aboutsummaryrefslogtreecommitdiff
path: root/mne
diff options
context:
space:
mode:
Diffstat (limited to 'mne')
-rw-r--r--mne/n.lyx198
-rw-r--r--mne/n1.lyx462
-rw-r--r--mne/n2.lyx994
3 files changed, 1654 insertions, 0 deletions
diff --git a/mne/n.lyx b/mne/n.lyx
new file mode 100644
index 0000000..9a9e5d7
--- /dev/null
+++ b/mne/n.lyx
@@ -0,0 +1,198 @@
+#LyX 2.3 created this file. For more info see http://www.lyx.org/
+\lyxformat 544
+\begin_document
+\begin_header
+\save_transient_properties true
+\origin unavailable
+\textclass book
+\begin_preamble
+\input{../defs}
+\end_preamble
+\use_default_options true
+\maintain_unincluded_children false
+\language spanish
+\language_package default
+\inputencoding auto
+\fontencoding global
+\font_roman "default" "default"
+\font_sans "default" "default"
+\font_typewriter "default" "default"
+\font_math "auto" "auto"
+\font_default_family default
+\use_non_tex_fonts false
+\font_sc false
+\font_osf false
+\font_sf_scale 100 100
+\font_tt_scale 100 100
+\use_microtype false
+\use_dash_ligatures true
+\graphics default
+\default_output_format default
+\output_sync 0
+\bibtex_command default
+\index_command default
+\paperfontsize 10
+\spacing single
+\use_hyperref false
+\papersize a5paper
+\use_geometry true
+\use_package amsmath 1
+\use_package amssymb 1
+\use_package cancel 1
+\use_package esint 1
+\use_package mathdots 1
+\use_package mathtools 1
+\use_package mhchem 1
+\use_package stackrel 1
+\use_package stmaryrd 1
+\use_package undertilde 1
+\cite_engine basic
+\cite_engine_type default
+\biblio_style plain
+\use_bibtopic false
+\use_indices false
+\paperorientation portrait
+\suppress_date false
+\justification true
+\use_refstyle 1
+\use_minted 0
+\index Index
+\shortcut idx
+\color #008000
+\end_index
+\leftmargin 0.2cm
+\topmargin 0.7cm
+\rightmargin 0.2cm
+\bottommargin 0.7cm
+\secnumdepth 3
+\tocdepth 3
+\paragraph_separation indent
+\paragraph_indentation default
+\is_math_indent 0
+\math_numbering_side default
+\quotes_style swiss
+\dynamic_quotes 0
+\papercolumns 1
+\papersides 1
+\paperpagestyle empty
+\listings_params "basicstyle={\ttfamily}"
+\tracking_changes false
+\output_changes false
+\html_math_output 0
+\html_css_as_file 0
+\html_be_strict false
+\end_header
+
+\begin_body
+
+\begin_layout Title
+Métodos Numéricos de las Ecuaciones Diferenciales
+\end_layout
+
+\begin_layout Date
+\begin_inset Note Note
+status open
+
+\begin_layout Plain Layout
+
+\end_layout
+
+\end_inset
+
+
+\end_layout
+
+\begin_layout Standard
+\begin_inset ERT
+status open
+
+\begin_layout Plain Layout
+
+
+\backslash
+def
+\backslash
+cryear{2020}
+\end_layout
+
+\end_inset
+
+
+\end_layout
+
+\begin_layout Standard
+\begin_inset CommandInset include
+LatexCommand input
+filename "../license.lyx"
+
+\end_inset
+
+
+\end_layout
+
+\begin_layout Standard
+Bibliografía:
+\end_layout
+
+\begin_layout Itemize
+F.
+ Esquembre (2020).
+ Notas de clase.
+\end_layout
+
+\begin_layout Itemize
+
+\lang english
+Wikipedia, the Free Encyclopedia
+\lang spanish
+ (
+\begin_inset Flex URL
+status open
+
+\begin_layout Plain Layout
+
+https://en.wikipedia.org/
+\end_layout
+
+\end_inset
+
+).
+
+\emph on
+\lang english
+Runge-Kutta methods
+\emph default
+\lang spanish
+.
+\end_layout
+
+\begin_layout Chapter
+Introducción
+\end_layout
+
+\begin_layout Standard
+\begin_inset CommandInset include
+LatexCommand input
+filename "n1.lyx"
+
+\end_inset
+
+
+\end_layout
+
+\begin_layout Chapter
+Métodos de paso fijo
+\end_layout
+
+\begin_layout Standard
+\begin_inset CommandInset include
+LatexCommand input
+filename "n2.lyx"
+
+\end_inset
+
+
+\end_layout
+
+\end_body
+\end_document
diff --git a/mne/n1.lyx b/mne/n1.lyx
new file mode 100644
index 0000000..bc4abd2
--- /dev/null
+++ b/mne/n1.lyx
@@ -0,0 +1,462 @@
+#LyX 2.3 created this file. For more info see http://www.lyx.org/
+\lyxformat 544
+\begin_document
+\begin_header
+\save_transient_properties true
+\origin unavailable
+\textclass book
+\use_default_options true
+\maintain_unincluded_children false
+\language spanish
+\language_package default
+\inputencoding auto
+\fontencoding global
+\font_roman "default" "default"
+\font_sans "default" "default"
+\font_typewriter "default" "default"
+\font_math "auto" "auto"
+\font_default_family default
+\use_non_tex_fonts false
+\font_sc false
+\font_osf false
+\font_sf_scale 100 100
+\font_tt_scale 100 100
+\use_microtype false
+\use_dash_ligatures true
+\graphics default
+\default_output_format default
+\output_sync 0
+\bibtex_command default
+\index_command default
+\paperfontsize default
+\spacing single
+\use_hyperref false
+\papersize default
+\use_geometry false
+\use_package amsmath 1
+\use_package amssymb 1
+\use_package cancel 1
+\use_package esint 1
+\use_package mathdots 1
+\use_package mathtools 1
+\use_package mhchem 1
+\use_package stackrel 1
+\use_package stmaryrd 1
+\use_package undertilde 1
+\cite_engine basic
+\cite_engine_type default
+\biblio_style plain
+\use_bibtopic false
+\use_indices false
+\paperorientation portrait
+\suppress_date false
+\justification true
+\use_refstyle 1
+\use_minted 0
+\index Index
+\shortcut idx
+\color #008000
+\end_index
+\secnumdepth 3
+\tocdepth 3
+\paragraph_separation indent
+\paragraph_indentation default
+\is_math_indent 0
+\math_numbering_side default
+\quotes_style french
+\dynamic_quotes 0
+\papercolumns 1
+\papersides 1
+\paperpagestyle default
+\tracking_changes false
+\output_changes false
+\html_math_output 0
+\html_css_as_file 0
+\html_be_strict false
+\end_header
+
+\begin_body
+
+\begin_layout Standard
+Un
+\series bold
+problema de valores iniciales
+\series default
+ real es uno de la forma
+\begin_inset Formula
+\[
+\left\{ \begin{aligned}\dot{x} & =f(t,x),\\
+x(t_{0}) & =x_{0},
+\end{aligned}
+\right.
