diff options
Diffstat (limited to 'graf')
| -rw-r--r-- | graf/n5.lyx | 213 | 
1 files changed, 213 insertions, 0 deletions
| diff --git a/graf/n5.lyx b/graf/n5.lyx index d4c4f1b..d8fa808 100644 --- a/graf/n5.lyx +++ b/graf/n5.lyx @@ -242,6 +242,75 @@ En adelante el grafo a considerar será  \end_deeper  \begin_layout Enumerate +\begin_inset Formula $\chi(G)=0$ +\end_inset + + si y sólo si  +\begin_inset Formula $G$ +\end_inset + + es vacío. +\end_layout + +\begin_deeper +\begin_layout Enumerate +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\implies$ +\end_inset + + +\end_layout + +\end_inset + +Si  +\begin_inset Formula $\chi(G)=0$ +\end_inset + +, en particular existe  +\begin_inset Formula $f:V\to\emptyset$ +\end_inset + + y  +\begin_inset Formula $V=\emptyset$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\impliedby]$ +\end_inset + + +\end_layout + +\end_inset + +Si  +\begin_inset Formula $V=\emptyset$ +\end_inset + +,  +\begin_inset Formula $E=\emptyset$ +\end_inset + + y  +\begin_inset Formula $f:V\to\emptyset$ +\end_inset + + es una 0-coloración. +\end_layout + +\end_deeper +\begin_layout Enumerate  \begin_inset Formula $\chi(G)=1$  \end_inset @@ -311,6 +380,146 @@ Claramente  \end_deeper  \begin_layout Enumerate +\begin_inset Formula $\chi(G)=2$ +\end_inset + + si y sólo si  +\begin_inset Formula $G$ +\end_inset + + es bipartito con algún eje. +\end_layout + +\begin_deeper +\begin_layout Enumerate +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\implies]$ +\end_inset + + +\end_layout + +\end_inset + +La partición  +\begin_inset Formula $\{f^{-1}(0),f^{-1}(1)\}$ +\end_inset + + de  +\begin_inset Formula $V$ +\end_inset + + cumple que eje une dos vértices en el mismo conjunto y por tanto todos + unen un vértice de uno con uno del otro. + Hay algún eje porque si no lo hubiera sería  +\begin_inset Formula $\chi(G)=1$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\impliedby]$ +\end_inset + + +\end_layout + +\end_inset + +Sea  +\begin_inset Formula $(A,B)$ +\end_inset + + la partición, definimos  +\begin_inset Formula $f(v):=0$ +\end_inset + + para  +\begin_inset Formula $v\in A$ +\end_inset + + y  +\begin_inset Formula $f(v):=1$ +\end_inset + + para  +\begin_inset Formula $v\in B$ +\end_inset + +. + Entonces  +\begin_inset Formula $f$ +\end_inset + + es una 2-coloración de  +\begin_inset Formula $G$ +\end_inset + +, y como hay algún eje,  +\begin_inset Formula $\chi(G)>1$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Enumerate +Todo árbol no trivial es bipartito. +\end_layout + +\begin_deeper +\begin_layout Standard +Se tiene  +\begin_inset Formula $|V|\geq2$ +\end_inset + + y, sea  +\begin_inset Formula $n(v)$ +\end_inset + + el nivel de un  +\begin_inset Formula $v\in V$ +\end_inset + +,  +\begin_inset Formula $f:V\to\{0,1\}$ +\end_inset + + dada por  +\begin_inset Formula $f(v):=[n(v)]_{2}$ +\end_inset + + es una coloración de  +\begin_inset Formula $G$ +\end_inset + +. + Como  +\begin_inset Formula $G$ +\end_inset + + tiene ejes,  +\begin_inset Formula $\chi(G)>1$ +\end_inset + + y  +\begin_inset Formula $\chi(G)=2$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Enumerate +Sea   \begin_inset Note Note  status open @@ -321,6 +530,10 @@ status open  \end_inset +\begin_inset Formula $C_{n}:=(\{1,\dots,n\},\{\{$ +\end_inset + +  \end_layout  \end_body | 
