diff options
Diffstat (limited to 'graf')
| -rw-r--r-- | graf/n1.lyx | 32 | ||||
| -rw-r--r-- | graf/n2.lyx | 24 | ||||
| -rw-r--r-- | graf/n3.lyx | 32 | ||||
| -rw-r--r-- | graf/n4.lyx | 22 | ||||
| -rw-r--r-- | graf/n5.lyx | 40 | ||||
| -rw-r--r-- | graf/n6.lyx | 74 | ||||
| -rw-r--r-- | graf/n7.lyx | 26 | 
7 files changed, 127 insertions, 123 deletions
| diff --git a/graf/n1.lyx b/graf/n1.lyx index 921c7d8..0f2f84f 100644 --- a/graf/n1.lyx +++ b/graf/n1.lyx @@ -209,7 +209,7 @@ Dados un grafo  \end_inset   y  -\begin_inset Formula $e:=(i,j)\in E$ +\begin_inset Formula $e\coloneqq (i,j)\in E$  \end_inset  ,  @@ -346,7 +346,7 @@ G^{\complement}:=(V,E^{\complement}):=(V,\{S\in{\cal P}(V)\mid |S|=2,S\notin E\}  \end_inset  Un grafo  -\begin_inset Formula $G':=(V',E')$ +\begin_inset Formula $G'\coloneqq (V',E')$  \end_inset   es un  @@ -354,7 +354,7 @@ Un grafo  subgrafo  \series default   de  -\begin_inset Formula $G:=(V,E)$ +\begin_inset Formula $G\coloneqq (V,E)$  \end_inset   si  @@ -404,11 +404,11 @@ inducido  \end_inset   a  -\begin_inset Formula $G_{V'}:=(V',E_{V'})$ +\begin_inset Formula $G_{V'}\coloneqq (V',E_{V'})$  \end_inset  , donde  -\begin_inset Formula $E_{V'}:=\{S\in E\mid S\subseteq V'\}$ +\begin_inset Formula $E_{V'}\coloneqq \{S\in E\mid S\subseteq V'\}$  \end_inset  , y  @@ -462,7 +462,7 @@ independiente  \end_inset  ,  -\begin_inset Formula $G-v:=G-\{v\}$ +\begin_inset Formula $G-v\coloneqq G-\{v\}$  \end_inset  , y si  @@ -470,7 +470,7 @@ independiente  \end_inset  ,  -\begin_inset Formula $G-e:=G-\{e\}$ +\begin_inset Formula $G-e\coloneqq G-\{e\}$  \end_inset  . @@ -504,11 +504,11 @@ maximal  \begin_layout Standard  Dos grafos  -\begin_inset Formula $G:=(V,E)$ +\begin_inset Formula $G\coloneqq (V,E)$  \end_inset   y  -\begin_inset Formula $G':=(V',E')$ +\begin_inset Formula $G'\coloneqq (V',E')$  \end_inset   son  @@ -540,7 +540,7 @@ Grado de un nodo  \begin_layout Standard  Dado un grafo  -\begin_inset Formula $G:=(V,E)$ +\begin_inset Formula $G\coloneqq (V,E)$  \end_inset  , llamamos  @@ -627,11 +627,11 @@ eje colgante  \series default  .   Llamamos  -\begin_inset Formula $\delta_{G}:=\min_{v\in V}o(v)$ +\begin_inset Formula $\delta_{G}\coloneqq \min_{v\in V}o(v)$  \end_inset   y  -\begin_inset Formula $\Delta_{G}:=\max_{v\in V}o(v)$ +\begin_inset Formula $\Delta_{G}\coloneqq \max_{v\in V}o(v)$  \end_inset  . @@ -749,7 +749,7 @@ Teorema de Erdös y Gallai  :  \series default   Una secuencia  -\begin_inset Formula $S:=(d_{1},\dots,d_{n})$ +\begin_inset Formula $S\coloneqq (d_{1},\dots,d_{n})$  \end_inset   monótona decreciente de naturales es una secuencia gráfica si y sólo si @@ -1598,7 +1598,7 @@ status open  \end_inset  Sea  -\begin_inset Formula $G:=(\{1,\dots,n\},E)$ +\begin_inset Formula $G\coloneqq (\{1,\dots,n\},E)$  \end_inset   un grafo con  @@ -2008,7 +2008,7 @@ Representaciones matriciales  \begin_layout Standard  Dado un grafo no dirigido  -\begin_inset Formula $G:=(\{1,\dots,n\},E)$ +\begin_inset Formula $G\coloneqq (\{1,\dots,n\},E)$  \end_inset  , la  @@ -2020,7 +2020,7 @@ matriz de adyacencia  \end_inset   es la matriz  -\begin_inset Formula $A:=(a_{ij})_{ij}\in{\cal M}_{n}(\mathbb{Z})$ +\begin_inset Formula $A\coloneqq (a_{ij})_{ij}\in{\cal M}_{n}(\mathbb{Z})$  \end_inset   dada por  diff --git a/graf/n2.lyx b/graf/n2.lyx index 9d905d7..dd4d85b 100644 --- a/graf/n2.lyx +++ b/graf/n2.lyx @@ -513,7 +513,7 @@ Recorrido de componentes conexas  \begin_layout Standard  Sean  -\begin_inset Formula $G:=(V,E)$ +\begin_inset Formula $G\coloneqq (V,E)$  \end_inset   un grafo de orden  @@ -1224,7 +1224,7 @@ Demostración:  \end_inset  ,  -\begin_inset Formula $Y:=[V_{1},V\setminus V_{1}]$ +\begin_inset Formula $Y\coloneqq [V_{1},V\setminus V_{1}]$  \end_inset   es un corte contenido estrictamente en  @@ -1336,7 +1336,7 @@ Si  \end_inset   Sean  -\begin_inset Formula $[V_{1},V_{2}]:=\{e\}$ +\begin_inset Formula $[V_{1},V_{2}]\coloneqq \{e\}$  \end_inset  ,  @@ -1653,7 +1653,7 @@ Demostración:  \end_inset   y  -\begin_inset Formula $q:=|V_{1}|$ +\begin_inset Formula $q\coloneqq |V_{1}|$  \end_inset  . @@ -2013,7 +2013,7 @@ Si  .   Si  -\begin_inset Formula $e:=(u,v)\in E$ +\begin_inset Formula $e\coloneqq (u,v)\in E$  \end_inset  , como  @@ -2137,15 +2137,15 @@ grafo en línea  \end_inset   es  -\begin_inset Formula $L(G):=(V^{L},E^{L})$ +\begin_inset Formula $L(G)\coloneqq (V^{L},E^{L})$  \end_inset   dado por  -\begin_inset Formula $V^{L}:=E$ +\begin_inset Formula $V^{L}\coloneqq E$  \end_inset   y  -\begin_inset Formula $E^{L}:=\{(e,f)\mid e\neq f,e\cap f\neq\emptyset\}$ +\begin_inset Formula $E^{L}\coloneqq \{(e,f)\mid e\neq f,e\cap f\neq\emptyset\}$  \end_inset  . @@ -2197,15 +2197,15 @@ Demostración:  \end_inset   y  -\begin_inset Formula $G':=(V',E')$ +\begin_inset Formula $G'\coloneqq (V',E')$  \end_inset   dado por  -\begin_inset Formula $V':=V^{L}\dot{\cup}\{x,y\}$ +\begin_inset Formula $V'\coloneqq V^{L}\dot{\cup}\{x,y\}$  \end_inset   y  -\begin_inset Formula $E':=E^{L}\cup\{((i,u),x)\}_{(i,u)\in E}\cup\{((j,v),y)\}_{(j,v)\in E}$ +\begin_inset Formula $E'\coloneqq E^{L}\cup\{((i,u),x)\}_{(i,u)\in E}\cup\{((j,v),y)\}_{(j,v)\in E}$  \end_inset  . @@ -2586,7 +2586,7 @@ Si  .   Si  -\begin_inset Formula $e:=(u,v)\in E$ +\begin_inset Formula $e\coloneqq (u,v)\in E$  \end_inset  , como  diff --git a/graf/n3.lyx b/graf/n3.lyx index ed819e4..b2cfb39 100644 --- a/graf/n3.lyx +++ b/graf/n3.lyx @@ -155,11 +155,11 @@ teorema  .   Sean  -\begin_inset Formula $u_{0}:=v_{0}:=u$ +\begin_inset Formula $u_{0}\coloneqq v_{0}\coloneqq u$  \end_inset  ,  -\begin_inset Formula $u_{p}:=u_{q}:=v$ +\begin_inset Formula $u_{p}\coloneqq u_{q}\coloneqq v$  \end_inset   e  @@ -228,7 +228,7 @@ teorema  \end_inset  , sea  -\begin_inset Formula $e:=(u,v)\in E$ +\begin_inset Formula $e\coloneqq (u,v)\in E$  \end_inset  ,  @@ -447,7 +447,7 @@ teorema  \end_inset   el ciclo que se forma al añadir  -\begin_inset Formula $e:=(u,v)$ +\begin_inset Formula $e\coloneqq (u,v)$  \end_inset   a  @@ -753,7 +753,7 @@ La altura de  status open  \begin_layout Plain Layout -\begin_inset Formula $\lg x:=\log_{2}x$ +\begin_inset Formula $\lg x\coloneqq \log_{2}x$  \end_inset  . @@ -792,15 +792,15 @@ Todos los niveles hasta el  \end_inset   se alcanza en  -\begin_inset Formula $T':=(V',E')$ +\begin_inset Formula $T'\coloneqq (V',E')$  \end_inset   dado por  -\begin_inset Formula $V':=\{b_{0},a_{1},b_{1},\dots,a_{h},b_{h}\}$ +\begin_inset Formula $V'\coloneqq \{b_{0},a_{1},b_{1},\dots,a_{h},b_{h}\}$  \end_inset   y  -\begin_inset Formula $E':=\{(a_{k},b_{k-1}),(b_{k},b_{k-1})\}_{k\in\{1,\dots,h\}}$ +\begin_inset Formula $E'\coloneqq \{(a_{k},b_{k-1}),(b_{k},b_{k-1})\}_{k\in\{1,\dots,h\}}$  \end_inset  . @@ -833,15 +833,15 @@ n\leq2^{h+1}-1\iff n+1\leq2^{h+1}\iff\lg(n+1)-1\leq h\overset{h\in\mathbb{Z}}{\i  \end_inset   La igualdad se alcanza en  -\begin_inset Formula $T':=(V',E')$ +\begin_inset Formula $T'\coloneqq (V',E')$  \end_inset   con  -\begin_inset Formula $V':=\{1,\dots,n\}$ +\begin_inset Formula $V'\coloneqq \{1,\dots,n\}$  \end_inset   y  -\begin_inset Formula $E':=\{(k,\lfloor\frac{k}{2}\rfloor)\}_{k\in\{2,\dots,n\}}$ +\begin_inset Formula $E'\coloneqq \{(k,\lfloor\frac{k}{2}\rfloor)\}_{k\in\{2,\dots,n\}}$  \end_inset  . @@ -1025,7 +1025,7 @@ mínimo  \end_inset   tales que  -\begin_inset Formula $a:=(u,v)\in E$ +\begin_inset Formula $a\coloneqq (u,v)\in E$  \end_inset  , si  @@ -1095,7 +1095,7 @@ mínimo  \end_inset   y  -\begin_inset Formula $S:=(V,E_{0}\cup\{e\})$ +\begin_inset Formula $S\coloneqq (V,E_{0}\cup\{e\})$  \end_inset  , como  @@ -1115,7 +1115,7 @@ mínimo  \end_inset   y  -\begin_inset Formula $T_{1}:=(V,E_{1}:=E_{0}\cup\{e\}\setminus\{a\})$ +\begin_inset Formula $T_{1}\coloneqq (V,E_{1}\coloneqq E_{0}\cup\{e\}\setminus\{a\})$  \end_inset   tiene menor o igual (en concreto igual) peso que  @@ -1371,7 +1371,9 @@ Mientras{$|V_1|<|V|$}{  \backslash  in V_1$ y $v_2  \backslash -in V_2$ con $e:=(v_1,v_2) +in V_2$ con $e +\backslash +coloneqq (v_1,v_2)  \backslash  in E$ de peso mínimo  \backslash diff --git a/graf/n4.lyx b/graf/n4.lyx index 5334582..3506c7c 100644 --- a/graf/n4.lyx +++ b/graf/n4.lyx @@ -90,7 +90,7 @@ Dada una red  \end_inset   y un camino  -\begin_inset Formula $P:=v_{0}e_{1}v_{1}\cdots e_{k}v_{k}$ +\begin_inset Formula $P\coloneqq v_{0}e_{1}v_{1}\cdots e_{k}v_{k}$  \end_inset   en  @@ -198,7 +198,7 @@ Como  teorema  \series default  , sean  -\begin_inset Formula $(V:=\{1,\dots,n\},E,\ell)$ +\begin_inset Formula $(V\coloneqq \{1,\dots,n\},E,\ell)$  \end_inset   una red conexa,  @@ -311,7 +311,7 @@ status open  \end_inset  Sea  -\begin_inset Formula $P:=si_{1}\cdots i_{k}$ +\begin_inset Formula $P\coloneqq si_{1}\cdots i_{k}$  \end_inset   un camino, y queremos ver que  @@ -403,7 +403,7 @@ Si  \begin_deeper  \begin_layout Standard  Sean  -\begin_inset Formula $P:=st_{1}\cdots t_{p}j$ +\begin_inset Formula $P\coloneqq st_{1}\cdots t_{p}j$  \end_inset   un camino de  @@ -423,11 +423,11 @@ Sean  \end_inset   y  -\begin_inset Formula $t_{k:=i+1},\dots,t_{p},j\in R$ +\begin_inset Formula $t_{k\coloneqq i+1},\dots,t_{p},j\in