+\]
+
+\end_inset
+
+dado por
+\begin_inset Formula $f:\Omega\subseteq\mathbb{R}\times\mathbb{R}^{n}\to\mathbb{R}^{n}$
+\end_inset
+
+ con
+\begin_inset Formula $\Omega$
+\end_inset
+
+ abierto y
+\begin_inset Formula $(t_{0},x_{0})\in\Omega$
+\end_inset
+
+, y donde
+\begin_inset Formula $x:I\subseteq\mathbb{R}\to\mathbb{R}^{n}$
+\end_inset
+
+ es la incógnita, siendo
+\begin_inset Formula $I$
+\end_inset
+
+ un entorno de
+\begin_inset Formula $t_{0}$
+\end_inset
+
+.
+
+\end_layout
+
+\begin_layout Standard
+El problema está
+\series bold
+bien planteado
+\series default
+ en un intervalo
+\begin_inset Formula $[a,b]\subseteq I$
+\end_inset
+
+ si tiene solución única en
+\begin_inset Formula $[a,b]$
+\end_inset
+
+ y para todo
+\begin_inset Formula $\varepsilon>0$
+\end_inset
+
+ existe un
+\begin_inset Formula $\delta>0$
+\end_inset
+
+ tal que si
+\begin_inset Formula $c\in(-\varepsilon,\varepsilon)$
+\end_inset
+
+ y
+\begin_inset Formula $e:[a,b]\to\mathbb{R}^{n}$
+\end_inset
+
+ es tal que
+\begin_inset Formula $|e(t)|<\varepsilon$
+\end_inset
+
+ para todo
+\begin_inset Formula $t\in[a,b]$
+\end_inset
+
+, entonces el
+\series bold
+problema perturbado
+\series default
+
+\begin_inset Formula
+\[
+\left\{ \begin{aligned}\dot{z} & =f(t,z)+e(t),\\
+z(t_{0}) & =x_{0}+c,
+\end{aligned}
+\right.
+\]
+
+\end_inset
+
+tiene solución única.
+\end_layout
+
+\begin_layout Standard
+Como
+\series bold
+teorema
+\series default
+, si
+\begin_inset Formula $D:=[a,b]\times\mathbb{R}$
+\end_inset
+
+,
+\begin_inset Formula $t_{0}\in[a,b]$
+\end_inset
+
+ y
+\begin_inset Formula $f:D\to\mathbb{R}$
+\end_inset
+
+ es continua y lipschitziana en la segunda variable en todo
+\begin_inset Formula $D$
+\end_inset
+
+, entonces
+\begin_inset Formula
+\[
+\left\{ \begin{aligned}\dot{x} & =f(t,x),\\
+x(t_{0}) & =x_{0}
+\end{aligned}
+\right.
+\]
+
+\end_inset
+
+está bien planteado.
+\end_layout
+
+\begin_layout Standard
+En adelante supondremos que el dominio de
+\begin_inset Formula $x$
+\end_inset
+
+ incluye un intervalo
+\begin_inset Formula $[a,b]$
+\end_inset
+
+ y
+\begin_inset Formula $t_{0}=a$
+\end_inset
+
+.
+ No siempre se puede resolver un problema de valores iniciales de forma
+ analítica, por lo que usamos métodos de resolución numérica, que aproximan
+
+\begin_inset Formula $x|_{[a,b]}$
+\end_inset
+
+ creando una partición
+\begin_inset Formula $a=t_{0}<\dots<t_{n}=c$
+\end_inset
+
+, para un cierto
+\begin_inset Formula $c\geq b$
+\end_inset
+
+ con
+\begin_inset Formula $[a,c]$
+\end_inset
+
+ en el dominio de
+\begin_inset Formula $x$
+\end_inset
+
+, y obtienen una secuencia
+\begin_inset Formula $(\omega_{i})_{i=0}^{n}$
+\end_inset
+
+ que aproxima
+\begin_inset Formula $(x(t_{i}))_{i=0}^{n}$
+\end_inset
+
+ con un error
+\begin_inset Formula $\max_{i=0}^{n}\Vert x(t_{i})-\omega_{i}\Vert$
+\end_inset
+
+ aceptable.
+ Los valores de
+\begin_inset Formula $x$
+\end_inset
+
+ en el resto de puntos de
+\begin_inset Formula $[a,b]$
+\end_inset
+
+ se obtienen por interpolación.
