aboutsummaryrefslogtreecommitdiff
path: root/graf
diff options
context:
space:
mode:
Diffstat (limited to 'graf')
-rw-r--r--graf/n1.lyx10
-rw-r--r--graf/n2.lyx2
-rw-r--r--graf/n4.lyx4
-rw-r--r--graf/n6.lyx28
-rw-r--r--graf/n7.lyx6
5 files changed, 25 insertions, 25 deletions
diff --git a/graf/n1.lyx b/graf/n1.lyx
index c547ff0..921c7d8 100644
--- a/graf/n1.lyx
+++ b/graf/n1.lyx
@@ -119,7 +119,7 @@ grafo no dirigido
\end_inset
definido de forma similar, pero
-\begin_inset Formula $E\subseteq\{S\in{\cal P}(V):|S|\in\{1,2\}\}$
+\begin_inset Formula $E\subseteq\{S\in{\cal P}(V)\mid |S|\in\{1,2\}\}$
\end_inset
es un conjunto de
@@ -136,7 +136,7 @@ ejes
\end_inset
a uno dirigido
-\begin_inset Formula $(V,\{(i,j)\in V\times V:i,j\in E\})$
+\begin_inset Formula $(V,\{(i,j)\in V\times V\mid i,j\in E\})$
\end_inset
.
@@ -340,7 +340,7 @@ grafo complementario
es
\begin_inset Formula
\[
-G^{\complement}:=(V,E^{\complement}):=(V,\{S\in{\cal P}(V):|S|=2,S\notin E\}).
+G^{\complement}:=(V,E^{\complement}):=(V,\{S\in{\cal P}(V)\mid |S|=2,S\notin E\}).
\]
\end_inset
@@ -408,7 +408,7 @@ inducido
\end_inset
, donde
-\begin_inset Formula $E_{V'}:=\{S\in E:S\subseteq V'\}$
+\begin_inset Formula $E_{V'}:=\{S\in E\mid S\subseteq V'\}$
\end_inset
, y
@@ -680,7 +680,7 @@ teorema
pues
\begin_inset Formula
\[
-\sum_{v\in V}o(v)=\sum_{v\in V}|\{S\in E:v\in S\}|=\sum_{S\in E}|S|=2|E|.
+\sum_{v\in V}o(v)=\sum_{v\in V}|\{S\in E\mid v\in S\}|=\sum_{S\in E}|S|=2|E|.
\]
\end_inset
diff --git a/graf/n2.lyx b/graf/n2.lyx
index eb5661f..9d905d7 100644
--- a/graf/n2.lyx
+++ b/graf/n2.lyx
@@ -2145,7 +2145,7 @@ grafo en línea
\end_inset
y
-\begin_inset Formula $E^{L}:=\{(e,f):e\neq f,e\cap f\neq\emptyset\}$
+\begin_inset Formula $E^{L}:=\{(e,f)\mid e\neq f,e\cap f\neq\emptyset\}$
\end_inset
.
diff --git a/graf/n4.lyx b/graf/n4.lyx
index 6674531..5334582 100644
--- a/graf/n4.lyx
+++ b/graf/n4.lyx
@@ -1782,11 +1782,11 @@ Si
.
Sean ahora
-\begin_inset Formula $X:=\{i\in\{2,\dots,n-2\}:(u_{i},v)\in E_{k}\}$
+\begin_inset Formula $X:=\{i\in\{2,\dots,n-2\}\mid (u_{i},v)\in E_{k}\}$
\end_inset
e
-\begin_inset Formula $Y:=\{i\in\{2,\dots,n-2\}:(u_{i+1},u)\in E_{k}\}$
+\begin_inset Formula $Y:=\{i\in\{2,\dots,n-2\}\mid (u_{i+1},u)\in E_{k}\}$
\end_inset
, se tiene
diff --git a/graf/n6.lyx b/graf/n6.lyx
index e296d0b..6bf574a 100644
--- a/graf/n6.lyx
+++ b/graf/n6.lyx
@@ -222,11 +222,11 @@ teorema
\end_inset
,
-\begin_inset Formula $P:=\{[x,y]\in\mathbb{R}^{p+q}:Ax+Gy\leq b\}$
+\begin_inset Formula $P:=\{[x,y]\in\mathbb{R}^{p+q}\mid Ax+Gy\leq b\}$
\end_inset
y
-\begin_inset Formula $S:=\{[x,y]\in P:x\in\mathbb{Z}^{p}\}$
+\begin_inset Formula $S:=\{[x,y]\in P\mid x\in\mathbb{Z}^{p}\}$
\end_inset
, existen
@@ -242,7 +242,7 @@ teorema
\end_inset
tales que
-\begin_inset Formula $\text{ec}S=\{[x,y]:A'x+G'y\leq b'\}$
+\begin_inset Formula $\text{ec}S=\{[x,y]\mid A'x+G'y\leq b'\}$
\end_inset
.
@@ -253,11 +253,11 @@ teorema
Demostración:
\series default
Sean
-\begin_inset Formula $S:=\{(x,y)\in\mathbb{Z}^{2}:y\leq\sqrt{2}x,x\geq0,y\geq0\}$
+\begin_inset Formula $S:=\{(x,y)\in\mathbb{Z}^{2}\mid y\leq\sqrt{2}x,x\geq0,y\geq0\}$
\end_inset
y
-\begin_inset Formula $C:=\{(x,y):y<\sqrt{2}x,x\geq0,y\geq0\}\cup\{0\}$
+\begin_inset Formula $C:=\{(x,y)\mid y<\sqrt{2}x,x\geq0,y\geq0\}\cup\{0\}$
\end_inset
.
