_package mathdots 1 +\use_package mathtools 1 +\use_package mhchem 1 +\use_package stackrel 1 +\use_package stmaryrd 1 +\use_package undertilde 1 +\cite_engine basic +\cite_engine_type default +\biblio_style plain +\use_bibtopic false +\use_indices false +\paperorientation portrait +\suppress_date false +\justification true +\use_refstyle 1 +\use_minted 0 +\index Index +\shortcut idx +\color #008000 +\end_index +\leftmargin 0.2cm +\topmargin 0.7cm +\rightmargin 0.2cm +\bottommargin 0.7cm +\secnumdepth 3 +\tocdepth 3 +\paragraph_separation indent +\paragraph_indentation default +\is_math_indent 0 +\math_numbering_side default +\quotes_style swiss +\dynamic_quotes 0 +\papercolumns 1 +\papersides 1 +\paperpagestyle empty +\listings_params "basicstyle={\ttfamily}" +\tracking_changes false +\output_changes false +\html_math_output 0 +\html_css_as_file 0 +\html_be_strict false +\end_header + +\begin_body + +\begin_layout Title +Geometría Global de Superficies +\end_layout + +\begin_layout Date +\begin_inset Note Note +status open + +\begin_layout Plain Layout + +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +def +\backslash +cryear{2021} +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset CommandInset include +LatexCommand input +filename "../license.lyx" + +\end_inset + + +\end_layout + +\begin_layout Standard +Bibliografía: +\end_layout + +\begin_layout Itemize +Luis Alías. + +\emph on +Bloque 1. + Geodésicas en superficies +\emph default +. +\end_layout + +\begin_layout Chapter +Campos paralelos +\end_layout + +\begin_layout Standard +\begin_inset CommandInset include +LatexCommand input +filename "n1.lyx" + +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset Note Note +status open + +\begin_layout Chapter +Geodésicas +\end_layout + +\begin_layout Plain Layout +\begin_inset CommandInset include +LatexCommand input +filename "n2.lyx" + +\end_inset + + +\end_layout + +\end_inset + + +\end_layout + +\end_body +\end_document diff --git a/ggs/n1.lyx b/ggs/n1.lyx new file mode 100644 index 0000000..dff032c --- /dev/null +++ b/ggs/n1.lyx @@ -0,0 +1,1623 @@ +#LyX 2.3 created this file. For more info see http://www.lyx.org/ +\lyxformat 544 +\begin_document +\begin_header +\save_transient_properties true +\origin unavailable +\textclass book +\begin_preamble +\input{../defs} +\end_preamble +\use_default_options true +\maintain_unincluded_children false +\language spanish +\language_package default +\inputencoding auto +\fontencoding global +\font_roman "default" "default" +\font_sans "default" "default" +\font_typewriter "default" "default" +\font_math "auto" "auto" +\font_default_family default +\use_non_tex_fonts false +\font_sc false +\font_osf false +\font_sf_scale 100 100 +\font_tt_scale 100 100 +\use_microtype false +\use_dash_ligatures true +\graphics default +\default_output_format default +\output_sync 0 +\bibtex_command default +\index_command default +\paperfontsize default +\spacing single +\use_hyperref false +\papersize default +\use_geometry false +\use_package amsmath 1 +\use_package amssymb 1 +\use_package cancel 1 +\use_package esint 1 +\use_package mathdots 1 +\use_package mathtools 1 +\use_package mhchem 1 +\use_package stackrel 1 +\use_package stmaryrd 1 +\use_package undertilde 1 +\cite_engine basic +\cite_engine_type default +\biblio_style plain +\use_bibtopic false +\use_indices false +\paperorientation portrait +\suppress_date false +\justification true +\use_refstyle 1 +\use_minted 0 +\index Index +\shortcut idx +\color #008000 +\end_index +\secnumdepth 3 +\tocdepth 3 +\paragraph_separation indent +\paragraph_indentation default +\is_math_indent 0 +\math_numbering_side default +\quotes_style french +\dynamic_quotes 0 +\papercolumns 1 +\papersides 1 +\paperpagestyle default +\tracking_changes false +\output_changes false +\html_math_output 0 +\html_css_as_file 0 +\html_be_strict false +\end_header + +\begin_body + +\begin_layout Standard +Una función real es +\series bold +diferenciable +\series default + si es de clase +\begin_inset Formula ${\cal C}^{\infty}$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +sremember{GCS} +\end_layout + +\end_inset + + +\begin_inset Formula +\[ +J:=\begin{pmatrix}0 & -1\\ +1 & 0 +\end{pmatrix}. +\] + +\end_inset + +Entonces, dada una curva +\begin_inset Formula $\alpha:I\to\mathbb{R}^{2}$ +\end_inset + + p.p.a., si +\begin_inset Formula $\mathbf{t}(s):=\alpha'(s)$ +\end_inset + + y +\begin_inset Formula $\mathbf{n}(s):=J\mathbf{t}(s)$ +\end_inset + + [...], [...] +\begin_inset Formula $\kappa_{\alpha}(s):=\langle\mathbf{t}'(s),\mathbf{n}(s)\rangle$ +\end_inset + + [...]. +\end_layout + +\begin_layout Standard +Las +\series bold +fórmulas de Frenet +\series default + son +\begin_inset Formula +\[ +\left\{ \begin{aligned}\mathbf{t}'(s) & =\kappa(s)\mathbf{n}(s),\\ +\mathbf{n}'(s) & =-\kappa(s)\mathbf{t}(s). +\end{aligned} +\right. +\] + +\end_inset + +[...] Una curva regular +\begin_inset Formula $\alpha:I\to\mathbb{R}^{2}$ +\end_inset + + [...], [...] la curvatura [...] es +\begin_inset Formula +\[ +\kappa_{\alpha}(t)=\frac{\langle\alpha''(t),J\alpha'(t)\rangle}{|\alpha'(t)|^{3}}. +\] + +\end_inset + + +\end_layout + +\begin_layout Standard +[...] Sea +\begin_inset Formula $\alpha:I\to\mathbb{R}^{3}$ +\end_inset + + una curva regular p.p.a., si +\begin_inset Formula $\mathbf{t}(s)$ +\end_inset + + es su vector tangente, [...] +\begin_inset Formula $\kappa(s):=|\mathbf{t}'(s)|$ +\end_inset + +. + [...] +\begin_inset Formula $\mathbf{n}(s):=\frac{\mathbf{t}'(s)}{\kappa(s)}[...],$ +\end_inset + +[...] +\begin_inset Formula $\mathbf{b}(s)=\mathbf{t}(s)\land\mathbf{n}(s)$ +\end_inset + + [...]. + [...] +\begin_inset Formula $\tau(s)[...]=\langle\mathbf{b}'(s),\mathbf{n}(s)\rangle$ +\end_inset + +. + [...] +\end_layout + +\begin_layout Standard +\begin_inset Formula +\[ +\begin{pmatrix}\mathbf{t}\\ +\mathbf{n}\\ +\mathbf{b} +\end{pmatrix}^{\prime}=\begin{pmatrix}\kappa\mathbf{n}\\ +-\kappa\mathbf{t}-\tau\mathbf{b}\\ +\tau\mathbf{n} +\end{pmatrix}=\begin{pmatrix} & \kappa\\ +-\kappa & & -\tau\\ + & \tau +\end{pmatrix}\begin{pmatrix}\mathbf{t}\\ +\mathbf{n}\\ +\mathbf{b} +\end{pmatrix}. +\] + +\end_inset + + +\end_layout + +\begin_layout Standard +[...] +\begin_inset ERT +status open + +\begin_layout Plain Layout + +{ +\end_layout + +\end_inset + + +\begin_inset Formula +\begin{align*} +\kappa_{\alpha}(t) & :=\frac{|\alpha'(t)\land\alpha''(t)|}{|\alpha'(t)|^{3}}, & \tau_{\alpha}(t) & =-\frac{\det(\alpha'(t),\alpha''(t),\alpha'''(t))}{|\alpha'(t)\land\alpha''(t)|^{2}}. +\end{align*} + +\end_inset + + +\begin_inset ERT +status open + +\begin_layout Plain Layout + +} +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +eremember +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +sremember{GCS} +\end_layout + +\end_inset + + +\begin_inset ERT +status open + +\begin_layout Plain Layout + +{ +\end_layout + +\end_inset + + +\begin_inset Formula +\begin{align*} +e & :=\langle N,X_{uu}\rangle=-\langle N_{u},X_{u}\rangle,\\ +f & :=\langle N,X_{uv}\rangle=-\langle N_{v},X_{u}\rangle=-\langle N_{u},X_{v}\rangle,\\ +g & :=\langle N,X_{vv}\rangle=-\langle N_{v},X_{v}\rangle +\end{align*} + +\end_inset + + +\begin_inset ERT +status open + +\begin_layout Plain Layout + +} +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +[...]