+\end_layout
+
+\begin_layout Standard
+\begin_inset ERT
+status open
+
+\begin_layout Plain Layout
+
+
+\backslash
+sremember{CN}
+\end_layout
+
+\end_inset
+
+
+\end_layout
+
+\begin_layout Standard
+Si el polinomio interpolador de
+\begin_inset Formula $f$
+\end_inset
+
+ en
+\begin_inset Formula $x_{0},\dots,x_{n}$
+\end_inset
+
+ es
+\begin_inset Formula $P(x)=a_{n}x^{n}+\dots+a_{0}$
+\end_inset
+
+, llamamos
+\begin_inset Formula $f[x_{0},\dots,x_{n}]:=a_{n}$
+\end_inset
+
+.
+ [...]
+\begin_inset Formula $f[x]=f(x)$
+\end_inset
+
+.
+ [...] Para
+\begin_inset Formula $n\geq1$
+\end_inset
+
+,
+\begin_inset Formula
+\[
+f[x_{0},\dots,x_{n}]=\frac{f[x_{1},\dots,x_{n}]-f[x_{0},\dots,x_{n-1}]}{x_{n}-x_{0}}.
+\]
+
+\end_inset
+
+[...] Una forma de hallar
+\begin_inset Formula $f[x_{0},\dots,x_{n}]$
+\end_inset
+
+ es usando una tabla triangular que se va llenando por columnas, donde la
+ primera columna contiene los
+\begin_inset Formula $x_{k}$
+\end_inset
+
+, la segunda, los
+\begin_inset Formula $f(x_{k})$
+\end_inset
+
+, [...], y la
+\begin_inset Formula $j$
+\end_inset
+
+-ésima, los
+\begin_inset Formula $f[x_{k-j+1},\dots,x_{k}]$
+\end_inset
+
+, llegando a
+\begin_inset Formula $f[x_{0},\dots,x_{n}]$
+\end_inset
+
+ en la
+\begin_inset Formula $(n+1)$
+\end_inset
+
+-ésima fila.
+\end_layout
+
+\begin_layout Standard
+[...]
+\series bold
+Forma de Newton
+\series default
+ del polinomio interpolador, [...]
+\begin_inset Formula
+\[
+f[x_{0}]+f[x_{0},x_{1}](x-x_{0})+\dots+f[x_{0},\dots,x_{n}](x-x_{0})\cdots(x-x_{n-1}).
+\]
+
+\end_inset
+
+Para cálculo computacional es más apropiada la forma anidada,
+\begin_inset Formula
+\[
+f[x_{0}]+(x-x_{0})(f[x_{0},x_{1}]+(x-x_{1})(f[x_{0},x_{1},x_{2}]+\dots)).
+\]
+
+\end_inset
+
+
+\end_layout
+
+\begin_layout Standard
+[...] Un
+\series bold
+problema de Hermite
+\series default
+ consiste en hallar un polinomio
+\begin_inset Formula $P$
+\end_inset
+
+ de grado
+\begin_inset Formula $N$
+\end_inset
+
+ tal que, para
+\begin_inset Formula $k\in\{0,\dots,m\}$
+\end_inset
+
+ y
+\begin_inset Formula $x\in S_{k}$
+\end_inset
+
+,
+\begin_inset Formula $P^{(k)}(x)=f^{(k)}(x)$
+\end_inset
+
+.
+\end_layout
+
+\begin_layout Standard
+Existe un único polinomio de grado máximo
+\begin_inset Formula $\sum_{k=0}^{m}|S_{k}|$
+\end_inset
+
+ que cumpla las condiciones, y podemos hallarlo mediante
+\series bold
+diferencias divididas generalizadas
+\series default
+.
+ Si
+\begin_inset Formula $x_{0}\leq\dots\leq x_{n}$
+\end_inset
+
+, [...]
+\begin_inset Formula
+\[
+f[x_{0},\dots,x_{n}]:=\begin{cases}
+\frac{f[x_{1},\dots,x_{n}]-f[x_{0},\dots,x_{n-1}]}{x_{n}-x_{0}}, & x_{0}<x_{n};\\
+\frac{f^{(n)}(x_{0})}{n!}, & x_{0}=\dots=x_{n}.
+\end{cases}
+\]
+
+\end_inset
+
+Creamos una tabla de diferencias divididas en la que cada elemento
+\begin_inset Formula $x\in S_{0}$
+\end_inset
+
+ aparece tantas veces como conjuntos de entre
+\begin_inset Formula $S_{0},\dots,S_{m}$
+\end_inset
+
+ lo contienen, y expresamos el polinomio resultante [...] en forma de Newton.