@@ -406,7 +406,7 @@ Sean
\end_inset
y
-\begin_inset Formula $P:=\{x\in\mathbb{R}^{n}:Ax\leq b\}$
+\begin_inset Formula $P:=\{x\in\mathbb{R}^{n}\mid Ax\leq b\}$
\end_inset
, si
@@ -706,7 +706,7 @@ Lema de Veinott-Dantzig:
\end_inset
,
-\begin_inset Formula $Q:=\{x\in\mathbb{R}^{n}:Ax=b,x\geq0\}$
+\begin_inset Formula $Q:=\{x\in\mathbb{R}^{n}\mid Ax=b,x\geq0\}$
\end_inset
es entero.
@@ -913,7 +913,7 @@ Teorema de Hoffman-Kruskal:
\end_inset
, el poliedro
-\begin_inset Formula $\{x\in\mathbb{R}^{n}:Ax\leq b,x\geq0\}$
+\begin_inset Formula $\{x\in\mathbb{R}^{n}\mid Ax\leq b,x\geq0\}$
\end_inset
es entero.
@@ -978,7 +978,7 @@ Dada una submatriz
\end_inset
es unimodular, con lo que
-\begin_inset Formula $Q:=\{[x,y]\in\mathbb{R}^{n+m}:Ax+Iy=b,[x,y]\geq0\}$
+\begin_inset Formula $Q:=\{[x,y]\in\mathbb{R}^{n+m}\mid Ax+Iy=b,[x,y]\geq0\}$
\end_inset
es entero.
@@ -1003,7 +1003,7 @@ Dada una submatriz
\end_inset
es
-\begin_inset Formula $P:=\{x\in\mathbb{R}^{n}:b=b,x\geq0,b-Ax\geq0\}=\{Ax\leq b,x\geq0\}$
+\begin_inset Formula $P:=\{x\in\mathbb{R}^{n}\mid b=b,x\geq0,b-Ax\geq0\}=\{Ax\leq b,x\geq0\}$
\end_inset
.
@@ -1069,11 +1069,11 @@ Sean
\end_inset
,
-\begin_inset Formula $P:=\{x:Ax\leq b,x\geq0\}$
+\begin_inset Formula $P:=\{x\mid Ax\leq b,x\geq0\}$
\end_inset
,
-\begin_inset Formula $Q:=\{[x,y]:Ax+y=b,[x,y]\geq0\}$
+\begin_inset Formula $Q:=\{[x,y]\mid Ax+y=b,[x,y]\geq0\}$
\end_inset
y
@@ -1643,7 +1643,7 @@ Otra posible formulación, con las mismas variables resulta de cambiar la
\begin_layout Standard
Para el problema del viajante de comercio sobre una red completa
-\begin_inset Formula $R:=(V:=\{0,\dots,n-1\},E:=\{\{i,j\}\}_{i,j\in V,i\neq j},d)$
+\begin_inset Formula $R:=(V:=\{0,\dots,n-1\},E\mid =\{\{i,j\}\}_{i,j\in V,i\neq j},d)$
\end_inset
, existen varias formulaciones:
@@ -1783,7 +1783,7 @@ es
& \min & {\textstyle \sum}_{ij}d_{ij}x_{ij}\\
& & {\textstyle \sum_{(i,j)\in E}}x_{ij} & =1 & & \forall i\\
& & {\textstyle \sum_{(k,i)\in E}}x_{ki} & =1 & & \forall i\\
- & & u_{i}-u_{j}+nx_{ij} & \leq n-1 & & \forall i,j\in\{1,\dots,n-1\}:(i,j)\in E\\
+ & & u_{i}-u_{j}+nx_{ij} & \leq n-1 & & \forall i,j\in\{1,\dots,n-1\}\mid (i,j)\in E\\
& & x_{ij} & \in\{0,1\} & & \forall i,j\\
& & u_{i} & \in\mathbb{R}^{>0} & & \forall i
\end{alignat*}
diff --git a/graf/n7.lyx b/graf/n7.lyx
index 04fd675..dc0abb4 100644
--- a/graf/n7.lyx
+++ b/graf/n7.lyx
@@ -850,7 +850,7 @@ regla de Bland:
\end_inset
,
-\begin_inset Formula $F:=\{x:Ax=b,x\geq0\}$
+\begin_inset Formula $F:=\{x\mid Ax=b,x\geq0\}$
\end_inset
y
@@ -888,7 +888,7 @@ Si [...]
\end_inset
es la matriz formada por las columnas añadidas, escribimos
-\begin_inset Formula $F^{*}:=\{[x,x^{*}]\in\mathbb{R}^{n+p}:Ax+Tx^{*}=b,[x,x^{*}]\geq0\}$
+\begin_inset Formula $F^{*}:=\{[x,x^{*}]\in\mathbb{R}^{n+p}\mid Ax+Tx^{*}=b,[x,x^{*}]\geq0\}$
\end_inset
y vemos que
@@ -921,7 +921,7 @@ vector de variables artificiales
Método de las dos fases:
\series default
] La primera fase consiste en hallar
-\begin_inset Formula $\min\{\sum_{i}x_{i}^{*}:Ax+Tx^{*}=b,[x,x^{*}]\geq0\}$
+\begin_inset Formula $\min\{\sum_{i}x_{i}^{*}\mid Ax+Tx^{*}=b,[x,x^{*}]\geq0\}$
\end_inset
.