diff options
Diffstat (limited to 'graf/n6.lyx')
| -rw-r--r-- | graf/n6.lyx | 74 | 
1 files changed, 37 insertions, 37 deletions
| diff --git a/graf/n6.lyx b/graf/n6.lyx index 6bf574a..c3d6148 100644 --- a/graf/n6.lyx +++ b/graf/n6.lyx @@ -158,7 +158,7 @@ Si  \end_inset  , llamamos  -\begin_inset Formula $[x,y]:=(x_{1},\dots,x_{m},y_{1},\dots,y_{n})\in\mathbb{R}^{n+m}$ +\begin_inset Formula $[x,y]\coloneqq (x_{1},\dots,x_{m},y_{1},\dots,y_{n})\in\mathbb{R}^{n+m}$  \end_inset  ; si  @@ -170,11 +170,11 @@ Si  \end_inset  , llamamos  -\begin_inset Formula $[A,B]:=(c_{ij})\in{\cal M}_{n\times(p+q)}(\mathbb{R})$ +\begin_inset Formula $[A,B]\coloneqq (c_{ij})\in{\cal M}_{n\times(p+q)}(\mathbb{R})$  \end_inset   dada por  -\begin_inset Formula $c_{ij}:=a_{ij}$ +\begin_inset Formula $c_{ij}\coloneqq a_{ij}$  \end_inset   para  @@ -182,7 +182,7 @@ Si  \end_inset   y  -\begin_inset Formula $c_{ij}:=b_{i(j-p)}$ +\begin_inset Formula $c_{ij}\coloneqq b_{i(j-p)}$  \end_inset   para  @@ -190,7 +190,7 @@ Si  \end_inset  , y escribimos  -\begin_inset Formula $[x_{1},\dots,x_{n}]:=[x_{1},[x_{2},\dots,x_{n}]]$ +\begin_inset Formula $[x_{1},\dots,x_{n}]\coloneqq [x_{1},[x_{2},\dots,x_{n}]]$  \end_inset   para  @@ -198,7 +198,7 @@ Si  \end_inset   y  -\begin_inset Formula $[x_{1}]:=x_{1}$ +\begin_inset Formula $[x_{1}]\coloneqq x_{1}$  \end_inset  . @@ -222,11 +222,11 @@ teorema  \end_inset  ,  -\begin_inset Formula $P:=\{[x,y]\in\mathbb{R}^{p+q}\mid Ax+Gy\leq b\}$ +\begin_inset Formula $P\coloneqq \{[x,y]\in\mathbb{R}^{p+q}\mid Ax+Gy\leq b\}$  \end_inset   y  -\begin_inset Formula $S:=\{[x,y]\in P\mid x\in\mathbb{Z}^{p}\}$ +\begin_inset Formula $S\coloneqq \{[x,y]\in P\mid x\in\mathbb{Z}^{p}\}$  \end_inset  , existen  @@ -253,11 +253,11 @@ teorema  Demostración:  \series default   Sean  -\begin_inset Formula $S:=\{(x,y)\in\mathbb{Z}^{2}\mid y\leq\sqrt{2}x,x\geq0,y\geq0\}$ +\begin_inset Formula $S\coloneqq \{(x,y)\in\mathbb{Z}^{2}\mid y\leq\sqrt{2}x,x\geq0,y\geq0\}$  \end_inset   y  -\begin_inset Formula $C:=\{(x,y)\mid y<\sqrt{2}x,x\geq0,y\geq0\}\cup\{0\}$ +\begin_inset Formula $C\coloneqq \{(x,y)\mid y<\sqrt{2}x,x\geq0,y\geq0\}\cup\{0\}$  \end_inset  . @@ -283,7 +283,7 @@ Demostración:  \end_inset   y  -\begin_inset Formula $p:=(1-t)a+tb$ +\begin_inset Formula $p\coloneqq (1-t)a+tb$  \end_inset  , si uno de  @@ -406,11 +406,11 @@ Sean  \end_inset   y  -\begin_inset Formula $P:=\{x\in\mathbb{R}^{n}\mid Ax\leq b\}$ +\begin_inset Formula $P\coloneqq \{x\in\mathbb{R}^{n}\mid Ax\leq b\}$  \end_inset  , si  -\begin_inset Formula $P_{I}:=\text{ec}(P\cap\mathbb{Z}^{n})\neq\emptyset$ +\begin_inset Formula $P_{I}\coloneqq \text{ec}(P\cap\mathbb{Z}^{n})\neq\emptyset$  \end_inset  , para  @@ -552,11 +552,11 @@ variable básica  \end_inset  , llamamos  -\begin_inset Formula $x_{B}:=(x_{s_{1}},\dots,x_{s_{m}})$ +\begin_inset Formula $x_{B}\coloneqq (x_{s_{1}},\dots,x_{s_{m}})$  \end_inset  ,  -\begin_inset Formula $x_{N}:=(x_{t_{1}},\dots,x_{t_{n-m}})$ +\begin_inset Formula $x_{N}\coloneqq (x_{t_{1}},\dots,x_{t_{n-m}})$  \end_inset  ,  @@ -564,7 +564,7 @@ variable básica  \end_inset   y  -\begin_inset Formula $\mathbf{n}(x_{1},\dots,x_{n-m}):=\sum_{k}e_{t_{k}}x_{k}$ +\begin_inset Formula $\mathbf{n}(x_{1},\dots,x_{n-m})\coloneqq \sum_{k}e_{t_{k}}x_{k}$  \end_inset  ,  @@ -609,7 +609,7 @@ factible  \begin_layout Standard  Dado  -\begin_inset Formula $F:=\{Ax=b,x\geq0\}$ +\begin_inset Formula $F\coloneqq \{Ax=b,x\geq0\}$  \end_inset  ,  @@ -706,7 +706,7 @@ Lema de Veinott-Dantzig:  \end_inset  ,  -\begin_inset Formula $Q:=\{x\in\mathbb{R}^{n}\mid Ax=b,x\geq0\}$ +\begin_inset Formula $Q\coloneqq \{x\in\mathbb{R}^{n}\mid Ax=b,x\geq0\}$  \end_inset   es entero. @@ -804,11 +804,11 @@ Sea  \end_inset   tal que  -\begin_inset Formula $z:=y+(B^{-1})_{i}\geq0$ +\begin_inset Formula $z\coloneqq y+(B^{-1})_{i}\geq0$  \end_inset   y  -\begin_inset Formula $b:=Bz=By+e_{i}$ +\begin_inset Formula $b\coloneqq Bz=By+e_{i}$  \end_inset  ,  @@ -828,11 +828,11 @@ Sea  \end_inset   todos los coeficientes enteros, luego  -\begin_inset Formula $Q:=\{Ax=b,x\geq0\}$ +\begin_inset Formula $Q\coloneqq \{Ax=b,x\geq0\}$  \end_inset   es entero y  -\begin_inset Formula $x:=\mathbf{b}z=\mathbf{b}B^{-1}b$ +\begin_inset Formula $x\coloneqq \mathbf{b}z=\mathbf{b}B^{-1}b$  \end_inset   es una solución básica factible de  @@ -978,7 +978,7 @@ Dada una submatriz  \end_inset   es unimodular, con lo que  -\begin_inset Formula $Q:=\{[x,y]\in\mathbb{R}^{n+m}\mid Ax+Iy=b,[x,y]\geq0\}$ +\begin_inset Formula $Q\coloneqq \{[x,y]\in\mathbb{R}^{n+m}\mid Ax+Iy=b,[x,y]\geq0\}$  \end_inset   es entero. @@ -1003,7 +1003,7 @@ Dada una submatriz  \end_inset   es  -\begin_inset Formula $P:=\{x\in\mathbb{R}^{n}\mid b=b,x\geq0,b-Ax\geq0\}=\{Ax\leq b,x\geq0\}$ +\begin_inset Formula $P\coloneqq \{x\in\mathbb{R}^{n}\mid b=b,x\geq0,b-Ax\geq0\}=\{Ax\leq b,x\geq0\}$  \end_inset  . @@ -1016,7 +1016,7 @@ Dada una submatriz  \end_inset   es un punto extremo, pues si no lo fuera existirían  -\begin_inset Formula $U:=[u,b-Au],V:=[v,b-Av]\in Q$ +\begin_inset Formula $U\coloneqq [u,b-Au],V\coloneqq [v,b-Av]\in Q$  \end_inset   distintos y  @@ -1069,11 +1069,11 @@ Sean  \end_inset  ,  -\begin_inset Formula $P:=\{x\mid Ax\leq b,x\geq0\}$ +\begin_inset Formula $P\coloneqq \{x\mid Ax\leq