+\end_layout
+
+\begin_layout Standard
+\begin_inset ERT
+status open
+
+\begin_layout Plain Layout
+
+
+\backslash
+eremember
+\end_layout
+
+\end_inset
+
+
+\end_layout
+
+\end_body
+\end_document
diff --git a/mne/n2.lyx b/mne/n2.lyx
new file mode 100644
index 0000000..8442b0d
--- /dev/null
+++ b/mne/n2.lyx
@@ -0,0 +1,994 @@
+#LyX 2.3 created this file. For more info see http://www.lyx.org/
+\lyxformat 544
+\begin_document
+\begin_header
+\save_transient_properties true
+\origin unavailable
+\textclass book
+\use_default_options true
+\maintain_unincluded_children false
+\language spanish
+\language_package default
+\inputencoding auto
+\fontencoding global
+\font_roman "default" "default"
+\font_sans "default" "default"
+\font_typewriter "default" "default"
+\font_math "auto" "auto"
+\font_default_family default
+\use_non_tex_fonts false
+\font_sc false
+\font_osf false
+\font_sf_scale 100 100
+\font_tt_scale 100 100
+\use_microtype false
+\use_dash_ligatures true
+\graphics default
+\default_output_format default
+\output_sync 0
+\bibtex_command default
+\index_command default
+\paperfontsize default
+\spacing single
+\use_hyperref false
+\papersize default
+\use_geometry false
+\use_package amsmath 1
+\use_package amssymb 1
+\use_package cancel 1
+\use_package esint 1
+\use_package mathdots 1
+\use_package mathtools 1
+\use_package mhchem 1
+\use_package stackrel 1
+\use_package stmaryrd 1
+\use_package undertilde 1
+\cite_engine basic
+\cite_engine_type default
+\biblio_style plain
+\use_bibtopic false
+\use_indices false
+\paperorientation portrait
+\suppress_date false
+\justification true
+\use_refstyle 1
+\use_minted 0
+\index Index
+\shortcut idx
+\color #008000
+\end_index
+\secnumdepth 3
+\tocdepth 3
+\paragraph_separation indent
+\paragraph_indentation default
+\is_math_indent 0
+\math_numbering_side default
+\quotes_style french
+\dynamic_quotes 0
+\papercolumns 1
+\papersides 1
+\paperpagestyle default
+\tracking_changes false
+\output_changes false
+\html_math_output 0
+\html_css_as_file 0
+\html_be_strict false
+\end_header
+
+\begin_body
+
+\begin_layout Standard
+Dado un problema de valores iniciales
+\begin_inset Formula
+\[
+\left\{ \begin{aligned}\dot{x} & =f(t,x),\\
+x(a) & =x_{0},
+\end{aligned}
+\right.
+\]
+
+\end_inset
+
+los
+\series bold
+métodos de paso fijo
+\series default
+ toman un
+\series bold
+paso
+\series default
+
+\begin_inset Formula $h>0$
+\end_inset
+
+ y particionan
+\begin_inset Formula $[a,b]$
+\end_inset
+
+ con
+\begin_inset Formula $t_{i}:=a+hi$
+\end_inset
+
+, aunque esto se suele calcular como
+\begin_inset Formula $t_{0}=a$
+\end_inset
+
+ y
+\begin_inset Formula $t_{i}=t_{i-1}+h$
+\end_inset
+
+ para
+\begin_inset Formula $i\geq1$
+\end_inset
+
+.
+\end_layout
+
+\begin_layout Section
+Método de Euler
+\end_layout
+
+\begin_layout Standard
+El
+\series bold
+método de Euler
+\series default
+ viene dado por
+\begin_inset Formula $\omega_{0}:=x_{0}$
+\end_inset
+
+ y
+\begin_inset Formula $\omega_{i+1}:=\omega_{i}+hf(t_{i},\omega_{i})$
+\end_inset
+
+.
+ Para obtener el valor para un
+\begin_inset Formula $t\in(t_{i-1},t_{i})$
+\end_inset
+
+, podemos interpolar con el propio método, lo que si se hace desde
+\begin_inset Formula $t_{i-1}$
+\end_inset
+
+ equivale a una interpolación lineal o una interpolación de Newton en los
+ puntos
+\begin_inset Formula $(t_{i-1},\omega_{i-1})$
+\end_inset
+
+ y
+\begin_inset Formula $(t_{i},\omega_{i})$
+\end_inset
+
+.
+\end_layout
+
+\begin_layout Standard
+
+\series bold
+Teorema de convergencia del método de Euler:
+\series default
+ Sean
+\begin_inset Formula $a,b\in\mathbb{R}$
+\end_inset
+
+ con
+\begin_inset Formula $a<b$
+\end_inset
+
+,
+\begin_inset Formula $D\subseteq\mathbb{R}^{2}$
+\end_inset
+
+ un abierto conexo,
+\begin_inset Formula $x_{0}\in\mathbb{R}$
+\end_inset
+
+ con
+\begin_inset Formula $(a,x_{0})\in D$
+\end_inset
+
+,
+\begin_inset Formula $f:D\to\mathbb{R}$
+\end_inset
+
+ lipschitziana en
+\begin_inset Formula $D$
+\end_inset
+
+ en la segunda variable con constante de lipschitzianidad
+\begin_inset Formula $K\geq0$
+\end_inset
+
+,
+\begin_inset Formula $n\in\mathbb{N}^{*}$
+\end_inset
+
+,
+\begin_inset Formula $h:=\frac{b-a}{n}$
+\end_inset
+
+,
+\begin_inset Formula $x:[a,b]\to\mathbb{R}$
+\end_inset
+
+ una solución de
+\begin_inset Formula
+\[
+\left\{ \begin{aligned}\dot{x} & =f(t,x),\\
+x(a) & =x_{0}
+\end{aligned}
+\right.
+\]
+
+\end_inset
+
+con
+\begin_inset Formula $\ddot{x}(D)$
+\end_inset
+
+ acotada por un
+\begin_inset Formula $C\geq0$
+\end_inset
+
+,
+\begin_inset Formula $(t_{i},\omega_{i})_{i=0}^{n}$
+\end_inset
+
+ los puntos dados por el método de Euler con paso
+\begin_inset Formula $h$
+\end_inset
+
+ para dicho problema con redondeo, dado por
+\begin_inset Formula
+\[
+\left\{ \begin{aligned}\omega_{0} & :=x_{0}+\delta_{0},\\
+\omega_{i+1} & :=\omega_{i}+hf(t_{i},\omega_{i})+\delta_{i+1},
+\end{aligned}
+\right.
+\]
+
+\end_inset
+
+con cada
+\begin_inset Formula $|\delta_{i}|<\delta$
+\end_inset
+
+ para un cierto
+\begin_inset Formula $\delta\geq0$
+\end_inset
+
+, y
+\begin_inset Formula $x_{i}:=x(t_{i})$
+\end_inset
+
+ para cada
+\begin_inset Formula $i$
+\end_inset
+
+, entonces
+\begin_inset Formula
+\[
+\max_{0\leq i\leq n}|x_{i}-\omega_{i}|\leq e^{(b-a)K}\delta+\left(\frac{e^{(b-a)K}-1}{K}\right)\left(\frac{1}{2}Ch+\frac{\delta}{h}\right).
