diff options
Diffstat (limited to 'si')
| -rw-r--r-- | si/n2.lyx | 2 | ||||
| -rw-r--r-- | si/n3.lyx | 16 | ||||
| -rw-r--r-- | si/n7.lyx | 8 | 
3 files changed, 14 insertions, 12 deletions
| @@ -269,7 +269,7 @@ Y-O  \end_inset  , sea  -\begin_inset Formula $N:=\{S\subseteq V\mid (u,S)\in A\}$ +\begin_inset Formula $N\coloneqq \{S\subseteq V\mid (u,S)\in A\}$  \end_inset  ,  @@ -665,7 +665,7 @@ f(R)=\omega(R)+h(\text{final}(R))\leq\omega(R)+\min\omega({\cal P}_{\text{final}   por lo que siempre se procesa antes una solución óptima que una no óptima.   Sea ahora  -\begin_inset Formula $p:=\inf\omega(A)>0$ +\begin_inset Formula $p\coloneqq \inf\omega(A)>0$  \end_inset  , todo  @@ -784,7 +784,7 @@ Si   es monótona creciente.   En efecto, sea  -\begin_inset Formula $P_{i}:=v_{0}\cdots v_{i}$ +\begin_inset Formula $P_{i}\coloneqq v_{0}\cdots v_{i}$  \end_inset  , para  @@ -1008,7 +1008,9 @@ lSSi{$  \backslash  text{  \backslash -rm fallo}(t):=r$}{$f_b +rm fallo}(t) +\backslash +coloneqq r$}{$f_b  \backslash  gets t$}  \end_layout @@ -1253,7 +1255,7 @@ Entonces, si  \end_inset  , dado un  -\begin_inset Formula $c:=(s,\{v_{1},\dots,v_{n}\})\in A$ +\begin_inset Formula $c\coloneqq (s,\{v_{1},\dots,v_{n}\})\in A$  \end_inset   tal que todos los  @@ -1269,7 +1271,7 @@ grafo solución  \end_inset   es  -\begin_inset Formula $(V',A'):=(\{s,v_{1},\dots,v_{n}\}\cup\bigcup_{i}V_{i},c\cup\bigcup_{i}A_{i})$ +\begin_inset Formula $(V',A')\coloneqq (\{s,v_{1},\dots,v_{n}\}\cup\bigcup_{i}V_{i},c\cup\bigcup_{i}A_{i})$  \end_inset  , donde  @@ -1281,7 +1283,7 @@ grafo solución  \end_inset  , y el coste de la solución es  -\begin_inset Formula $\omega(V',A'):=\omega(c)+\sum_{i}\omega(V_{i},A_{i})$ +\begin_inset Formula $\omega(V',A')\coloneqq \omega(c)+\sum_{i}\omega(V_{i},A_{i})$  \end_inset  . @@ -2430,7 +2432,7 @@ Dadas las heurísticas  \end_inset   para un mismo problema,  -\begin_inset Formula $h(v):=\max_{i=1}^{m}h_{i}$ +\begin_inset Formula $h(v)\coloneqq \max_{i=1}^{m}h_{i}$  \end_inset   es una heurística que domina a todas las  @@ -449,7 +449,7 @@ soporte  \end_inset   es  -\begin_inset Formula $s(Z):=\frac{|\{e\in D\mid Z\subseteq e\}|}{|D|}$ +\begin_inset Formula $s(Z)\coloneqq \frac{|\{e\in D\mid Z\subseteq e\}|}{|D|}$  \end_inset  ; la  @@ -473,7 +473,7 @@ precisión  \end_inset   es  -\begin_inset Formula $c(X\Rightarrow Y):=\frac{s(X\cup Y)}{s(X)}$ +\begin_inset Formula $c(X\Rightarrow Y)\coloneqq \frac{s(X\cup Y)}{s(X)}$  \end_inset  , y su  @@ -485,12 +485,12 @@ soporte  cobertura  \series default   es  -\begin_inset Formula $s(X\Rightarrow Y):=s(X\cup Y)$ +\begin_inset Formula $s(X\Rightarrow Y)\coloneqq s(X\cup Y)$  \end_inset  .   Las diapositivas usan la notación de mierda  -\begin_inset Formula $|X|:=|\{e\in D\mid X\subseteq e\}|$ +\begin_inset Formula $|X|\coloneqq |\{e\in D\mid X\subseteq e\}|$  \end_inset  . | 