. + [...] Si +\begin_inset Formula +\[ +dN_{p}\equiv\begin{pmatrix}a_{11} & a_{12}\\ +a_{21} & a_{22} +\end{pmatrix} +\] + +\end_inset + +respecto de la base +\begin_inset Formula $(X_{u},X_{v})$ +\end_inset + +, entonces +\begin_inset Formula +\[ +\begin{pmatrix}-e & -f\\ +-f & -g +\end{pmatrix}=\begin{pmatrix}a_{11} & a_{21}\\ +a_{12} & a_{22} +\end{pmatrix}\begin{pmatrix}E & F\\ +F & G +\end{pmatrix} +\] + +\end_inset + + y tenemos las +\series bold +fórmulas de Weingarten: +\series default + +\begin_inset ERT +status open + +\begin_layout Plain Layout + +{ +\end_layout + +\end_inset + + +\begin_inset Formula +\begin{align*} +a_{11} & =\frac{fF-eG}{EG-F^{2}}, & a_{12} & =\frac{gF-fG}{EG-F^{2}}, & a_{21} & =\frac{eF-fE}{EG-F^{2}}, & a_{22} & =\frac{fF-gE}{EG-F^{2}}. +\end{align*} + +\end_inset + + +\begin_inset ERT +status open + +\begin_layout Plain Layout + +} +\end_layout + +\end_inset + +[...] +\begin_inset ERT +status open + +\begin_layout Plain Layout + +{ +\end_layout + +\end_inset + + +\begin_inset Formula +\begin{align*} +K(p) & =\frac{eg-f^{2}}{EG-F^{2}}, & H(p) & =\frac{1}{2}\frac{eG+gE-2fF}{EG-F^{2}} +\end{align*} + +\end_inset + + +\begin_inset ERT +status open + +\begin_layout Plain Layout + +} +\end_layout + +\end_inset + +[...]. + Las +\series bold +fórmulas de Gauss +\series default + son +\begin_inset Formula +\[ +\left\{ \begin{aligned}X_{uu} & =\Gamma_{11}^{1}X_{u}+\Gamma_{11}^{2}X_{v}+eN,\\ +X_{uv} & =\Gamma_{12}^{1}X_{u}+\Gamma_{12}^{2}X_{v}+fN,\\ +X_{vu} & =\Gamma_{21}^{1}X_{u}+\Gamma_{21}^{2}X_{v}+fN,\\ +X_{vv} & =\Gamma_{22}^{1}X_{u}+\Gamma_{22}^{2}X_{v}+gN +\end{aligned} +\right. +\] + +\end_inset + +donde los +\begin_inset Formula $\Gamma_{ij}^{k}$ +\end_inset + + son los +\series bold +símbolos de Christoffel +\series default + [...]. + +\begin_inset Formula $\Gamma_{12}^{1}=\Gamma_{21}^{1}$ +\end_inset + + y +\begin_inset Formula $\Gamma_{12}^{2}=\Gamma_{21}^{2}$ +\end_inset + + [...]. + Además, +\begin_inset Formula +\[ +\begin{pmatrix}\Gamma_{11}^{1} & \Gamma_{12}^{1} & \Gamma_{22}^{1}\\ +\Gamma_{11}^{2} & \Gamma_{12}^{2} & \Gamma_{22}^{2} +\end{pmatrix}=\frac{1}{EG-F^{2}}\begin{pmatrix}G & -F\\ +-F & E +\end{pmatrix}\begin{pmatrix}\frac{E_{u}}{2} & \frac{E_{v}}{2} & F_{v}-\frac{G_{u}}{2}\\ +F_{u}-\frac{E_{v}}{2} & \frac{G_{u}}{2} & \frac{G_{v}}{2} +\end{pmatrix}. +\] + +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +eremember +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Si +\begin_inset Formula $F=0$ +\end_inset + +, la curvatura de Gauss es +\begin_inset Formula +\[ +K=\frac{-1}{2\sqrt{EG}}\left[\left(\frac{E_{v}}{\sqrt{EG}}\right)_{v}+\left(\frac{G_{u}}{\sqrt{EG}}\right)_{u}\right]. +\] + +\end_inset + + +\series bold +Demostración: +\series default + +\begin_inset Formula +\[ +\begin{pmatrix}\Gamma_{11}^{1} & \Gamma_{12}^{1} & \Gamma_{22}^{1}\\ +\Gamma_{11}^{2} & \Gamma_{12}^{2} & \Gamma_{22}^{2} +\end{pmatrix}=\begin{pmatrix}\frac{E_{u}}{2E} & \frac{E_{v}}{2E} & -\frac{G_{v}}{2E}\\ +-\frac{E_{v}}{2G} & \frac{G_{u}}{2G} & \frac{G_{v}}{2G} +\end{pmatrix}, +\] + +\end_inset + +y por la ecuación de Gauss, +\begin_inset Formula +\begin{align*} +K & =\frac{1}{E}\left(\frac{E_{u}G_{u}}{4EG}-\frac{E_{vv}}{2G}+\frac{E_{v}G_{u}}{2G^{2}}-\frac{E_{v}G_{v}}{4G^{2}}+\frac{E_{v}^{2}}{4EG}-\frac{G_{uu}}{2G}+\frac{G_{u}^{2}}{2G^{2}}-\frac{G_{u}^{2}}{4G^{2}}\right)\\ + & =\left(\frac{E_{u}G_{u}}{4E^{2}G}-\frac{E_{vv}}{4EG}+\frac{E_{v}G_{u}}{2EG^{2}}-\frac{E_{v}G_{v}}{4EG^{2}}-\frac{G_{uu}}{2EG}+\frac{G_{u}^{2}}{4EG^{2}}\right), +\end{align*} + +\end_inset + +pero +\begin_inset Formula +\begin{align*} +\left(\frac{E_{v}}{\sqrt{EG}}\right)_{v} & =\frac{E_{vv}}{\sqrt{EG}}-\frac{E_{v}(E_{v}G+EG_{v})}{2(EG)^{3/2}}=\sqrt{EG}\left(\frac{E_{vv}}{EG}-\frac{E_{v}^{2}}{2E^{2}G}-\frac{E_{v}G_{v}}{2EG^{2}}\right),\\ +\left(\frac{G_{u}}{\sqrt{EG}}\right)_{u} & =\frac{G_{uu}}{\sqrt{EG}}-\frac{G_{u}(E_{u}G+EG_{u})}{2(EG)^{3/2}}=\sqrt{EG}\left(\frac{G_{uu}}{EG}-\frac{E_{u}G_{u}}{2E^{2}G}-\frac{G_{u}^{2}}{2EG^{2}}\right), +\end{align*} + +\end_inset + +de modo que +\begin_inset Formula +\[ +-\frac{1}{2\sqrt{EG}}\left[\left(\frac{E_{v}}{\sqrt{EG}}\right)_{v}+\left(\frac{G_{u}}{\sqrt{EG}}\right)_{u}\right]=K. +\] + +\end_inset + + +\end_layout + +\begin_layout Section +La derivada covariante +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +sremember{GCS} +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Sean +\begin_inset Formula $S$ +\end_inset + + una superficie regular y +\begin_inset Formula $\alpha:I\to S$ +\end_inset + + una curva regular, un +\series bold +campo de vectores a lo largo de +\begin_inset Formula $\alpha$ +\end_inset + + +\series default + es una función +\begin_inset Formula $V:I\to\mathbb{R}^{3}$ +\end_inset + +, y es +\series bold +tangente +\series default + a +\begin_inset Formula $S$ +\end_inset + + (a lo largo de +\begin_inset Formula $\alpha$ +\end_inset + +) si para +\begin_inset Formula $t\in S$ +\end_inset + + es +\begin_inset Formula $V(t)\in T_{\alpha(t)}S$ +\end_inset + +. + +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +eremember +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Para un +\begin_inset Formula $t\in I$ +\end_inset + +, +\begin_inset Formula $V(t)^{\top}:=\pi_{T_{\alpha(t)}S}V(t)$ +\end_inset + + y +\begin_inset Formula $V(t)^{\bot}:=\pi_{(T_{\alpha(t)}S)^{\bot}}V(t)$ +\end_inset + +. + Llamamos +\begin_inset Formula $\mathfrak{X}(\alpha)$ +\end_inset + + al conjunto de campos de vectores a lo largo de +\begin_inset Formula $\alpha$ +\end_inset + + diferenciables y tangentes. + Así: +\end_layout + +\begin_layout Enumerate +La velocidad +\begin_inset Formula $\alpha'\in\mathfrak{X}(\alpha)$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +La rotación de la velocidad +\begin_inset Formula $N\wedge\alpha'\in\mathfrak{X}(\alpha)$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +La aceleración +\begin_inset Formula $\alpha''(t)$ +\end_inset + + es un campo de vectores diferenciable. +\end_layout + +\begin_layout Enumerate +Dado un campo de vectores diferenciable +\begin_inset Formula $V:I\to\mathbb{R}^{3}$ +\end_inset + +, +\begin_inset Formula $V'$ +\end_inset + + es otro campo de vectores, pero +\begin_inset Formula $V\in\mathfrak{X}(\alpha)$ +\end_inset + + no implica +\begin_inset Formula $V'\in\mathfrak{X}(\alpha)$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Un +\series bold +campo normal unitario +\series default + a lo largo de +\begin_inset Formula $\alpha$ +\end_inset + + es un campo +\begin_inset Formula $N:I\to\mathbb{R}^{3}$ +\end_inset + + diferenciable y unitario tal que todo +\begin_inset Formula $N(t)$ +\end_inset + + es normal a +\begin_inset Formula $S$ +\end_inset + + en +\begin_inset Formula $\alpha(t)$ +\end_inset + +. + +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +sremember{GCS} +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Sea +\begin_inset Formula $V:I\to\mathbb{R}^{3}$ +\end_inset + + un campo de vectores tangente y diferenciable, llamamos +\series bold +derivada covariante +\series default + [o +\series bold +intrínseca +\series default +] a +\begin_inset Formula +\[ +\frac{DV}{dt}(t):=\pi_{T_{\alpha(t)}S}V'(t) +\] + +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +eremember +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +sremember{GCS} +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Propiedades: Sean +\begin_inset Formula $V,W:I\to T_{p}S$ +\end_inset + + y +\begin_inset Formula $f:I\to\mathbb{R}$ +\end_inset + + diferenciables, siendo +\begin_inset Formula $I$ +\end_inset + + un intervalo: +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\frac{D(fV)}{dt}=f'V+f\frac{DV}{dt}$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Standard +Si +\begin_inset Formula $\pi:=\pi_{T_{\alpha(t)}S}$ +\end_inset + +, +\begin_inset Formula $\frac{D(fV)}{dt}=\pi((fV)')=\pi(fV'+f'V)=f\pi(V')+f'\pi(V)=f\frac{DV}{dt}+f'V$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Enumerate +\begin_inset Formula $\frac{D(V+W)}{dt}=\frac{DV}{dt}+\frac{DW}{dt}$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Standard +\begin_inset Formula $\frac{D(V+W)}{dt}=\pi((V+W)')=\pi(V')+\pi(W')=\frac{DV}{dt}+\frac{DW}{dt}$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Enumerate +\begin_inset Formula $\frac{d}{dt}\langle V,W\rangle=\langle\frac{DV}{dt}W\rangle+\langle V,\frac{DW}{dt}\rangle$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Standard +\begin_inset Formula $\frac{d}{dt}\langle V,W\rangle=\langle\frac{dV}{dt},W\rangle+\langle V,\frac{dW}{dt}\rangle$ +\end_inset + +, pero dada una base ortonormal +\begin_inset Formula $(v_{1},v_{2},v_{3})$ +\end_inset + + con +\begin_inset Formula $T_{p}S=\text{span}\{v_{1},v_{2}\}$ +\end_inset + +, si +\begin_inset Formula $\frac{dV}{dt}(t)=\sum_{i}x_{i}v_{i}$ +\end_inset + + y +\begin_inset Formula $W(t)=\sum_{i}y_{i}v_{i}$ +\end_inset + +, +\begin_inset Formula $\langle\frac{dV}{dt}(t),W(t)\rangle=\sum_{i=1}^{3}x_{i}y_{i}\overset{y_{3}=0}{=}x_{1}y_{1}+x_{2}y_{2}=\langle\pi(\frac{dV}{dt}(t)),W(t)\rangle=\langle\frac{DV}{dt}(t),W(t)\rangle$ +\end_inset + +, y análogamente para +\begin_inset Formula $\langle V,\frac{dW}{dt}\rangle$ +\end_inset + +, luego +\begin_inset Formula $\frac{d}{dt}\langle V,W\rangle=\langle\frac{dV}{dt},W\rangle+\langle V,\frac{dW}{dt}\rangle=\langle\frac{DV}{dt},W\rangle+\langle V,\frac{DW}{dt}\rangle$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +eremember +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Sean +\begin_inset Formula $(U,X)$ +\end_inset + + una carta local de +\begin_inset Formula $S$ +\end_inset + +, +\begin_inset Formula $\alpha:I\to X(U)$ +\end_inset + + una curva sobre +\begin_inset Formula $S$ +\end_inset + +, +\begin_inset Formula $V\in\mathfrak{X}(\alpha)$ +\end_inset + +, +\begin_inset Formula $\tilde{\alpha}:=(u,v):=X^{-1}\circ\alpha:I\to U$ +\end_inset + + y +\begin_inset Formula $(a,b):I\to U$ +\end_inset + + con +\begin_inset Formula $V(t)=a(t)X_{u}(\tilde{\alpha}(t))+b(t)X_{v}(\tilde{\alpha}(t))$ +\end_inset + +, entonces, para +\begin_inset Formula $t\in I$ +\end_inset + +, +\begin_inset Formula +\begin{align*} +\frac{DV}{dt} & =\left(a'+au'\Gamma_{11}^{1}+(av'+bu')\Gamma_{12}^{1}+bv'\Gamma_{22}^{1}\right)X_{u}(\tilde{\alpha})\\ + & +\left(b'+au'\Gamma_{11}^{2}+(av'+bu')\Gamma_{12}^{2}+bv'\Gamma_{22}^{2}\right)X_{v}(\tilde{\alpha}). +\end{align*} + +\end_inset + + +\series bold +Demostración: +\series default + Sean +\begin_inset Formula $t\in I$ +\end_inset + +, +\begin_inset Formula $p:=\alpha(t)$ +\end_inset + +, +\begin_inset Formula $q:=X^{-1}(p)$ +\end_inset + + y +\begin_inset Formula $N:X(U)\to\mathbb{R}^{3}$ +\end_inset + + un campo normal tal que la base +\begin_inset Formula $(X_{u}(q),X_{v}(q),N(p))$ +\end_inset + + está orientada positivamente, derivando en +\begin_inset Formula $V=aX_{u}(u,v)+bX_{v}(u,v)$ +\end_inset + +, +\begin_inset Formula +\begin{align*} +V'(t) & =a'X_{u}(u,v)+a\left(X_{uu}(u,v)u'+X_{uv}(u,v)v'\right)+b'X_{v}(u,v)+b\left(X_{vu}(u,v)u'+X_{vv}(u,v)v'\right)\\ + & =a'X_{u}(u,v)+a\left[(\Gamma_{11}^{1}X_{u}(u,v)+\Gamma_{11}^{2}X_{v}(u,v)+eN)u'+(\Gamma_{12}^{1}X_{u}(u,v)+\Gamma_{12}^{2}X_{v}(u,v)+fN)v'\right]\\ + & +b'X_{v}(u,v)+b\left[(\Gamma_{12}^{1}X_{u}+\Gamma_{12}^{2}X_{v}+fN)u'+(\Gamma_{22}^{1}X_{u}+\Gamma_{22}^{2}X_{v}+gN)v'\right], +\end{align*} + +\end_inset + +y entonces +\begin_inset Formula $\frac{DV}{dt}$ +\end_inset + + es la parte tangente de esto último, +\begin_inset Formula +\begin{align*} +\frac{DV}{dt} & =\left(a'+a\Gamma_{11}^{1}u'+a\Gamma_{12}^{1}v'+b\Gamma_{12}^{1}u'+b\Gamma_{22}^{1}v'\right)X_{u}(u,v)\\ + & +\left(a\Gamma_{11}^{2}u'+a\Gamma_{12}^{2}v'+b'+b\Gamma_{12}^{2}u'+b\Gamma_{22}^{2}v'\right)X_{v}(u,v). +\end{align*} + +\end_inset + + +\end_layout + +\begin_layout Section +Campos paralelos +\end_layout + +\begin_layout Standard +Sean +\begin_inset Formula $S$ +\end_inset + + una superficie regular y +\begin_inset Formula $\alpha:I\to S$ +\end_inset + + una curva regular, +\begin_inset Formula $V\in\mathfrak{X}(\alpha)$ +\end_inset + + es +\series bold +paralelo +\series default + ( +\series bold +a lo largo de +\begin_inset Formula $\alpha$ +\end_inset + + +\series default +) si +\begin_inset Formula $\frac{DV}{dt}=0$ +\end_inset + +. + Si +\begin_inset Formula $V,W\in\mathfrak{X}(\alpha)$ +\end_inset + + son paralelos: +\end_layout + +\begin_layout Enumerate +Para +\begin_inset Formula $a,b\in\mathbb{R}$ +\end_inset + +, +\begin_inset Formula $aV+bW$ +\end_inset + + es paralelo. +\end_layout + +\begin_deeper +\begin_layout Standard +\begin_inset Formula $\frac{D(aV+bW)}{dt}=a\frac{DV}{dt}+b\frac{DW}{dt}=0$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Enumerate +\begin_inset Formula $\langle V(t),W(t)\rangle$ +\end_inset + + es constante, por lo que también lo son +\begin_inset Formula $\Vert V(t)\Vert$ +\end_inset + + y +\begin_inset Formula $\angle(V,W)$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Standard +\begin_inset Formula $\langle V,W\rangle'=\langle\frac{DV}{dt},W\rangle+\langle V,\frac{DW}{dt}\rangle=0+0=0$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Standard + +\series bold +E.d.o extrínseca de los campos paralelos: +\series default + +\begin_inset Formula $V\in\mathfrak{X}(\alpha)$ +\end_inset + + es paralelo a lo largo de +\begin_inset Formula $\alpha$ +\end_inset + + si y sólo si +\begin_inset Formula +\[ +V'(t)+\langle V(t),N'(t)\rangle N(t)=0, +\] + +\end_inset + +donde +\begin_inset Formula $N:I\to\mathbb{R}^{3}$ +\end_inset + + es un campo normal unitario de +\begin_inset Formula $S$ +\end_inset + + a lo largo de +\begin_inset Formula $\alpha$ +\end_inset + +. + +\series bold +Demostración: +\series default + +\begin_inset Formula $V$ +\end_inset + + es paralelo si y sólo si +\begin_inset Formula $V'(t)$ +\end_inset + + es proporcional a +\begin_inset Formula $N(t)$ +\end_inset + + en todo +\begin_inset Formula $t\in I$ +\end_inset + +, si y sólo si +\begin_inset Formula $V'(t)=\langle V'(t),N(t)\rangle$ +\end_inset + +, pero como +\begin_inset Formula $\langle V(t),N(t)\rangle=0$ +\end_inset + + en todo punto, derivando es +\begin_inset Formula $\langle V'(t),N(t)\rangle+\langle V(t),N'(t)\rangle=0$ +\end_inset + +, luego +\begin_inset Formula $V'(t)=\langle V'(t),N(t)\rangle$ +\end_inset + + si y sólo si +\begin_inset Formula $V'(t)-\langle V'(t),N(t)\rangle=V'(t)+\langle V(t),N'(t)\rangle=0$ +\end_inset + +. +\end_layout + +\begin_layout Standard + +\series bold +E.d.o intrínseca de los campos paralelos: +\series default + Sean +\begin_inset Formula $(U,X)$ +\end_inset + + una carta local de la superficie regular +\begin_inset Formula $S$ +\end_inset + +, +\begin_inset Formula $\alpha:I\to X(U)$ +\end_inset + + una