diff options
Diffstat (limited to 'ts/n3.lyx')
| -rw-r--r-- | ts/n3.lyx | 115 | 
1 files changed, 33 insertions, 82 deletions
| @@ -714,7 +714,7 @@ Llamamos  \series bold  unión disjunta  \series default - de dos objetos  + de dos conjuntos   \begin_inset Formula $X$  \end_inset @@ -722,45 +722,8 @@ unión disjunta  \begin_inset Formula $Y$  \end_inset -,  -\begin_inset Formula $X\amalg Y$ -\end_inset - -, a un objeto para el que existen  -\begin_inset Formula $L:X\to X\amalg Y$ -\end_inset - - y  -\begin_inset Formula $R:Y\to X\amalg Y$ -\end_inset - - tales que para cada objeto  -\begin_inset Formula $Z$ -\end_inset - -,  -\begin_inset Formula $f_{L}:X\to Z$ -\end_inset - - y  -\begin_inset Formula $f_{R}:Y\to Z$ -\end_inset - -, existe una única  -\begin_inset Formula $f:X\amalg Y\to Z$ -\end_inset - - tal que  -\begin_inset Formula $f_{L}=f\circ L$ -\end_inset - - y  -\begin_inset Formula $f_{R}:=f\circ R$ -\end_inset - -. - Se puede construir como  -\begin_inset Formula $(X\times\{0\})\cup(Y\times\{1\})$ + a  +\begin_inset Formula $X\amalg Y:=(X\times\{0\})\cup(Y\times\{1\})$  \end_inset  . @@ -773,7 +736,7 @@ unión disjunta  \end_inset   son espacios topológicos, definimos la topología  -\begin_inset Formula ${\cal T}_{X\amalg Y}:=\{U\subseteq X\amalg Y:L^{-1}(U)\in{\cal T}_{X}\land R^{-1}(U)\in{\cal T}_{Y}\}$ +\begin_inset Formula ${\cal T}_{X\amalg Y}:=\{U\subseteq X\amalg Y:\{x:(x,0)\in U\}\in{\cal T}_{X}\land\{y:(y,1)\in U\}\in{\cal T}_{Y}\}$  \end_inset  . @@ -785,11 +748,11 @@ Vemos que  \end_inset   es continua si y sólo si lo son  -\begin_inset Formula $f\circ L$ +\begin_inset Formula $f|_{X\times\{0\}}$  \end_inset   y  -\begin_inset Formula $f\circ R$ +\begin_inset Formula $f|_{Y\times\{1\}}$  \end_inset  , y que  @@ -797,11 +760,11 @@ Vemos que  \end_inset   es continua si y sólo si  -\begin_inset Formula $f|_{f^{-1}(L(X))}$ +\begin_inset Formula $f|_{f^{-1}(X\times\{1\})}$  \end_inset   y  -\begin_inset Formula $f|_{f^{-1}(R(Y))}$ +\begin_inset Formula $f|_{f^{-1}(Y\times\{0\})}$  \end_inset   lo son. @@ -843,11 +806,11 @@ Sea  \end_inset   dada por  -\begin_inset Formula $f(L(x)):=e^{x_{1}}v_{1}+\sum_{k=2}^{n}x_{k}v_{k}$ +\begin_inset Formula $f(x,0):=e^{x_{1}}v_{1}+\sum_{k=2}^{n}x_{k}v_{k}$  \end_inset   y  -\begin_inset Formula $f(R(x)):=-e^{x_{1}}v_{1}+\sum_{k=2}^{n}x_{k}v_{k}$ +\begin_inset Formula $f(y,0):=-e^{x_{1}}v_{1}+\sum_{k=2}^{n}x_{k}v_{k}$  \end_inset   es un homeomorfismo. @@ -861,8 +824,8 @@ Sea  \begin_inset Formula   \[  f^{-1}\left(\sum_{k=1}^{n}x_{k}v_{k}\right)=\begin{cases} -L(\log x_{1},x_{2},\dots,x_{n}) & \text{si }x_{1}>0,\\ -R(\log(-x_{1}),x_{2},\dots,x_{n}) & \text{si }x_{1}<0, +((\log x_{1},x_{2},\dots,x_{n}),0), & x_{1}>0;\\ +((\log(-x_{1}),x_{2},\dots,x_{n}),1), & x_{1}<0;  \end{cases}  \] @@ -890,11 +853,11 @@ Basta tomar el homeomorfismo  \end_inset   dado por  -\begin_inset Formula $f(L(A))=A$ +\begin_inset Formula $f(A,0)=A$  \end_inset  ,  -\begin_inset Formula $f(R(A))=-A$ +\begin_inset Formula $f(A,1)=-A$  \end_inset  , y  @@ -971,7 +934,7 @@ Sea  \end_inset  ,  -\begin_inset Formula $\{L^{-1}(A_{i})\}_{i\in I}$ +\begin_inset Formula $\{U_{i}:=\{x:(x,0)\in A_{i}\}\}_{i\in I}$  \end_inset   lo es de  @@ -979,16 +942,16 @@ Sea  \end_inset   y por tanto admite un subrecubrimiento finito  -\begin_inset Formula $L^{-1}(A_{i_{1}}),\dots,L^{-1}(A_{i_{n}})$ +\begin_inset Formula $U_{i_{1}},\dots,U_{i_{n}}$  \end_inset  .   Del mismo modo  -\begin_inset Formula $\{R^{-1}(A_{i})\}_{i\in I}$ +\begin_inset Formula $\{V_{j}:=\{y:(y,1)\in A_{i}\}\}_{j\in I}$  \end_inset   admite un subrecubrimiento finito  -\begin_inset Formula $R^{-1}(A_{j_{1}}),\dots,R^{-1}(A_{j_{m}})$ +\begin_inset Formula $V_{j_{1}},\dots,V_{j_{m}}$  \end_inset   de  @@ -1029,7 +992,7 @@ Sea  \end_inset  ,  -\begin_inset Formula $\{L(A_{i})\}_{i\in I}\cup Y$ +\begin_inset Formula $\{A_{i}\times\{0\}\}_{i\in I}\cup(Y\times\{1\})$  \end_inset   es un recubrimiento por abiertos de  @@ -1037,7 +1000,7 @@ Sea  \end_inset   que admite pues un subrecubrimiento finito  -\begin_inset Formula $L(A_{1}),\dots,L(A_{n}),Y$ +\begin_inset Formula $A_{1}\times\{0\},\dots,A_{n}\times\{0\},Y\times\{1\}$  \end_inset  , con lo que  @@ -1092,23 +1055,19 @@ status open  \end_inset  Sean  -\begin_inset Formula $p,q\in X\amalg Y$ +\begin_inset Formula $(p,i),(q,j)\in X\amalg Y$  \end_inset  ,  -\begin_inset Formula $p\neq q$ +\begin_inset Formula $(p,i)\neq(q,j)$  \end_inset  .   Si  -\begin_inset Formula $p,q\in L(X)$ -\end_inset - - o  -\begin_inset Formula $p,q\in R(Y)$ +\begin_inset Formula $i=j$  \end_inset - basta tomar los abiertos en  +, basta tomar los abiertos en   \begin_inset Formula $X$  \end_inset @@ -1117,20 +1076,12 @@ Sean  \end_inset  . - Si  -\begin_inset Formula $p\in L(X)$ -\end_inset - - y  -\begin_inset Formula $q\in R(Y)$ + De lo contrario basta tomar  +\begin_inset Formula $X\times\{0\}$  \end_inset -, basta tomar  -\begin_inset Formula $L(X)$ -\end_inset - - y  -\begin_inset Formula $R(Y)$ + e  +\begin_inset Formula $Y\times\{1\}$  \end_inset  . @@ -1163,19 +1114,19 @@ Sean  \end_inset   entornos respectivos de  -\begin_inset Formula $p$ +\begin_inset Formula $(p,0)$  \end_inset   y  -\begin_inset Formula $q$ +\begin_inset Formula $(q,0)$  \end_inset   disjuntos, y basta tomar  -\begin_inset Formula $U\cap X$ +\begin_inset Formula $\{x:(x,0)\in U\}$  \end_inset   y  -\begin_inset Formula $V\cap X$ +\begin_inset Formula $\{x:(x,0)\in V\}$  \end_inset  . @@ -1206,7 +1157,7 @@ Si  status open  \begin_layout Plain Layout -\begin_inset Formula $\{L(X),R(Y)\}$ +\begin_inset Formula $\{X\times\{0\},Y\times\{1\}\}$  \end_inset   es una separación por abiertos. | 