R$  \end_inset  , entonces  -\begin_inset Formula $P':=st_{1}\cdots t_{i}t_{k}$ +\begin_inset Formula $P'\coloneqq st_{1}\cdots t_{i}t_{k}$  \end_inset   cumple  @@ -1761,7 +1761,7 @@ Si  \end_inset   tal que  -\begin_inset Formula $G_{i}:=(V,E_{i}):=G+\{e_{1},\dots,e_{i}\}$ +\begin_inset Formula $G_{i}\coloneqq (V,E_{i})\coloneqq G+\{e_{1},\dots,e_{i}\}$  \end_inset   es hamiltoniano si y sólo si  @@ -1769,7 +1769,7 @@ Si  \end_inset  , por lo que existe un camino hamiltoniano  -\begin_inset Formula $(u=:u_{1})u_{2}\cdots(u_{n}:=v)$ +\begin_inset Formula $(u=:u_{1})u_{2}\cdots(u_{n}\coloneqq v)$  \end_inset   en  @@ -1777,16 +1777,16 @@ Si  \end_inset  , con  -\begin_inset Formula $n:=|V|$ +\begin_inset Formula $n\coloneqq |V|$  \end_inset  .   Sean ahora  -\begin_inset Formula $X:=\{i\in\{2,\dots,n-2\}\mid (u_{i},v)\in E_{k}\}$ +\begin_inset Formula $X\coloneqq \{i\in\{2,\dots,n-2\}\mid(u_{i},v)\in E_{k}\}$  \end_inset   e  -\begin_inset Formula $Y:=\{i\in\{2,\dots,n-2\}\mid (u_{i+1},u)\in E_{k}\}$ +\begin_inset Formula $Y\coloneqq \{i\in\{2,\dots,n-2\}\mid(u_{i+1},u)\in E_{k}\}$  \end_inset  , se tiene  diff --git a/graf/n5.lyx b/graf/n5.lyx index 4ae5cf7..5914553 100644 --- a/graf/n5.lyx +++ b/graf/n5.lyx @@ -447,7 +447,7 @@ Sea  \end_inset   la partición, definimos  -\begin_inset Formula $f(v):=0$ +\begin_inset Formula $f(v)\coloneqq 0$  \end_inset   para  @@ -455,7 +455,7 @@ Sea  \end_inset   y  -\begin_inset Formula $f(v):=1$ +\begin_inset Formula $f(v)\coloneqq 1$  \end_inset   para  @@ -502,7 +502,7 @@ Se tiene  \end_inset   dada por  -\begin_inset Formula $f(v):=[n(v)]_{2}$ +\begin_inset Formula $f(v)\coloneqq [n(v)]_{2}$  \end_inset   es una coloración de  @@ -556,7 +556,7 @@ ciclo  \begin_deeper  \begin_layout Standard  Como  -\begin_inset Formula $C_{n}:=(V:=\{0,\dots,n-1\},\{\{i,[i+1]_{n}\}\}_{i\in V})$ +\begin_inset Formula $C_{n}\coloneqq (V\coloneqq \{0,\dots,n-1\},\{\{i,[i+1]_{n}\}\}_{i\in V})$  \end_inset   tiene ejes,  @@ -614,7 +614,7 @@ Como  \end_inset  , y tomamos  -\begin_inset Formula $f(i):=[i]_{2}$ +\begin_inset Formula $f(i)\coloneqq [i]_{2}$  \end_inset   para  @@ -622,7 +622,7 @@ Como  \end_inset   y  -\begin_inset Formula $f(0):=2$ +\begin_inset Formula $f(0)\coloneqq 2$  \end_inset  . @@ -711,7 +711,7 @@ Si  \begin_deeper  \begin_layout Standard  Sean  -\begin_inset Formula $k:=\chi(G-v)$ +\begin_inset Formula $k\coloneqq \chi(G-v)$  \end_inset   y  @@ -735,7 +735,7 @@ Sean  \end_inset   dada por  -\begin_inset Formula $g(i):=f(i)$ +\begin_inset Formula $g(i)\coloneqq f(i)$  \end_inset   para  @@ -743,7 +743,7 @@ Sean  \end_inset   y  -\begin_inset Formula $g(v):=k+1$ +\begin_inset Formula $g(v)\coloneqq k+1$  \end_inset   es una  @@ -1124,7 +1124,7 @@ Si todos los vértices de  \end_inset   con  -\begin_inset Formula $\chi(H_{0}:=G_{0}-e_{1})=\chi(G_{0})$ +\begin_inset Formula $\chi(H_{0}\coloneqq G_{0}-e_{1})=\chi(G_{0})$  \end_inset  . @@ -1172,7 +1172,7 @@ teorema  Demostración:  \series default   Sea  -\begin_inset Formula $k:=\chi(G)$ +\begin_inset