+\]
+
+\end_inset
+
+En particular, sin redondeo el método de Euler tiene una precisión de
+\begin_inset Formula $O(h)$
+\end_inset
+
+.
+
+\series bold
+Demostración:
+\series default
+ Por Taylor,
+\begin_inset Formula
+\[
+x_{i+1}=x(t_{i}+h)=x(t_{i})+h\dot{x}(t_{i})+\frac{1}{2}h^{2}\ddot{x}(\xi_{i})=x_{i}+hf(t_{i},x_{i})+\frac{1}{2}h^{2}\ddot{x}(\xi_{i})
+\]
+
+\end_inset
+
+ para algún
+\begin_inset Formula $\xi_{i}\in[t_{i},t_{i+1}]$
+\end_inset
+
+.
+ Queremos ver que, para
+\begin_inset Formula $i\in\{0,\dots,n\}$
+\end_inset
+
+,
+\begin_inset Formula
+\[
+|x_{i}-\omega_{i}|\leq(1+hK)^{i}\delta+\sum_{j=0}^{i-1}(1+hK)^{j}\left(\frac{1}{2}Ch^{2}+\delta\right).
+\]
+
+\end_inset
+
+Para
+\begin_inset Formula $i=0$
+\end_inset
+
+ esto es obvio, y supuesto esto probado para un
+\begin_inset Formula $i\in\{0,\dots,n-1\}$
+\end_inset
+
+,
+\begin_inset Formula
+\begin{align*}
+|y_{i+1}-\omega_{i+1}| & =\left|(y_{i}-\omega_{i})+h(f(t_{i},y_{i})-f(t_{i},\omega_{i}))+\frac{1}{2}h^{2}\ddot{y}(\xi_{i})-\delta_{i+1}\right|\\
+ & \leq|y_{i}-\omega_{i}|+h|f(t_{i},y_{i})-f(t_{i},\omega_{i})|+\frac{1}{2}h^{2}|\ddot{y}(\xi_{i})|+|\delta_{i+1}|\\
+ & \leq(1+hK)|y_{i}-\omega_{i}|+\frac{1}{2}Ch^{2}+\delta\\
+ & \leq(1+hK)\left((1+hK)^{i}\delta+\sum_{j=0}^{i-1}(1+hK)^{j}\left(\frac{1}{2}Ch^{2}+\delta\right)\right)+\frac{1}{2}Ch^{2}+\delta\\
+ & =(1+hK)^{i+1}\delta+\sum_{j=0}^{i}(1+hK)^{j}\left(\frac{1}{2}Ch^{2}+\delta\right).
+\end{align*}
+
+\end_inset
+
+Ahora bien,
+\begin_inset Formula $\sum_{j=0}^{i}(1+hK)^{j}=\frac{(1+hK)^{i+1}-1}{(1+hK)-1}=\frac{(1+hK)^{i+1}-1}{hK}$
+\end_inset
+
+, y para
+\begin_inset Formula $t\in\mathbb{R}$
+\end_inset
+
+, existe
+\begin_inset Formula $\xi$
+\end_inset
+
+ con
+\begin_inset Formula $e^{t}=1+t+\frac{t^{2}}{2}e^{\xi}\geq1+t$
+\end_inset
+
+ y por tanto
+\begin_inset Formula $(1+t)^{n}\leq e^{nt}$
+\end_inset
+
+, luego en particular
+\begin_inset Formula $(1+hK)^{i+1}\leq(1+hK)^{n}\leq e^{hKn}=e^{(b-a)K}$
+\end_inset
+
+ y
+\begin_inset Formula
+\[
+|y_{i}-\omega_{i}|\leq e^{(b-a)K}+\frac{e^{(b-a)K}-1}{hK}\left(\frac{1}{2}Ch^{2}+\delta\right).
+\]
+
+\end_inset
+
+
+\end_layout
+
+\begin_layout Standard
+Si
+\begin_inset Formula $x:[a,b]\to\mathbb{R}$
+\end_inset
+
+ es de clase
+\begin_inset Formula ${\cal C}^{3}$
+\end_inset
+
+,
+\begin_inset Formula $\frac{\partial f}{\partial x}$
+\end_inset
+
+ y
+\begin_inset Formula $\frac{\partial^{2}f}{\partial x^{2}}$
+\end_inset
+
+ son continuas y
+\begin_inset Formula $(t_{i},\omega_{i})_{i=0}^{n}$
+\end_inset
+
+ son los puntos dados por el método de Euler en
+\begin_inset Formula $[a,b]$
+\end_inset
+
+ con paso
+\begin_inset Formula $h$
+\end_inset
+
+,
+\begin_inset Formula $x_{i}-\omega_{i}=hD(t_{i})+O(h^{2})$
+\end_inset
+
+, donde
+\begin_inset Formula $D$
+\end_inset
+
+ es la solución del problema
+\begin_inset Formula
+\[
+\left\{ \begin{aligned}\dot{D}(t) & =\frac{\partial f}{\partial x}(t,x(t))D(t)+\frac{1}{2}\ddot{x}(t),\\
+D(t_{0}) & =0.
+\end{aligned}
+\right.
+\]
+
+\end_inset
+
+De aquí, si
+\begin_inset Formula $(t_{i},\xi_{i})_{i=0}^{2n}$
+\end_inset
+
+ son los puntos dados por el método de Euler en
+\begin_inset Formula $[a,b]$
+\end_inset
+
+ con paso
+\begin_inset Formula $\frac{h}{2}$
+\end_inset
+
+,
+\end_layout
+
+\begin_layout Enumerate
+\begin_inset Formula $|x_{i}-\xi_{2i}|=(\xi_{2i}-\omega_{i})+O(h^{2})$
+\end_inset
+
+.
