aboutsummaryrefslogtreecommitdiff
path: root/ts/n3.lyx
diff options
context:
space:
mode:
Diffstat (limited to 'ts/n3.lyx')
-rw-r--r--ts/n3.lyx22
1 files changed, 11 insertions, 11 deletions
diff --git a/ts/n3.lyx b/ts/n3.lyx
index 5674436..8443b38 100644
--- a/ts/n3.lyx
+++ b/ts/n3.lyx
@@ -309,7 +309,7 @@ Sean
status open
\begin_layout Plain Layout
-\begin_inset Formula $\mathbb{S}^{n}\setminus\{N:=(0,\dots,0,1)\}$
+\begin_inset Formula $\mathbb{S}^{n}\setminus\{N\mid =(0,\dots,0,1)\}$
\end_inset
y
@@ -736,7 +736,7 @@ unión disjunta
\end_inset
son espacios topológicos, definimos la topología
-\begin_inset Formula ${\cal T}_{X\amalg Y}:=\{U\subseteq X\amalg Y:\{x:(x,0)\in U\}\in{\cal T}_{X}\land\{y:(y,1)\in U\}\in{\cal T}_{Y}\}$
+\begin_inset Formula ${\cal T}_{X\amalg Y}:=\{U\subseteq X\amalg Y\mid \{x\mid (x,0)\in U\}\in{\cal T}_{X}\land\{y\mid (y,1)\in U\}\in{\cal T}_{Y}\}$
\end_inset
.
@@ -934,7 +934,7 @@ Sea
\end_inset
,
-\begin_inset Formula $\{U_{i}:=\{x:(x,0)\in A_{i}\}\}_{i\in I}$
+\begin_inset Formula $\{U_{i}\mid =\{x\mid (x,0)\in A_{i}\}\}_{i\in I}$
\end_inset
lo es de
@@ -947,7 +947,7 @@ Sea
.
Del mismo modo
-\begin_inset Formula $\{V_{j}:=\{y:(y,1)\in A_{i}\}\}_{j\in I}$
+\begin_inset Formula $\{V_{j}\mid =\{y\mid (y,1)\in A_{i}\}\}_{j\in I}$
\end_inset
admite un subrecubrimiento finito
@@ -1122,11 +1122,11 @@ Sean
\end_inset
disjuntos, y basta tomar
-\begin_inset Formula $\{x:(x,0)\in U\}$
+\begin_inset Formula $\{x\mid (x,0)\in U\}$
\end_inset
y
-\begin_inset Formula $\{x:(x,0)\in V\}$
+\begin_inset Formula $\{x\mid (x,0)\in V\}$
\end_inset
.
@@ -1449,7 +1449,7 @@ Dado un abierto
\end_inset
,
-\begin_inset Formula $a^{-1}(U)=\{x\in X:a(x)\in U\}=f^{-1}(U\times Y)$
+\begin_inset Formula $a^{-1}(U)=\{x\in X\mid a(x)\in U\}=f^{-1}(U\times Y)$
\end_inset
, que es abierto por la hipótesis.
@@ -1479,7 +1479,7 @@ Dado un elemento básico
\end_inset
,
-\begin_inset Formula $f^{-1}(U\times)=\{x\in X:a(x)\in U,b(x)\in V\}=a^{-1}(U)\cap b^{-1}(V)$
+\begin_inset Formula $f^{-1}(U\times)=\{x\in X\mid a(x)\in U,b(x)\in V\}=a^{-1}(U)\cap b^{-1}(V)$
\end_inset
, que es abierto.
@@ -2269,7 +2269,7 @@ Sean
\end_inset
, sea
-\begin_inset Formula $I_{x}:=\{i\in I:x\in U_{i}\}$
+\begin_inset Formula $I_{x}:=\{i\in I\mid x\in U_{i}\}$
\end_inset
,
@@ -2360,7 +2360,7 @@ topología cociente
\end_inset
a
-\begin_inset Formula $\{V\subseteq(X/\sim):p^{-1}(V)\in{\cal T}\}$
+\begin_inset Formula $\{V\subseteq(X/\sim)\mid p^{-1}(V)\in{\cal T}\}$
\end_inset
, donde
@@ -2832,7 +2832,7 @@ Si
\end_inset
es Hausdorff si y sólo si
-\begin_inset Formula $\{(x,y)\in X\times X:x\sim y\}$
+\begin_inset Formula $\{(x,y)\in X\times X\mid x\sim y\}$
\end_inset
es cerrado en