Formula $k\coloneqq \chi(G)$  \end_inset   y supongamos  @@ -1308,11 +1308,11 @@ Si  \end_inset   y  -\begin_inset Formula $e:=(u,v)$ +\begin_inset Formula $e\coloneqq (u,v)$  \end_inset  , llamamos  -\begin_inset Formula $G+e:=(V,E\cup\{e\})$ +\begin_inset Formula $G+e\coloneqq (V,E\cup\{e\})$  \end_inset  , y si  @@ -1357,7 +1357,7 @@ Teorema de reducción:  Demostración:  \series default   Sea  -\begin_inset Formula $(u,v):=e$ +\begin_inset Formula $(u,v)\coloneqq e$  \end_inset  , las coloraciones  @@ -1377,7 +1377,7 @@ Demostración:  \end_inset   haciendo  -\begin_inset Formula $f(*):=f(u)=f(v)$ +\begin_inset Formula $f(*)\coloneqq f(u)=f(v)$  \end_inset  , y las coloraciones  @@ -1576,7 +1576,7 @@ planar  \end_inset   tales que, para  -\begin_inset Formula $e:=(u,v)\in E$ +\begin_inset Formula $e\coloneqq (u,v)\in E$  \end_inset  ,  @@ -1663,11 +1663,11 @@ estrella  \end_inset  , llamamos  -\begin_inset Formula $f(v_{0}):=0$ +\begin_inset Formula $f(v_{0})\coloneqq 0$  \end_inset  ,  -\begin_inset Formula $f(v_{i}):=(\cos i/n,\sin i/n)$ +\begin_inset Formula $f(v_{i})\coloneqq (\cos i/n,\sin i/n)$  \end_inset   para  @@ -1675,7 +1675,7 @@ estrella  \end_inset   y  -\begin_inset Formula $g(v_{0},v_{i})(t):=tv_{i}$ +\begin_inset Formula $g(v_{0},v_{i})(t)\coloneqq tv_{i}$  \end_inset  . @@ -1915,7 +1915,7 @@ Demostración:  \end_inset   y  -\begin_inset Formula $c:=|F|$ +\begin_inset Formula $c\coloneqq |F|$  \end_inset  , como toda  diff --git a/graf/n6.lyx b/graf/n6.lyx index 6bf574a..c3d6148 100644 --- a/graf/n6.lyx +++ b/graf/n6.lyx @@ -158,7 +158,7 @@ Si  \end_inset  , llamamos  -\begin_inset Formula $[x,y]:=(x_{1},\dots,x_{m},y_{1},\dots,y_{n})\in\mathbb{R}^{n+m}$ +\begin_inset Formula $[x,y]\coloneqq (x_{1},\dots,x_{m},y_{1},\dots,y_{n})\in\mathbb{R}^{n+m}$  \end_inset  ; si  @@ -170,11 +170,11 @@ Si  \end_inset  , llamamos  -\begin_inset Formula $[A,B]:=(c_{ij})\in{\cal M}_{n\times(p+q)}(\mathbb{R})$ +\begin_inset Formula $[A,B]\coloneqq (c_{ij})\in{\cal M}_{n\times(p+q)}(\mathbb{R})$  \end_inset   dada por  -\begin_inset Formula $c_{ij}:=a_{ij}$ +\begin_inset Formula $c_{ij}\coloneqq a_{ij}$  \end_inset   para  @@ -182,7 +182,7 @@ Si  \end_inset   y  -\begin_inset Formula $c_{ij}:=b_{i(j-p)}$ +\begin_inset Formula $c_{ij}\coloneqq b_{i(j-p)}$  \end_inset   para  @@ -190,7 +190,7 @@ Si  \end_inset  , y escribimos  -\begin_inset Formula $[x_{1},\dots,x_{n}]:=[x_{1},[x_{2},\dots,x_{n}]]$ +\begin_inset Formula $[x_{1},\dots,x_{n}]\coloneqq [x_{1},[x_{2},\dots,x_{n}]]$  \end_inset   para  @@ -198,7 +198,7 @@ Si  \end_inset   y  -\begin_inset Formula $[x_{1}]:=x_{1}$ +\begin_inset Formula $[x_{1}]\coloneqq x_{1}$  \end_inset  . @@ -222,11 +222,11 @@ teorema  \end_inset  ,  -\begin_inset Formula $P:=\{[x,y]\in\mathbb{R}^{p+q}\mid Ax+Gy\leq b\}$ +\begin_inset Formula $P\coloneqq \{[x,y]\in\mathbb{R}^{p+q}\mid Ax+Gy\leq b\}$  \end_inset   y  -\begin_inset Formula $S:=\{[x,y]\in P\mid x\in\mathbb{Z}^{p}\}$ +\begin_inset Formula $S\coloneqq \{[x,y]\in P\mid x\in\mathbb{Z}^{p}\}$  \end_inset  , existen  @@ -253,11 +253,11 @@ teorema  Demostración:  \series default   Sean  -\begin_inset Formula $S:=\{(x,y)\in\mathbb{Z}^{2}\mid y\leq\sqrt{2}x,x\geq0,y\geq0\}$ +\begin_inset Formula $S\coloneqq \{(x,y)\in\mathbb{Z}^{2}\mid y\leq\sqrt{2}x,x\geq0,y\geq0\}$  \end_inset   y  -\begin_inset Formula $C:=\{(x,y)\mid y<\sqrt{2}x,x\geq0,y\geq0\}\cup\{0\}$ +\begin_inset Formula $C\coloneqq \{(x,y)\mid y<\sqrt{2}x,x\geq0,y\geq0\}\cup\{0\}$  \end_inset  . @@ -283,7 +283,7 @@ Demostración:  \end_inset   y  -\begin_inset Formula $p:=(1-t)a+tb$ +\begin_inset Formula $p\coloneqq (1-t)a+tb$  \end_inset  , si uno de  @@ -406,11 +406,11 @@ Sean  \end_inset   y  -\begin_inset Formula $P:=\{x\in\mathbb{R}^{n}\mid Ax\leq b\}$ +\begin_inset Formula $P\coloneqq \{x\in\mathbb{R}^{n}\mid Ax\leq b\}$  \end_inset  , si  -\begin_inset Formula $P_{I}:=\text{ec}(P\cap\mathbb{Z}^{n})\neq\emptyset$ +\begin_inset Formula $P_{I}\coloneqq \text{ec}(P\cap\mathbb{Z}^{n})\neq\emptyset$  \end_inset  , para  @@ -552,11 +552,11 @@ variable básica  \end_inset  , llamamos  -\begin_inset Formula $x_{B}:=(x_{s_{1}},\dots,x_{s_{m}})$ +\begin_inset Formula $x_{B}\coloneqq (x_{s_{1}},\dots,x_{s_{m}})$  \end_inset  ,  -\begin_inset Formula $x_{N}:=(x_{t_{1}},\dots,x_{t_{n-m}})$ +\begin_inset Formula $x_{N}\coloneqq (x_{t_{1}},\dots,x_{t_{n-m}})$  \end_inset  ,  @@ -564,7 +564,7 @@ variable básica  \end_inset   y  -\begin_inset Formula $\mathbf{n}(x_{1},\dots,x_{n-m}):=\sum_{k}e_{t_{k}}x_{k}$ +\begin_inset Formula $\mathbf{n}(x_{1},\dots,x_{n-m})\coloneqq \sum_{k}e_{t_{k}}x_{k}$  \end_inset  ,  @@ -609,7 +609,7 @@ factible  \begin_layout Standard  Dado  -\begin_inset Formula $F:=\{Ax=b,x\geq0\}$ +\begin_inset Formula $F\coloneqq \{Ax=b,x\geq0\}$  \end_inset  ,  @@ -706,7 +706,7 @@ Lema de Veinott-Dantzig:  \end_inset  ,  -\begin_inset Formula $Q:=\{x\in\mathbb{R}^{n}\mid Ax=b,x\geq0\}$ +\begin_inset Formula $Q\coloneqq \{x\in\mathbb{R}^{n}\mid Ax=b,x\geq0\}$  \end_inset   es entero. @@ -804,11 +804,11 @@ Sea  \end_inset   tal que  -\begin_inset Formula $z:=y+(B^{-1})_{i}\geq0$ +\begin_inset Formula $z\coloneqq y+(B^{-1})_{i}\geq0$  \end_inset   y  -\begin_inset Formula $b:=Bz=By+e_{i}$ +\begin_inset Formula $b\coloneqq Bz=By+e_{i}$  \end_inset  ,  @@ -828,11 +828,11 @@ Sea  \end_inset   todos los coeficientes enteros, luego  -\begin_inset Formula $Q:=\{Ax=b,x\geq0\}$ +\begin_inset Formula $Q\coloneqq \{Ax=b,x\geq0\}$  \end_inset   es entero y  -\begin_inset Formula $x:=\mathbf{b}z=\mathbf{b}B^{-1}b$ +\begin_inset Formula $x\coloneqq \mathbf{b}z=\mathbf{b}B^{-1}b$  \end_inset   es una solución básica factible de  @@ -978,7 +978,7 @@ Dada una submatriz  \end_inset   es unimodular, con lo que  -\begin_inset Formula $Q:=\{[x,y]\in\mathbb{R}^{n+m}\mid Ax+Iy=b,[x,y]\geq0\}$ +\begin_inset Formula $Q\coloneqq \{[x,y]\in\mathbb{R}^{n+m}\mid Ax+Iy=b,[x,y]\geq0\}$  \end_inset   es entero. @@ -1003,7 +1003,7 @@ Dada una submatriz  \end_inset   es  -\begin_inset Formula $P:=\{x\in\mathbb{R}^{n}\mid b=b,x\geq0,b-Ax\geq0\}=\{Ax\leq