curva sobre +\begin_inset Formula $S$ +\end_inset + +, +\begin_inset Formula $V\in\mathfrak{X}(\alpha)$ +\end_inset + +, +\begin_inset Formula $(u,v):=X^{-1}\circ\alpha:I\to U$ +\end_inset + + y +\begin_inset Formula $(a,b):I\to U$ +\end_inset + + tal que +\begin_inset Formula $V=aX_{u}(\tilde{\alpha})+bX_{v}(\tilde{\alpha})$ +\end_inset + +, entonces +\begin_inset Formula $V$ +\end_inset + + es paralelo a lo largo de +\begin_inset Formula $\alpha$ +\end_inset + + si y sólo si satisface +\begin_inset Formula +\[ +\left\{ \begin{aligned}a'+au'\Gamma_{11}^{1}(u,v)+(av'+bu')\Gamma_{12}^{1}(u,v)+bv'\Gamma_{22}^{1}(u,v) & =0,\\ +b'+au'\Gamma_{11}^{2}(u,v)+(av'+bu')\Gamma_{12}^{2}(u,v)+bv'\Gamma_{22}^{2}(u,v) & =0, +\end{aligned} +\right. +\] + +\end_inset + +ecuaciones que resultan de sustituir la fórmula intrínseca de la derivada + covariante en +\begin_inset Formula $\frac{DV}{dt}=0$ +\end_inset + + y usar que +\begin_inset Formula $X_{u}(\tilde{\alpha})$ +\end_inset + + y +\begin_inset Formula $X_{v}(\tilde{\alpha})$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +sremember{EDO} +\end_layout + +\end_inset + +Una e.d.o. + es +\series bold +lineal +\series default + si es de la forma +\begin_inset Formula $\dot{x}=A(t)x+b(t)$ +\end_inset + +, con +\begin_inset Formula $A:I\subseteq\mathbb{R}\to{\cal L}(\mathbb{R}^{n})$ +\end_inset + + y +\begin_inset Formula $b:I\subseteq\mathbb{R}\to\mathbb{R}^{n}$ +\end_inset + + [...]. + [...] Si +\begin_inset Formula $A$ +\end_inset + + y +\begin_inset Formula $b$ +\end_inset + + son continuas, para +\begin_inset Formula $(t_{0},x_{0})\in I\times\mathbb{R}^{n}$ +\end_inset + + [...] +\begin_inset Formula +\[ +\left\{ \begin{aligned}\dot{x} & =A(t)x+b(t)\\ +x(t_{0}) & =x_{0} +\end{aligned} +\right. +\] + +\end_inset + +tiene solución única definida en todo +\begin_inset Formula $I$ +\end_inset + + [...]. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +eremember +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Section +Transporte paralelo +\end_layout + +\begin_layout Standard +Como +\series bold +teorema +\series default +, sean +\begin_inset Formula $S$ +\end_inset + + una superficie regular, +\begin_inset Formula $\alpha:I\to S$ +\end_inset + + una curva, +\begin_inset Formula $t_{0}\in I$ +\end_inset + + y +\begin_inset Formula $v\in T_{\alpha(t_{0})}S$ +\end_inset + +, existe un único +\begin_inset Formula $V\in\mathfrak{X}(\alpha)$ +\end_inset + + paralelo tal que +\begin_inset Formula $V(t_{0})=v$ +\end_inset + +. + +\series bold +Demostración: +\series default + Sea +\begin_inset Formula $N$ +\end_inset + + un campo normal unitario de +\begin_inset Formula $S$ +\end_inset + + a lo largo de +\begin_inset Formula $\alpha$ +\end_inset + +, +\begin_inset Formula $V\in\mathfrak{X}(\alpha)$ +\end_inset + + es paralelo si y sólo si +\begin_inset Formula +\[ +0=V'+\langle V,N'\rangle N=\begin{pmatrix}V_{1}'\\ +V_{2}'\\ +V_{3}' +\end{pmatrix}+\sum_{j=1}^{3}V_{j}N_{j}'\begin{pmatrix}N_{1}\\ +N_{2}\\ +N_{3} +\end{pmatrix}=\begin{pmatrix}V'_{1}\\ +V'_{2}\\ +V'_{3} +\end{pmatrix}+\begin{pmatrix}N_{1}N'_{1} & N_{1}N'_{2} & N_{1}N'_{3}\\ +N_{2}N'_{1} & N_{2}N'_{2} & N_{2}N'_{3}\\ +N_{3}N'_{1} & N_{3}N'_{2} & N_{3}N'_{3} +\end{pmatrix}\begin{pmatrix}V_{1}\\ +V_{2}\\ +V_{3} +\end{pmatrix}, +\] + +\end_inset + +lo que nos da una e.d.o. + lineal que, añadiendo la condición inicial +\begin_inset Formula $V(t_{0})=v$ +\end_inset + +, tiene solución única definida en todo +\begin_inset Formula $I$ +\end_inset + +. + Para ver que realmente la solución es tangente, sabemos que +\begin_inset Formula $\langle V,N\rangle(t_{0})=\langle v,N(t_{0})\rangle=0$ +\end_inset + +, y como por