b,x\geq0\}$  \end_inset  ,  -\begin_inset Formula $Q:=\{[x,y]\mid Ax+y=b,[x,y]\geq0\}$ +\begin_inset Formula $Q\coloneqq \{[x,y]\mid Ax+y=b,[x,y]\geq0\}$  \end_inset   y  @@ -1293,7 +1293,7 @@ teorema  \end_inset   tal que, si  -\begin_inset Formula $F_{2}:=F\setminus F_{1}$ +\begin_inset Formula $F_{2}\coloneqq F\setminus F_{1}$  \end_inset  , para  @@ -1496,7 +1496,7 @@ Si las tareas se pueden hacer a la vez, lo que queremos minimizar es  \begin_layout Standard  Sean ahora  -\begin_inset Formula $R:=(V:=\{1,\dots,n\},E,\omega)$ +\begin_inset Formula $R\coloneqq (V\coloneqq \{1,\dots,n\},E,\omega)$  \end_inset   una red y  @@ -1595,7 +1595,7 @@ Para obtener el árbol generador minimal de  \end_inset  , llamamos  -\begin_inset Formula $x_{ij}:=\chi_{E_{T}}(i,j)$ +\begin_inset Formula $x_{ij}\coloneqq \chi_{E_{T}}(i,j)$  \end_inset   para  @@ -1643,7 +1643,7 @@ Otra posible formulación, con las mismas variables resulta de cambiar la  \begin_layout Standard  Para el problema del viajante de comercio sobre una red completa  -\begin_inset Formula $R:=(V:=\{0,\dots,n-1\},E\mid =\{\{i,j\}\}_{i,j\in V,i\neq j},d)$ +\begin_inset Formula $R\coloneqq (V\coloneqq \{0,\dots,n-1\},E\coloneqq \{\{i,j\}\}_{i,j\in V,i\neq j},d)$  \end_inset  , existen varias formulaciones: @@ -1774,7 +1774,7 @@ es  .   Llamando  -\begin_inset Formula $n:=|V|$ +\begin_inset Formula $n\coloneqq |V|$  \end_inset  : @@ -1783,7 +1783,7 @@ es   & \min & {\textstyle \sum}_{ij}d_{ij}x_{ij}\\   &  & {\textstyle \sum_{(i,j)\in E}}x_{ij} & =1 &  & \forall i\\   &  & {\textstyle \sum_{(k,i)\in E}}x_{ki} & =1 &  & \forall i\\ - &  & u_{i}-u_{j}+nx_{ij} & \leq n-1 &  & \forall i,j\in\{1,\dots,n-1\}\mid (i,j)\in E\\ + &  & u_{i}-u_{j}+nx_{ij} & \leq n-1 &  & \forall i,j\in\{1,\dots,n-1\}:(i,j)\in E\\   &  & x_{ij} & \in\{0,1\} &  & \forall i,j\\   &  & u_{i} & \in\mathbb{R}^{>0} &  & \forall i  \end{alignat*} @@ -1830,7 +1830,7 @@ Sea  \end_inset   la representación por variables de un ciclo hamiltoniano, llamamos  -\begin_inset Formula $u_{i}:=t$ +\begin_inset Formula $u_{i}\coloneqq t$  \end_inset   si  @@ -1928,7 +1928,7 @@ Dadas dos variables  \end_inset  , para definir una variable  -\begin_inset Formula $y:=[x_{1}>x_{2}]$ +\begin_inset Formula $y\coloneqq [x_{1}>x_{2}]$  \end_inset   ( @@ -2053,7 +2053,7 @@ Si  \end_inset  , para definir  -\begin_inset Formula $y:=\min\{x_{1},x_{2}\}$ +\begin_inset Formula $y\coloneqq \min\{x_{1},x_{2}\}$  \end_inset   añadimos  @@ -2073,7 +2073,7 @@ Si  \end_inset  , y para definir  -\begin_inset Formula $y:=\max\{x_{1},x_{2}\}$ +\begin_inset Formula $y\coloneqq \max\{x_{1},x_{2}\}$  \end_inset   añadimos  | 