b,x\geq0\}$ +\begin_inset Formula $P\coloneqq \{x\in\mathbb{R}^{n}\mid b=b,x\geq0,b-Ax\geq0\}=\{Ax\leq b,x\geq0\}$  \end_inset  . @@ -1016,7 +1016,7 @@ Dada una submatriz  \end_inset   es un punto extremo, pues si no lo fuera existirían  -\begin_inset Formula $U:=[u,b-Au],V:=[v,b-Av]\in Q$ +\begin_inset Formula $U\coloneqq [u,b-Au],V\coloneqq [v,b-Av]\in Q$  \end_inset   distintos y  @@ -1069,11 +1069,11 @@ Sean  \end_inset  ,  -\begin_inset Formula $P:=\{x\mid Ax\leq b,x\geq0\}$ +\begin_inset Formula $P\coloneqq \{x\mid Ax\leq b,x\geq0\}$  \end_inset  ,  -\begin_inset Formula $Q:=\{[x,y]\mid Ax+y=b,[x,y]\geq0\}$ +\begin_inset Formula $Q\coloneqq \{[x,y]\mid Ax+y=b,[x,y]\geq0\}$  \end_inset   y  @@ -1293,7 +1293,7 @@ teorema  \end_inset   tal que, si  -\begin_inset Formula $F_{2}:=F\setminus F_{1}$ +\begin_inset Formula $F_{2}\coloneqq F\setminus F_{1}$  \end_inset  , para  @@ -1496,7 +1496,7 @@ Si las tareas se pueden hacer a la vez, lo que queremos minimizar es  \begin_layout Standard  Sean ahora  -\begin_inset Formula $R:=(V:=\{1,\dots,n\},E,\omega)$ +\begin_inset Formula $R\coloneqq (V\coloneqq \{1,\dots,n\},E,\omega)$  \end_inset   una red y  @@ -1595,7 +1595,7 @@ Para obtener el árbol generador minimal de  \end_inset  , llamamos  -\begin_inset Formula $x_{ij}:=\chi_{E_{T}}(i,j)$ +\begin_inset Formula $x_{ij}\coloneqq \chi_{E_{T}}(i,j)$  \end_inset   para  @@ -1643,7 +1643,7 @@ Otra posible formulación, con las mismas variables resulta de cambiar la  \begin_layout Standard  Para el problema del viajante de comercio sobre una red completa  -\begin_inset Formula $R:=(V:=\{0,\dots,n-1\},E\mid =\{\{i,j\}\}_{i,j\in V,i\neq j},d)$ +\begin_inset Formula $R\coloneqq (V\coloneqq \{0,\dots,n-1\},E\coloneqq \{\{i,j\}\}_{i,j\in V,i\neq j},d)$  \end_inset  , existen varias formulaciones: @@ -1774,7 +1774,7 @@ es  .   Llamando  -\begin_inset Formula $n:=|V|$ +\begin_inset Formula $n\coloneqq |V|$  \end_inset  : @@ -1783,7 +1783,7 @@ es   & \min & {\textstyle \sum}_{ij}d_{ij}x_{ij}\\   &  & {\textstyle \sum_{(i,j)\in E}}x_{ij} & =1 &  & \forall i\\   &  & {\textstyle \sum_{(k,i)\in E}}x_{ki} & =1 &  & \forall i\\ - &  & u_{i}-u_{j}+nx_{ij} & \leq n-1 &  & \forall i,j\in\{1,\dots,n-1\}\mid (i,j)\in E\\ + &  & u_{i}-u_{j}+nx_{ij} & \leq n-1 &  & \forall i,j\in\{1,\dots,n-1\}:(i,j)\in E\\   &  & x_{ij} & \in\{0,1\} &  & \forall i,j\\   &  & u_{i} & \in\mathbb{R}^{>0} &  & \forall i  \end{alignat*} @@ -1830,7 +1830,7 @@ Sea  \end_inset   la representación por variables de un ciclo hamiltoniano, llamamos  -\begin_inset Formula $u_{i}:=t$ +\begin_inset Formula $u_{i}\coloneqq t$  \end_inset   si  @@ -1928,7 +1928,7 @@ Dadas dos variables  \end_inset  , para definir una variable  -\begin_inset Formula $y:=[x_{1}>x_{2}]$ +\begin_inset Formula $y\coloneqq [x_{1}>x_{2}]$  \end_inset   ( @@ -2053,7 +2053,7 @@ Si  \end_inset  , para definir  -\begin_inset Formula $y:=\min\{x_{1},x_{2}\}$ +\begin_inset Formula $y\coloneqq \min\{x_{1},x_{2}\}$  \end_inset   añadimos  @@ -2073,7 +2073,7 @@ Si  \end_inset  , y para definir  -\begin_inset Formula $y:=\max\{x_{1},x_{2}\}$ +\begin_inset Formula $y\coloneqq \max\{x_{1},x_{2}\}$  \end_inset   añadimos  diff --git a/graf/n7.lyx b/graf/n7.lyx index dc0abb4..fbf8456 100644 --- a/graf/n7.lyx +++ b/graf/n7.lyx @@ -850,11 +850,11 @@ regla de Bland:  \end_inset  ,  -\begin_inset Formula $F:=\{x\mid Ax=b,x\geq0\}$ +\begin_inset Formula $F\coloneqq \{x\mid Ax=b,x\geq0\}$  \end_inset   y  -\begin_inset Formula $P:=\{c\cdot x\}_{x\in F}$ +\begin_inset Formula $P\coloneqq \{c\cdot x\}_{x\in F}$  \end_inset  . @@ -888,7 +888,7 @@ Si [...]  \end_inset   es la matriz formada por las columnas añadidas, escribimos  -\begin_inset Formula $F^{*}:=\{[x,x^{*}]\in\mathbb{R}^{n+p}\mid Ax+Tx^{*}=b,[x,x^{*}]\geq0\}$ +\begin_inset Formula $F^{*}\coloneqq \{[x,x^{*}]\in\mathbb{R}^{n+p}\mid Ax+Tx^{*}=b,[x,x^{*}]\geq0\}$  \end_inset   y vemos que  @@ -957,11 +957,11 @@ Método de penalización:  \end_inset   lo suficientemente grande, definimos  -\begin_inset Formula $P_{M}:=\{c\cdot x+M\sum_{i}x_{i}^{*}\}_{[x,x^{*}]\in F^{*}}$ +\begin_inset Formula $P_{M}\coloneqq \{c\cdot x+M\sum_{i}x_{i}^{*}\}_{[x,x^{*}]\in F^{*}}$  \end_inset   si estamos minimizando o  -\begin_inset Formula $P_{-M}:=\{c\cdot x-M\sum_{i}x_{i}^{*}\}_{[x,x^{*}]\in F^{*}}$ +\begin_inset Formula $P_{-M}\coloneqq \{c\cdot x-M\sum_{i}x_{i}^{*}\}_{[x,x^{*}]\in F^{*}}$  \end_inset   [si maximizamos]. @@ -1103,7 +1103,9 @@ to  \backslash  dots,m  \backslash -}$ tal que $B:=[A_{ +}$ tal que $B +\backslash +coloneqq [A_{  \backslash  sigma(1)},  \backslash @@ -1335,7 +1337,7 @@ Supongamos que tenemos una tabla de símplex óptima con parámetros  , podemos añadir la restricción directamente a la tabla añadiendo lo siguiente,   donde  -\begin_inset Formula $t:=\beta-\sum_{j=1}^{n}\alpha_{j}x_{j}$ +\begin_inset Formula $t\coloneqq \beta-\sum_{j=1}^{n}\alpha_{j}x_{j}$  \end_inset   y  @@ -1501,7 +1503,7 @@ desigualdad válida   factibles.   Se puede usar para mejorar las cotas en los nodos del árbol de ramificación.   Llamamos  -\begin_inset Formula $[[x]]:=x-\lfloor x\rfloor\in[0,1)$ +\begin_inset Formula $[[x]]\coloneqq x-\lfloor x\rfloor\in[0,1)$  \end_inset  . @@ -1522,7 +1524,7 @@ Dados un problema entero puro  \end_inset   tal que  -\begin_inset Formula $x_{k':=\sigma(k)}^{*}\notin\mathbb{Z}$ +\begin_inset Formula $x_{k'\coloneqq \sigma(k)}^{*}\notin\mathbb{Z}$  \end_inset  , entonces @@ -1599,11 +1601,11 @@ Dados un problema entero puro  \end_inset   tal que  -\begin_inset Formula $k':=\sigma(k)\in I$ +\begin_inset Formula $k'\coloneqq \sigma(k)\in I$  \end_inset   y  -\begin_inset Formula $x_{k':=\sigma(k)}^{*}\notin\mathbb{Z}$ +\begin_inset Formula $x_{k'\coloneqq \sigma(k)}^{*}\notin\mathbb{Z}$  \end_inset  , entonces @@ -1754,7 +1756,7 @@ Desigualdades de Chvátal-Gomory  \begin_layout Standard  Dado un problema entero puro con conjunto factible  -\begin_inset Formula $P:=\{Ax\leq b,x\in\mathbb{N}^{n}\}$ +\begin_inset Formula $P\coloneqq \{Ax\leq b,x\in\mathbb{N}^{n}\}$  \end_inset  , donde  | 