+\end_layout
+
+\begin_deeper
+\begin_layout Standard
+Como
+\begin_inset Formula $x_{i}-\omega_{i}=hD(t)+O(h^{2})$
+\end_inset
+
+ y
+\begin_inset Formula $x_{i}-\xi_{2i}=\frac{h}{2}D(t)+O(h^{2})$
+\end_inset
+
+, despejando,
+\begin_inset Formula $x_{i}-2\xi_{i}+\omega_{i}=O(h^{2})$
+\end_inset
+
+.
+\end_layout
+
+\end_deeper
+\begin_layout Enumerate
+\begin_inset Formula $y_{i}:=2\xi_{2i}-\omega_{i}$
+\end_inset
+
+ es un método de paso fijo
+\begin_inset Formula $h$
+\end_inset
+
+ de orden
+\begin_inset Formula $O(h^{2})$
+\end_inset
+
+.
+\end_layout
+
+\begin_layout Section
+Métodos de Taylor
+\end_layout
+
+\begin_layout Standard
+El
+\series bold
+método de Taylor
+\series default
+ de orden
+\begin_inset Formula $p\in\mathbb{N}^{*}$
+\end_inset
+
+ es el dado por
+\begin_inset Formula $\omega_{0}=x_{0}$
+\end_inset
+
+ y
+\begin_inset Formula
+\[
+\omega_{i+1}=\omega_{i}+h\left(f(t_{i},\omega_{i})+\frac{h}{2}f'(t_{i},\omega_{i})+\dots+\frac{h^{p-1}}{p!}f^{(p-1)}(t_{i},\omega_{i})\right),
+\]
+
+\end_inset
+
+donde
+\begin_inset Formula $f^{(p)}(t_{i},\omega_{i})$
+\end_inset
+
+ se define como
+\begin_inset Formula $x^{(p+1)}(t_{i})$
+\end_inset
+
+ en el problema con la misma e.d.o.
+ pero condición inicial
+\begin_inset Formula $x(t_{i})=\omega_{i}$
+\end_inset
+
+.
+ Por ejemplo,
+\begin_inset Formula
+\begin{align*}
+f'(t_{i}) & =\ddot{x}(t_{i})=\frac{\partial f}{\partial t}(t,x(t))+\frac{\partial f}{\partial x}(t,x(t))\dot{x}(t)=\frac{\partial f}{\partial t}(t_{i},\omega_{i})+\frac{\partial f}{\partial x}(t_{i},\omega_{i})f(t_{i},\omega_{i}),
+\end{align*}
+
+\end_inset
+
+El método de Euler es el método de Taylor de orden 1.
+\end_layout
+
+\begin_layout Standard
+Dado un método de paso fijo de la forma
+\begin_inset Formula $\omega_{0}:=\alpha$
+\end_inset
+
+,
+\begin_inset Formula $\omega_{i+1}:=\omega_{i}+hØ(t_{i},\omega_{i})$
+\end_inset
+
+, llamamos
+\series bold
+error local de truncamiento
+\series default
+ en
+\begin_inset Formula $i\in\{1,\dots,n\}$
+\end_inset
+
+ a
+\begin_inset Formula
+\[
+\tau_{i}(h):=\frac{x(t_{i})-x(t_{i-1})}{h}-Ø(t_{i-1},x_{i-1}).
+\]
+
+\end_inset
+
+
+\end_layout
+
+\begin_layout Standard
+Como
+\series bold
+teorema
+\series default
+, si
+\begin_inset Formula $x\in{\cal C}^{(p+1)}[a,b]$
+\end_inset
+
+, el error local de truncamiento del método de Taylor de orden
+\begin_inset Formula $p$
+\end_inset
+
+ es
+\begin_inset Formula $O(h^{p})$
+\end_inset
+
+.
+
+\series bold
+Demostración:
+\series default
+
+\begin_inset Formula
+\[
+x(t_{i+1})=x(t_{i}+h)=x(t_{i})+h\dot{x}(t_{i})+\dots+\frac{h^{p}}{p!}x^{(p)}(t_{i})+\frac{h^{p+1}}{(p+1)!}x^{(p+1)}(\xi_{i})
+\]
+
+\end_inset
+
+para un cierto
+\begin_inset Formula $\xi_{i}\in[t_{i},t_{i+1}]$
+\end_inset
+
+, luego
+\begin_inset Formula
+\[
+\tau_{i+1}(h)=\frac{x(t_{i+1})-x(t_{i})}{h}-\left(\dot{x}(t_{i})+\frac{h}{2}\ddot{x}(t_{i})+\dots+\frac{h^{p-1}}{p!}x^{(p)}(t_{i})\right)=\frac{h^{p}}{(p+1)!}x^{(p+1)}(\xi_{i}),
+\]
+
+\end_inset
+
+pero
+\begin_inset Formula $[a,b]$
+\end_inset
+
+ es compacto y por tanto
+\begin_inset Formula $x^{(p+1)}([a,b])$
+\end_inset
+
+ es acotado, digamos, por
+\begin_inset Formula $M$
+\end_inset
+
+, por lo que
+\begin_inset Formula $|\tau_{i+1}(h)|\leq\frac{M}{(p+1)!}h^{p}=O(h^{p})$
+\end_inset
+
+.
+\end_layout
+
+\begin_layout Standard
+Decimos que un método de paso fijo es de orden
+\begin_inset Formula $p$
+\end_inset
+
+ si su error local de truncamiento con
+\begin_inset Formula $f\in{\cal C}^{\infty}$
+\end_inset
+
+ es
+\begin_inset Formula $O(h^{p})$
+\end_inset
+
+.
