diff options
Diffstat (limited to 'graf/n1.lyx')
| -rw-r--r-- | graf/n1.lyx | 32 | 
1 files changed, 16 insertions, 16 deletions
| diff --git a/graf/n1.lyx b/graf/n1.lyx index 921c7d8..0f2f84f 100644 --- a/graf/n1.lyx +++ b/graf/n1.lyx @@ -209,7 +209,7 @@ Dados un grafo  \end_inset   y  -\begin_inset Formula $e:=(i,j)\in E$ +\begin_inset Formula $e\coloneqq (i,j)\in E$  \end_inset  ,  @@ -346,7 +346,7 @@ G^{\complement}:=(V,E^{\complement}):=(V,\{S\in{\cal P}(V)\mid |S|=2,S\notin E\}  \end_inset  Un grafo  -\begin_inset Formula $G':=(V',E')$ +\begin_inset Formula $G'\coloneqq (V',E')$  \end_inset   es un  @@ -354,7 +354,7 @@ Un grafo  subgrafo  \series default   de  -\begin_inset Formula $G:=(V,E)$ +\begin_inset Formula $G\coloneqq (V,E)$  \end_inset   si  @@ -404,11 +404,11 @@ inducido  \end_inset   a  -\begin_inset Formula $G_{V'}:=(V',E_{V'})$ +\begin_inset Formula $G_{V'}\coloneqq (V',E_{V'})$  \end_inset  , donde  -\begin_inset Formula $E_{V'}:=\{S\in E\mid S\subseteq V'\}$ +\begin_inset Formula $E_{V'}\coloneqq \{S\in E\mid S\subseteq V'\}$  \end_inset  , y  @@ -462,7 +462,7 @@ independiente  \end_inset  ,  -\begin_inset Formula $G-v:=G-\{v\}$ +\begin_inset Formula $G-v\coloneqq G-\{v\}$  \end_inset  , y si  @@ -470,7 +470,7 @@ independiente  \end_inset  ,  -\begin_inset Formula $G-e:=G-\{e\}$ +\begin_inset Formula $G-e\coloneqq G-\{e\}$  \end_inset  . @@ -504,11 +504,11 @@ maximal  \begin_layout Standard  Dos grafos  -\begin_inset Formula $G:=(V,E)$ +\begin_inset Formula $G\coloneqq (V,E)$  \end_inset   y  -\begin_inset Formula $G':=(V',E')$ +\begin_inset Formula $G'\coloneqq (V',E')$  \end_inset   son  @@ -540,7 +540,7 @@ Grado de un nodo  \begin_layout Standard  Dado un grafo  -\begin_inset Formula $G:=(V,E)$ +\begin_inset Formula $G\coloneqq (V,E)$  \end_inset  , llamamos  @@ -627,11 +627,11 @@ eje colgante  \series default  .   Llamamos  -\begin_inset Formula $\delta_{G}:=\min_{v\in V}o(v)$ +\begin_inset Formula $\delta_{G}\coloneqq \min_{v\in V}o(v)$  \end_inset   y  -\begin_inset Formula $\Delta_{G}:=\max_{v\in V}o(v)$ +\begin_inset Formula $\Delta_{G}\coloneqq \max_{v\in V}o(v)$  \end_inset  . @@ -749,7 +749,7 @@ Teorema de Erdös y Gallai  :  \series default   Una secuencia  -\begin_inset Formula $S:=(d_{1},\dots,d_{n})$ +\begin_inset Formula $S\coloneqq (d_{1},\dots,d_{n})$  \end_inset   monótona decreciente de naturales es una secuencia gráfica si y sólo si @@ -1598,7 +1598,7 @@ status open  \end_inset  Sea  -\begin_inset Formula $G:=(\{1,\dots,n\},E)$ +\begin_inset Formula $G\coloneqq (\{1,\dots,n\},E)$  \end_inset   un grafo con  @@ -2008,7 +2008,7 @@ Representaciones matriciales  \begin_layout Standard  Dado un grafo no dirigido  -\begin_inset Formula $G:=(\{1,\dots,n\},E)$ +\begin_inset Formula $G\coloneqq (\{1,\dots,n\},E)$  \end_inset  , la  @@ -2020,7 +2020,7 @@ matriz de adyacencia  \end_inset   es la matriz  -\begin_inset Formula $A:=(a_{ij})_{ij}\in{\cal M}_{n}(\mathbb{Z})$ +\begin_inset Formula $A\coloneqq (a_{ij})_{ij}\in{\cal M}_{n}(\mathbb{Z})$  \end_inset   dada por  | 