la ecuación es +\begin_inset Formula $V'=-\langle V,N'\rangle N$ +\end_inset + +, +\begin_inset Formula +\[ +\langle V,N\rangle'=\langle V',N\rangle+\langle V,N'\rangle=-\langle V,N'\rangle\langle N,N\rangle+\langle V,N'\rangle\overset{\langle N,N\rangle=1}{=}0. +\] + +\end_inset + + +\end_layout + +\begin_layout Standard +Sean +\begin_inset Formula $S$ +\end_inset + + una superficie regular, +\begin_inset Formula $\alpha:I\to S$ +\end_inset + + una curva regular, +\begin_inset Formula $a,b\in I$ +\end_inset + +, +\begin_inset Formula $p:=\alpha(a)$ +\end_inset + +, +\begin_inset Formula $q:=\alpha(b)$ +\end_inset + + y +\begin_inset Formula $v\in T_{p}S$ +\end_inset + + y +\begin_inset Formula $V\in\mathfrak{X}(\alpha)$ +\end_inset + + el único campo paralelo con +\begin_inset Formula $V(a)=v$ +\end_inset + +, el +\series bold +transporte paralelo +\series default + de +\begin_inset Formula $v$ +\end_inset + + a lo largo de +\begin_inset Formula $\alpha$ +\end_inset + + en el punto +\begin_inset Formula $q$ +\end_inset + + es +\begin_inset Formula $V(b)$ +\end_inset + +. + +\end_layout + +\begin_layout Standard +La +\series bold +aplicación transporte paralelo +\series default + es la +\begin_inset Formula $P_{\alpha}:=P_{a}^{b}(\alpha):T_{p}S\to T_{q}S$ +\end_inset + + que a cada +\begin_inset Formula $v\in T_{p}S$ +\end_inset + + le asigna su transporte paralelo a lo largo de +\begin_inset Formula $\alpha$ +\end_inset + + en +\begin_inset Formula $q$ +\end_inset + +. + Como +\series bold +teorema +\series default +, +\begin_inset Formula $P_{\alpha}$ +\end_inset + + es una isometría lineal. + +\series bold +Demostración: +\series default + Para +\begin_inset Formula $v\in T_{p}S$ +\end_inset + +, sea +\begin_inset Formula $V\in\mathfrak{X}(\alpha)$ +\end_inset + + el único campo paralelo con +\begin_inset Formula $V(a)=v$ +\end_inset + +, este también es el único campo paralelo con +\begin_inset Formula $V(b)=P_{a}^{b}(\alpha)(v)$ +\end_inset + +, por lo que +\begin_inset Formula $v=P_{b}^{a}(\alpha)(P_{a}^{b}(\alpha)(v))$ +\end_inset + + y, por simetría, para +\begin_inset Formula $w\in T_{q}S$ +\end_inset + +, +\begin_inset Formula $w=P_{a}^{b}(\alpha)(P_{b}^{a}(\alpha)(v))$ +\end_inset + +, de modo que +\begin_inset Formula $P_{\alpha}$ +\end_inset + + es invertible. + Sean ahora +\begin_inset Formula $v,w\in T_{p}S$ +\end_inset + +, +\begin_inset Formula $V$ +\end_inset + + el único campo paralelo con +\begin_inset Formula $V(a)=v$ +\end_inset + + y +\begin_inset Formula $W$ +\end_inset + + el único con +\begin_inset Formula $W(a)=w$ +\end_inset + +, entonces +\begin_inset Formula $V+W$ +\end_inset + + es otro campo paralelo con +\begin_inset Formula $(V+W)(a)=v+w$ +\end_inset + + y por tanto el único, luego +\begin_inset Formula $P_{\alpha}(v+w)=(V+W)(b)=V(b)+W(b)=P_{\alpha}(v)+P_{\alpha}(w)$ +\end_inset + +. + Del mismo modo, si +\begin_inset Formula $\lambda\in\mathbb{R}$ +\end_inset + +, +\begin_inset Formula $\lambda V$ +\end_inset + + es un campo paralelo con +\begin_inset Formula $(\lambda V)(a)=\lambda v$ +\end_inset + +, luego +\begin_inset Formula $P_{\alpha}(\lambda v)=\lambda V(a)=\lambda P_{\alpha}(v)$ +\end_inset + +, y con esto +\begin_inset Formula $P_{\alpha}$ +\end_inset + + es lineal. + Finalmente, como +\begin_inset Formula $\langle V(t),W(t)\rangle$ +\end_inset + + es constante en +\begin_inset Formula $t$ +\end_inset + +, +\begin_inset Formula $\langle v,w\rangle=\langle V(a),W(a)\rangle=\langle V(b),W(b)\rangle=\langle P_{\alpha}(v),P_{\alpha}(v)\rangle$ +\end_inset + + y +\begin_inset Formula $P_{\alpha}$ +\end_inset + + es una isometría. +\end_layout + +\end_body +\end_document |