+\end_layout
+
+\begin_layout Section
+Métodos de Runge-Kutta
+\end_layout
+
+\begin_layout Standard
+Los métodos de Taylor tienen mucha precisión, pero requieren trabajo previo
+ y son difíciles de reutilizar, por lo que intentamos
+\begin_inset Quotes cld
+\end_inset
+
+imitar
+\begin_inset Quotes crd
+\end_inset
+
+ la precisión de estos con operaciones que no requieran derivar
+\begin_inset Formula $f$
+\end_inset
+
+.
+ Los
+\series bold
+métodos de Runge-Kutta
+\series default
+ tienen la forma
+\begin_inset Formula
+\begin{align*}
+\omega_{i+1} & :=\omega_{i}+h\sum_{j=1}^{s}b_{j}k_{j}, & k_{1} & :=f(t_{i},\omega_{i}), & k_{j>1} & :=(t_{i}+c_{j}h,\omega_{i}+h(a_{j,1}k_{1}+\dots+a_{j,j-1}k_{j-1})),
+\end{align*}
+
+\end_inset
+
+para ciertos
+\begin_inset Formula $s\in\mathbb{N}$
+\end_inset
+
+ y
+\begin_inset Formula $(a_{ij})_{1\leq j<i\leq s},(b_{j})_{j=1}^{s},(c_{i})_{i=2}^{s}$
+\end_inset
+
+ reales.
+ Estos métodos se pueden representar con una
+\series bold
+tabla de Butcher
+\series default
+:
+\begin_inset Formula
+\[
+\begin{array}{c|ccccc}
+c_{2} & a_{21}\\
+c_{3} & a_{31} & a_{32}\\
+\vdots & \vdots & \vdots & \ddots\\
+c_{s} & a_{s1} & a_{s2} & \cdots & a_{s,s-1}\\
+\hline & b_{1} & b_{2} & \cdots & b_{s-1} & b_{s}
+\end{array}
+\]
+
+\end_inset
+
+
+\end_layout
+
+\begin_layout Standard
+El
+\series bold
+método del punto medio
+\series default
+ tiene tabla
+\begin_inset Formula
+\[
+\begin{array}{c|cc}
+\frac{1}{2} & \frac{1}{2}\\
+\hline & 0 & 1
+\end{array},
+\]
+
+\end_inset
+
+ y es de orden 2.
+
+\series bold
+Demostración:
+\series default
+ Por Taylor,
+\begin_inset Formula
+\begin{align*}
+f(t+\tfrac{h}{2},x+\tfrac{h}{2}f(t,x))= & f(t,x)+\frac{h}{2}\frac{\partial f}{\partial t}(t,x)+\frac{h}{2}f(t,x)\frac{\partial f}{\partial x}(t,x)+\\
+ & +\frac{h^{2}}{8}\frac{\partial^{2}f}{\partial t^{2}}(\xi_{1},\mu_{1})+\frac{h^{2}}{4}f(t,x)\frac{\partial^{2}f}{\partial t\partial x}(\xi_{2},\mu_{2})+\frac{h^{2}}{8}f(t,x)^{2}\frac{\partial^{2}f}{\partial x^{2}}(\xi_{3},\mu_{3}).
+\end{align*}
+
+\end_inset
+
+El método de Taylor de orden 2 viene dado por
+\begin_inset Formula $\omega_{i+1}=\omega_{i}+h(f(t_{i},\omega_{i})+\frac{h}{2}f'(t_{i},\omega_{i}))$
+\end_inset
+
+, pero
+\begin_inset Formula
+\[
+f(t,x)+\frac{h}{2}f'(t,x)=f(t,x)+\frac{h}{2}\frac{\partial f}{\partial t}(t,x)+\frac{h}{2}f(t,x)\frac{\partial f}{\partial x}(t,x),
+\]
+
+\end_inset
+
+luego como las dobles derivadas parciales son continuas y por tanto su imagen
+ por
+\begin_inset Formula $[a,b]$
+\end_inset
+
+ es compacta, la diferencia de error local entre ambos métodos es
+\begin_inset Formula $O(h^{2})$
+\end_inset
+
+, que se suma al error de
+\begin_inset Formula $O(h^{2})$
+\end_inset
+
+ del método de Taylor de orden 2.
+\end_layout
+
+\begin_layout Standard
+No existe un método de Runge-Kutta de orden 3 con solo 2 evaluaciones de
+
+\begin_inset Formula $f$
+\end_inset
+
+.
