diff options
Diffstat (limited to 'graf/n6.lyx')
| -rw-r--r-- | graf/n6.lyx | 28 | 
1 files changed, 14 insertions, 14 deletions
| diff --git a/graf/n6.lyx b/graf/n6.lyx index e296d0b..6bf574a 100644 --- a/graf/n6.lyx +++ b/graf/n6.lyx @@ -222,11 +222,11 @@ teorema  \end_inset  ,  -\begin_inset Formula $P:=\{[x,y]\in\mathbb{R}^{p+q}:Ax+Gy\leq b\}$ +\begin_inset Formula $P:=\{[x,y]\in\mathbb{R}^{p+q}\mid Ax+Gy\leq b\}$  \end_inset   y  -\begin_inset Formula $S:=\{[x,y]\in P:x\in\mathbb{Z}^{p}\}$ +\begin_inset Formula $S:=\{[x,y]\in P\mid x\in\mathbb{Z}^{p}\}$  \end_inset  , existen  @@ -242,7 +242,7 @@ teorema  \end_inset   tales que  -\begin_inset Formula $\text{ec}S=\{[x,y]:A'x+G'y\leq b'\}$ +\begin_inset Formula $\text{ec}S=\{[x,y]\mid A'x+G'y\leq b'\}$  \end_inset  . @@ -253,11 +253,11 @@ teorema  Demostración:  \series default   Sean  -\begin_inset Formula $S:=\{(x,y)\in\mathbb{Z}^{2}:y\leq\sqrt{2}x,x\geq0,y\geq0\}$ +\begin_inset Formula $S:=\{(x,y)\in\mathbb{Z}^{2}\mid y\leq\sqrt{2}x,x\geq0,y\geq0\}$  \end_inset   y  -\begin_inset Formula $C:=\{(x,y):y<\sqrt{2}x,x\geq0,y\geq0\}\cup\{0\}$ +\begin_inset Formula $C:=\{(x,y)\mid y<\sqrt{2}x,x\geq0,y\geq0\}\cup\{0\}$  \end_inset  . @@ -406,7 +406,7 @@ Sean  \end_inset   y  -\begin_inset Formula $P:=\{x\in\mathbb{R}^{n}:Ax\leq b\}$ +\begin_inset Formula $P:=\{x\in\mathbb{R}^{n}\mid Ax\leq b\}$  \end_inset  , si  @@ -706,7 +706,7 @@ Lema de Veinott-Dantzig:  \end_inset  ,  -\begin_inset Formula $Q:=\{x\in\mathbb{R}^{n}:Ax=b,x\geq0\}$ +\begin_inset Formula $Q:=\{x\in\mathbb{R}^{n}\mid Ax=b,x\geq0\}$  \end_inset   es entero. @@ -913,7 +913,7 @@ Teorema de Hoffman-Kruskal:  \end_inset  , el poliedro  -\begin_inset Formula $\{x\in\mathbb{R}^{n}:Ax\leq b,x\geq0\}$ +\begin_inset Formula $\{x\in\mathbb{R}^{n}\mid Ax\leq b,x\geq0\}$  \end_inset   es entero. @@ -978,7 +978,7 @@ Dada una submatriz  \end_inset   es unimodular, con lo que  -\begin_inset Formula $Q:=\{[x,y]\in\mathbb{R}^{n+m}:Ax+Iy=b,[x,y]\geq0\}$ +\begin_inset Formula $Q:=\{[x,y]\in\mathbb{R}^{n+m}\mid Ax+Iy=b,[x,y]\geq0\}$  \end_inset   es entero. @@ -1003,7 +1003,7 @@ Dada una submatriz  \end_inset   es  -\begin_inset Formula $P:=\{x\in\mathbb{R}^{n}:b=b,x\geq0,b-Ax\geq0\}=\{Ax\leq b,x\geq0\}$ +\begin_inset Formula $P:=\{x\in\mathbb{R}^{n}\mid b=b,x\geq0,b-Ax\geq0\}=\{Ax\leq b,x\geq0\}$  \end_inset  . @@ -1069,11 +1069,11 @@ Sean  \end_inset  ,  -\begin_inset Formula $P:=\{x:Ax\leq b,x\geq0\}$ +\begin_inset Formula $P:=\{x\mid Ax\leq b,x\geq0\}$  \end_inset  ,  -\begin_inset Formula $Q:=\{[x,y]:Ax+y=b,[x,y]\geq0\}$ +\begin_inset Formula $Q:=\{[x,y]\mid Ax+y=b,[x,y]\geq0\}$  \end_inset   y  @@ -1643,7 +1643,7 @@ Otra posible formulación, con las mismas variables resulta de cambiar la  \begin_layout Standard  Para el problema del viajante de comercio sobre una red completa  -\begin_inset Formula $R:=(V:=\{0,\dots,n-1\},E:=\{\{i,j\}\}_{i,j\in V,i\neq j},d)$ +\begin_inset Formula $R:=(V:=\{0,\dots,n-1\},E\mid =\{\{i,j\}\}_{i,j\in V,i\neq j},d)$  \end_inset  , existen varias formulaciones: @@ -1783,7 +1783,7 @@ es   & \min & {\textstyle \sum}_{ij}d_{ij}x_{ij}\\   &  & {\textstyle \sum_{(i,j)\in E}}x_{ij} & =1 &  & \forall i\\   &  & {\textstyle \sum_{(k,i)\in E}}x_{ki} & =1 &  & \forall i\\ - &  & u_{i}-u_{j}+nx_{ij} & \leq n-1 &  & \forall i,j\in\{1,\dots,n-1\}:(i,j)\in E\\ + &  & u_{i}-u_{j}+nx_{ij} & \leq n-1 &  & \forall i,j\in\{1,\dots,n-1\}\mid (i,j)\in E\\   &  & x_{ij} & \in\{0,1\} &  & \forall i,j\\   &  & u_{i} & \in\mathbb{R}^{>0} &  & \forall i  \end{alignat*} | 
