aboutsummaryrefslogtreecommitdiff
path: root/si
diff options
context:
space:
mode:
Diffstat (limited to 'si')
-rw-r--r--si/n2.lyx2
-rw-r--r--si/n3.lyx16
-rw-r--r--si/n7.lyx8
3 files changed, 14 insertions, 12 deletions
diff --git a/si/n2.lyx b/si/n2.lyx
index 946c8e4..c9f5390 100644
--- a/si/n2.lyx
+++ b/si/n2.lyx
@@ -269,7 +269,7 @@ Y-O
\end_inset
, sea
-\begin_inset Formula $N:=\{S\subseteq V\mid (u,S)\in A\}$
+\begin_inset Formula $N\coloneqq \{S\subseteq V\mid (u,S)\in A\}$
\end_inset
,
diff --git a/si/n3.lyx b/si/n3.lyx
index ba20d3d..684d415 100644
--- a/si/n3.lyx
+++ b/si/n3.lyx
@@ -665,7 +665,7 @@ f(R)=\omega(R)+h(\text{final}(R))\leq\omega(R)+\min\omega({\cal P}_{\text{final}
por lo que siempre se procesa antes una solución óptima que una no óptima.
Sea ahora
-\begin_inset Formula $p:=\inf\omega(A)>0$
+\begin_inset Formula $p\coloneqq \inf\omega(A)>0$
\end_inset
, todo
@@ -784,7 +784,7 @@ Si
es monótona creciente.
En efecto, sea
-\begin_inset Formula $P_{i}:=v_{0}\cdots v_{i}$
+\begin_inset Formula $P_{i}\coloneqq v_{0}\cdots v_{i}$
\end_inset
, para
@@ -1008,7 +1008,9 @@ lSSi{$
\backslash
text{
\backslash
-rm fallo}(t):=r$}{$f_b
+rm fallo}(t)
+\backslash
+coloneqq r$}{$f_b
\backslash
gets t$}
\end_layout
@@ -1253,7 +1255,7 @@ Entonces, si
\end_inset
, dado un
-\begin_inset Formula $c:=(s,\{v_{1},\dots,v_{n}\})\in A$
+\begin_inset Formula $c\coloneqq (s,\{v_{1},\dots,v_{n}\})\in A$
\end_inset
tal que todos los
@@ -1269,7 +1271,7 @@ grafo solución
\end_inset
es
-\begin_inset Formula $(V',A'):=(\{s,v_{1},\dots,v_{n}\}\cup\bigcup_{i}V_{i},c\cup\bigcup_{i}A_{i})$
+\begin_inset Formula $(V',A')\coloneqq (\{s,v_{1},\dots,v_{n}\}\cup\bigcup_{i}V_{i},c\cup\bigcup_{i}A_{i})$
\end_inset
, donde
@@ -1281,7 +1283,7 @@ grafo solución
\end_inset
, y el coste de la solución es
-\begin_inset Formula $\omega(V',A'):=\omega(c)+\sum_{i}\omega(V_{i},A_{i})$
+\begin_inset Formula $\omega(V',A')\coloneqq \omega(c)+\sum_{i}\omega(V_{i},A_{i})$
\end_inset
.
@@ -2430,7 +2432,7 @@ Dadas las heurísticas
\end_inset
para un mismo problema,
-\begin_inset Formula $h(v):=\max_{i=1}^{m}h_{i}$
+\begin_inset Formula $h(v)\coloneqq \max_{i=1}^{m}h_{i}$
\end_inset
es una heurística que domina a todas las
diff --git a/si/n7.lyx b/si/n7.lyx
index b20a18e..00a9778 100644
--- a/si/n7.lyx
+++ b/si/n7.lyx
@@ -449,7 +449,7 @@ soporte
\end_inset
es
-\begin_inset Formula $s(Z):=\frac{|\{e\in D\mid Z\subseteq e\}|}{|D|}$
+\begin_inset Formula $s(Z)\coloneqq \frac{|\{e\in D\mid Z\subseteq e\}|}{|D|}$
\end_inset
; la
@@ -473,7 +473,7 @@ precisión
\end_inset
es
-\begin_inset Formula $c(X\Rightarrow Y):=\frac{s(X\cup Y)}{s(X)}$
+\begin_inset Formula $c(X\Rightarrow Y)\coloneqq \frac{s(X\cup Y)}{s(X)}$
\end_inset
, y su
@@ -485,12 +485,12 @@ soporte
cobertura
\series default
es
-\begin_inset Formula $s(X\Rightarrow Y):=s(X\cup Y)$
+\begin_inset Formula $s(X\Rightarrow Y)\coloneqq s(X\cup Y)$
\end_inset
.
Las diapositivas usan la notación de mierda
-\begin_inset Formula $|X|:=|\{e\in D\mid X\subseteq e\}|$
+\begin_inset Formula $|X|\coloneqq |\{e\in D\mid X\subseteq e\}|$
\end_inset
.