+
+\end_layout
+
+\begin_layout Standard
+
+\series bold
+Demostración:
+\series default
+ Como
+\begin_inset Formula
+\begin{align*}
+f' & =\frac{\partial f}{\partial t}+f\frac{\partial f}{\partial x},\\
+f'' & =\frac{\partial f'(t,x(t))}{\partial t}=\frac{\partial^{2}f}{\partial t^{2}}+f\frac{\partial^{2}f}{\partial x\partial t}+\left(\frac{\partial f}{\partial t}+f\frac{\partial f}{\partial x}\right)\frac{\partial f}{\partial x}+f\left(\frac{\partial^{2}f}{\partial x\partial t}+f\frac{\partial^{2}f}{\partial x^{2}}\right)\\
+ & =\frac{\partial^{2}f}{\partial t^{2}}+\frac{\partial f}{\partial t}\frac{\partial f}{\partial x}+f\left(\frac{\partial f}{\partial x}\right)^{2}+2f\frac{\partial^{2}f}{\partial x\partial t}+f^{2}\frac{\partial^{2}f}{\partial x^{2}},
+\end{align*}
+
+\end_inset
+
+el método de Taylor de orden 3 es
+\begin_inset Formula $\omega_{i+1}=\omega_{i}+hØ(t_{i},\omega_{i})$
+\end_inset
+
+, con
+\begin_inset Formula
+\begin{align*}
+Ø(t,x) & =f(t,x)+\frac{h}{2}f'(t,x)+\frac{h^{2}}{6}f''(t,x)\\
+ & =f+\frac{h}{2}\left(\frac{\partial f}{\partial t}+f\frac{\partial f}{\partial x}\right)+\frac{h^{2}}{6}\left(\frac{\partial^{2}f}{\partial t^{2}}+\frac{\partial f}{\partial t}\frac{\partial f}{\partial x}+f\left(\frac{\partial f}{\partial x}\right)^{2}+2f\frac{\partial^{2}f}{\partial x\partial t}+f^{2}\frac{\partial^{2}f}{\partial x^{2}}\right),
+\end{align*}
+
+\end_inset
+
+pero los métodos de 2 evaluaciones tienen la forma
+\begin_inset Formula
+\begin{multline*}
+b_{1}f(t,x)+b_{2}f(t+c_{2},x+a_{21}f(t,x))=\\
+=b_{1}f+b_{2}f+b_{2}c_{2}\frac{\partial f}{\partial t}+b_{2}a_{21}f\frac{\partial f}{\partial x}+b_{2}\frac{a_{21}^{2}}{2}\frac{\partial^{2}f}{\partial t^{2}}+b_{2}c_{2}a_{21}f\frac{\partial^{2}f}{\partial t\partial x}+b_{2}\frac{a_{21}^{2}}{2}f^{2}\frac{\partial^{2}f}{\partial x^{2}}+O(h^{3}).
+\end{multline*}
+
+\end_inset
+
+Para que ambas coincidieran en los términos hasta el orden 2, la última
+ fórmula debería tener un término proporcional a
+\begin_inset Formula $f\left(\frac{\partial f}{\partial x}\right)^{2}$
+\end_inset
+
+, pero no lo tiene.
+\end_layout
+
+\begin_layout Standard
+Otros métodos son el
+\series bold
+método de Euler modificado
+\series default
+, con tabla
+\begin_inset Formula
+\[
+\begin{array}{c|cc}
+1 & 1\\
+\hline & \frac{1}{2} & \frac{1}{2}
+\end{array},
+\]
+
+\end_inset
+
+y el
+\series bold
+método de Heun
+\series default
+, con tabla
+\begin_inset Formula
+\[
+\begin{array}{c|cc}
+\frac{2}{3} & \frac{2}{3}\\
+\hline & \frac{1}{4} & \frac{3}{4}
+\end{array},
+\]
+
+\end_inset
+
+ambos de orden 2.
+\end_layout
+
+\begin_layout Standard
+El método de Runge-Kutta más usado es el de orden 4 (
+\series bold
+RK4
+\series default
+):
+\end_layout
+
+\begin_layout Standard
+\begin_inset Formula
+\[
+\begin{array}{c|cccc}
+\frac{1}{2} & \frac{1}{2}\\
+\frac{1}{2} & 0 & \frac{1}{2}\\
+1 & 0 & 0 & 1\\
+\hline & \frac{1}{6} & \frac{1}{3} & \frac{1}{3} & \frac{1}{6}
+\end{array}
+\]
+
+\end_inset
+
+La siguiente tabla muestra el máximo orden alcanzable con métodos de Runge-Kutta
+ en función del número de evaluaciones de
+\begin_inset Formula $f$
+\end_inset
+
+:
+\end_layout
+
+\begin_layout Standard
+\align center
+\begin_inset Tabular
+<lyxtabular version="3" rows="2" columns="5">
+<features tabularvalignment="middle">
+<column alignment="center" valignment="top">
+<column alignment="center" valignment="top">
+<column alignment="center" valignment="top">
+<column alignment="center" valignment="top">
+<column alignment="center" valignment="top">
+<row>
+<cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
+\begin_inset Text
+
+\begin_layout Plain Layout
+Evaluaciones (
+\begin_inset Formula $s$
+\end_inset
+
+)
+\end_layout
+
+\end_inset
+</cell>
+<cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
+\begin_inset Text
+
+\begin_layout Plain Layout
+\begin_inset Formula $\leq4$
+\end_inset
+
+
+\end_layout
+
+\end_inset
+</cell>
+<cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
+\begin_inset Text
+
+\begin_layout Plain Layout
+5–7
+\end_layout
+
+\end_inset
+</cell>
+<cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
+\begin_inset Text
+
+\begin_layout Plain Layout
+8–9
+\end_layout
+
+\end_inset
+</cell>
+<cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
+\begin_inset Text
+
+\begin_layout Plain Layout
+\begin_inset Formula $\geq10$
+\end_inset
+
+
+\end_layout
+
+\end_inset
+</cell>
+</row>
+<row>
+<cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
+\begin_inset Text
+
+\begin_layout Plain Layout
+Mejor orden
+\end_layout
+
+\end_inset
+</cell>
+<cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
+\begin_inset Text
+
+\begin_layout Plain Layout
+\begin_inset Formula $s$
+\end_inset
+
+
+\end_layout
+
+\end_inset
+</cell>
+<cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
+\begin_inset Text
+
+\begin_layout Plain Layout
+\begin_inset Formula $s-1$
+\end_inset
+
+
+\end_layout
+
+\end_inset
+</cell>
+<cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
+\begin_inset Text
+
+\begin_layout Plain Layout
+\begin_inset Formula $s-2$
+\end_inset
+
+
+\end_layout
+
+\end_inset
+</cell>
+<cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
+\begin_inset Text
+
+\begin_layout Plain Layout
+\begin_inset Formula $s-3$
+\end_inset
+
+
+\end_layout
+
+\end_inset
+</cell>
+</row>
+</lyxtabular>
+
+\end_inset
+
+
+\end_layout
+
+\end_body
+\end_document